Goal-oriented mesh adaptation for FSI problems

Éléonore Gauci^{*+}, Frédéric Alauzet⁺, Alain Dervieux^{*}

(⁺) INRIA, Team Gamma3, Saclay, France (*) INRIA, Team Ecuador, Sophia-Antipolis, France

Réunion ANR Maidesc, 25 Octobre 2016

Objective

Combine goal-oriented mesh adaptation and simulations with moving bodies.

Main numerical difficulty

How to handle the geometry displacement ?

Mesh Adaptation

Main idea : introduce the use of metrics field, and notion of unit mesh.

[George, Hecht and Vallet., Adv Eng. Software 1991]

• Riemannian metric space: $M: d \times d$ symmetric definite positive matrix

$$egin{aligned} &\langle u,v
angle_{\mathcal{M}}=^t \mathbf{u}\mathcal{M}\mathbf{v} \Rightarrow \ell_{\mathcal{M}}(\mathbf{a},\mathbf{b}) = \int_0^1 \sqrt{^t\mathbf{ab}\;\mathcal{M}(\mathbf{a}+\mathbf{tab})\;\mathbf{ab}}\;\mathrm{d}\mathbf{t} \ &|\mathcal{K}|_{\mathcal{M}}=\int_{\mathcal{K}}\sqrt{\mathrm{det}\,\mathcal{M}}\;\mathrm{d}|\mathcal{K}| \end{aligned}$$

continuous Metric Field \rightarrow discrete Mesh.

Time-accurate Feature-based Mesh Adaptation

Deriving the best mesh to compute the characteristics of a given solution w in space and time

[Tam et al.,CMAME 2000], [Picasso, SIAMJSC 2003], [Formaggia et al, ANM 2004], [Frey and Alauzet CMAME 2005], [Gruau and Coupez, CMAME 2005], [Huang, JCP 2005], [Compere et al., 2007]

• Discrete space-time mesh adaptation problem :

Find $\mathcal{H}_{L^{p}}^{opt}$ having N_{st} vertices such that

 $\mathcal{H}_{L^{p}}^{opt} = \operatorname{Argmin}_{\mathcal{H}} ||u - \Pi_{h}u||_{\mathcal{H}, \mathsf{L}^{p}(\Omega \times [0, T])}$

• Well-posed Continuous space-time mesh adaptation problem :

Find
$$\mathcal{M}_{L^{p}}^{opt}$$
 of complexity N_{st} such that

$$E_{L^{p}}(\mathcal{M}_{L^{p}}^{opt}) = \min_{\mathcal{M}} \left(\int_{0}^{T} \int_{\Omega} \operatorname{Trace}(\mathcal{M}(\mathbf{x}, t)^{-\frac{1}{2}} | H_{u}(\mathbf{x}, t) | \mathcal{M}(\mathbf{x}, t)^{-\frac{1}{2}})^{p} \mathrm{d}\mathbf{x} \mathrm{d}t \right)^{\frac{1}{p}}$$

 \Rightarrow Solved by variational calculus

Time-accurate Feature-based Mesh Adaptation

Optimal Mesh

$$\mathcal{M}_{L^{p}}^{opt} = N_{st}^{\frac{2}{3}} \left(\int_{0}^{T} \tau(t)^{\frac{-2p}{2p+3}} \mathcal{K}(t) \mathrm{d}t \right)^{-\frac{2}{3}} \tau(t)^{\frac{2}{2p+3}} (\det |H_{u}(\mathbf{x},t)|)^{\frac{-1}{2p+3}} |H_{u}(\mathbf{x},t)|$$

with
$$\mathcal{K}(t) = \left(\int_{\Omega} (\det |H_u(\mathbf{x}, t)|)^{\frac{p}{2p+3}} \mathrm{d}\mathbf{x}\right)$$

Global normalization term requires the whole computation

• A global fixed-point algorithm

- \Rightarrow to compute the space-time metric complexity
- \Rightarrow to converge the **non-linear** mesh adaptation problem
- \Rightarrow to predict the solution evolution
- Split the simulation into several time sub-intervals and set an adapted mesh for each sub-interval ⇒ to limit the number of meshes

$$[0, T] = [t_0 = 0, t_1] \cup [t_1, t_2] \cup ...[t_{kmax}, T]$$

Unsteady Feature-based Mesh Adaptation : Algorithm

For j=1,nptfx
For j=1,nadap
•
$$S_{0,i}^{j} = \text{InterpolateSolution}(\mathcal{H}_{i-1}^{j}, S_{i-1}^{j}, \mathcal{H}_{i}^{j})$$

• $|\mathcal{H}_{\max}|_{i}^{j} = \text{SolveState}(S_{0,i}^{j}, \mathcal{H}_{i}^{j})$
• $|\mathcal{H}_{\max}|_{i}^{j} = \text{ComputeHessianMetric}(\mathcal{H}_{i}^{j}, \{S_{i}^{j}(k)\}_{k=1,nk})$
End for $C^{j} = \text{ComputeSpaceTimeComplexity}(\{|\mathcal{H}_{\max}|_{i}^{j}\}_{i=1,nadap})$
 $\mathcal{M}_{i}^{j-1} = \text{ComputeUnsteadyLpMetrics}(C^{j-1}, |\mathcal{H}_{\max}|_{i}^{j-1})$
 $\mathcal{H}_{i}^{j} = \text{GenerateAdaptedMeshes}(\mathcal{H}_{i}^{j-1}, \mathcal{M}_{i}^{j-1})$
End for

$$[0, T] = [t_0 = 0, t_1] \cup [t_1, t_2] \cup \dots [t_{kmax}, T]$$

For j=1,nptfx
For j=1,nadap
•
$$S_{0,i}^{j} = \text{InterpolateSolution}(\mathcal{H}_{i-1}^{j}, S_{i-1}^{j}, \mathcal{H}_{i}^{j})$$

• $|\mathcal{H}_{\max}|_{i}^{j} = \text{SolveState}(S_{0,i}^{j}, \mathcal{H}_{i}^{j})$
• $|\mathcal{H}_{\max}|_{i}^{j} = \text{ComputeHessianMetric}(\mathcal{H}_{i}^{j}, \{S_{i}^{j}(k)\}_{k=1,nk})$
End for $C^{j} = \text{ComputeSpaceTimeComplexity}(\{|\mathcal{H}_{\max}|_{i}^{j}\}_{i=1,nadap})$
 $\mathcal{M}_{i}^{j-1} = \text{ComputeUnsteadyLpMetrics}(C^{j-1}, |\mathcal{H}_{\max}|_{i}^{j-1})$
 $\mathcal{H}_{i}^{j} = \text{GenerateAdaptedMeshes}(\mathcal{H}_{i}^{j-1}, \mathcal{M}_{i}^{j-1})$
End for

$$[0, T] = [t_0 = 0, t_1] \cup [t_1, t_2] \cup ...[t_{kmax}, T]$$

It is then possible to take into account the mesh motion inside the error estimate \implies optimal space-time adapted mesh in ALE framework

Mesh optimization for moving meshes

As mesh quality tends to decrease while the mesh is moving \Rightarrow regular **optimization phases** must be performed : smoothing and edge swapping

- Two planes moved at Mach 0.4 inside an inert air.
- The planes are translated and rotating
- 50 sub intervals and 3 adaptation loops
- Total space time complexity: 36,000,000 vertices, average mesh size: 732,000 vertices, 80,000 timesteps

2D Pilot case

- Blast initialization : high density (10,0,25) and air (1,0,2.5)
- 2D geometry : $(5 \times 0.5 m^2)$: 2395 Vertices
- cost function $j: j: j(W) = \int_0^T \int_{\Gamma} \frac{1}{2} (p p_{air})^2 d\Gamma dt$.

Deriving the best mesh to observe a given output scalar functional

 $j(w) = \langle g, w \rangle$

[Venditti and Darmofal, JCP 2003], [Jones et al., AIAA 2006], [Power et al, CMA 2006], [Wintzer et al., AIAA 2008], [Leicht and Hartmann, JCP 2010]

- Let W be the solution of the state equation $\Psi(W) = 0$
- Choose a scalar functional *j*.
- Minimize $\delta j_h = |j j_h| = |(g, W) (g, W_h)|$
- Introduce the adjoint state W^*

$$\left(\frac{\partial \Psi_h}{\partial W_h}\varphi_h, W_h^*\right) = (g, \varphi_h)$$

to estimate the error $\delta j_h \approx (W^*, \Psi_h(W) - \Psi(W))$

• Minimize δj_h with an *a priori* error estimate

Unsteady Adjoint Resolution (Euler Equation)

The **continuous** state model on $\Omega \times [0, T]$ obeys to :

$$\Psi(W) = 0$$

The **discrete** state model writes :

$$W_h^n = W_h^{n-1} + \delta t^n \Phi_h(W_h^{n-1})$$

Consider a time-dependent functional :

$$j(W) = \int_0^T \int_{\Gamma} j_{\Gamma}(W(\mathbf{x}, t) \mathrm{d}\mathbf{x} \mathrm{d}t)$$

The **continuous** adjoint state on $\Omega \times [0, T]$ obeys to :

$$\Psi^*(W, W^*) = 0 \quad \text{or} \quad -\frac{\partial W^*}{\partial t} - \left(\frac{\partial F}{\partial W}\right) \nabla W^* = g$$
(1)

The **discrete** adjoint state writes :

$$W_{h^{*,n-1}} = W_{h^{*,n}} + \delta t^{n} \frac{\partial j_{h}^{n-1}}{\partial W_{h}^{n-1}} (W_{h}^{n-1}) - \delta t^{n} (W_{h^{*,n}})^{T} \frac{\partial \Phi_{h}}{\partial W_{h}^{n-1}} (W_{h}^{n-1})$$

Goal-oriented mesh adaptation for FSI problems

Time accurate Goal-oriented mesh adaptation

Difficulties

Computing $W^{*,n-1}$ at time t^{n-1} requires the knowledge of state W^{n-1} and adjoint state $W^{*,n}$

 \Rightarrow the knowledge of all states $\mathcal{W}^n, n = 1 \cdots N$ is needed

Solve state foreward: $\Psi(W) = 0$

Solve adjoint state backward: $\Psi^*(W\!,W^*)=0$

 \Rightarrow Large memory storage effort in 3D (10⁶ vertices & 10³ iterations request 37.25 Gb)

Adopted solution

Solve state once to get checkpoints State interpolation between two memory storage

Unsteady Feature-based mesh adaptation : Algorithm

For j=1,nptfx
For j=1,nadap
•
$$S_{0,i}^{j} = \text{ConservativeSolutionTransfer}(\mathcal{H}_{i-1}^{j}, S_{i-1}^{j}, \mathcal{H}_{i}^{j})$$

• $S_{i}^{j} = \text{SolveState}(S_{0,i}^{j}, \mathcal{H}_{i}^{j})$
End for
For i=nadap,1
• $(S^{*})_{i}^{j} = \text{AdjointStateTransfer}(\mathcal{H}_{i+1}^{j}, (S_{0}^{*})_{i+1}^{j}, \mathcal{H}_{i}^{j})$
• $\{S_{i}^{j}(k), (S^{*})_{i}^{i}(k)\} = \text{SolveStateAndAdjointBackward}(S_{0,i}^{j}, (S^{*})_{i}^{j}, \mathcal{H}_{i}^{j})$
• $|\mathcal{H}_{\max}|_{i}^{j} = \text{ComputeGoalOrientedHessianMetric}(\mathcal{H}_{i}^{j}, \{S_{i}^{j}(k), (S^{*})_{i}^{j}(k)\})$
End for
 $C^{j} = \text{ComputeSpaceTimeComplexity}(\{|\mathcal{H}_{\max}|_{i}^{j}\}_{i=1,nadap})$
 $\mathcal{M}_{i}^{j} = \text{ComputeUnsteadyLpMetrics}(C^{j-1}, |\mathcal{H}_{\max}|_{i}^{j-1})$
 $\mathcal{H}_{i}^{j+1} = \text{GenerateAdaptedMeshes}(\mathcal{H}_{i}^{j}, \mathcal{M}_{i}^{j})$
and for

Solve state and backward adjoint state from checkpoints

Е

Blast in the city

- Blast initialization : high density (10,0,0,0,25) and air (1,0,0,0,2.5)
- 3D town geometry $(85 \times 70 \times 70 \ m^3)$: 4187548 vertices
- cost function $j: j(W) = \int_0^T \int_{\Gamma} \frac{1}{2} (p p_{air})^2 d\Gamma dt$.

The observation Γ are these 2 buildings

Blast in the city

- Blast initialization : high density (10,0,0,0,25) and air (1,0,0,0,2.5)
- 3D town geometry (85 \times 70 \times 70 $m^3)$: 4187548 Vertices
- cost function $j: j(W) = \int_0^T \int_{\Gamma} \frac{1}{2} (p p_{air})^2 d\Gamma dt$.

Goal-oriented mesh adaptation for FSI problems

2D Pilot case

- Blast initialization : high density (10,0,25) and air (1,0,2.5)
- 2D geometry : $(5 \times 0.5 m^2)$: 2395 Vertices
- cost function $j: j: j(W) = \int_0^T \int_{\Gamma} \frac{1}{2} (p p_{air})^2 d\Gamma dt$.

2D Pilot case

- Blast initialization : high density (10,0,25) and air (1,0,2.5)
- 2D geometry : $(5 \times 0.5 m^2)$: 2395 Vertices
- cost function $j: j: j(W) = \int_0^T \int_{\Gamma} \frac{1}{2} (p p_{air})^2 d\Gamma dt$.

From Top to Down : Time 0.3 - 0.75 - 1.5

Unsteady Adjoint Resolution in ALE framework

The discrete unsteady state model in ALE writes :

$$W_h^n = W_h^{n-1} + \delta t^n \Phi_{h,ale}(W_h^{n-1})$$

Consider a time-dependent functional :

$$j(W) = \int_0^T \int_{\Gamma} j_{\Gamma}(W(\mathbf{x}, t) \mathrm{d}\mathbf{x} \mathrm{d}t)$$

The **continuous** unsteady adjoint state on $(\Omega, [0, T])$ in ALE obeys to :

$$\Psi^*(W, W^*) = 0 \quad \text{or} \quad -\frac{\partial W^*}{\partial t} - \left(\frac{\partial \mathcal{F}_{ale}}{\partial W}\right) \nabla W^* = g \qquad (2)$$

The discrete unsteady adjoint state in ALE writes :

$$W_{h}^{*,n-1} = W_{h}^{*,n} + \delta t^{n} \frac{\partial j_{h}^{n-1}}{\partial W_{h}^{n-1}} (W_{h}^{n-1}) - \delta t^{n} (W_{h}^{*,n})^{T} \frac{\partial \Phi_{h,ale}}{\partial W_{h}^{n-1}} (W_{h}^{n-1})$$

Unsteady Adjoint Resolution in ALE : Technical Difficulties

Mesh displacement σ

• Mesh displacement σ for the adjoint resolution in backward is the same as it was in the forward state resolution

• Jacobian of fluxes :
$$\frac{\partial \Phi_{h,ale}}{\partial W_h^{n-1}}$$

• Boundary conditions : Boundary fluxes take also into account displacement of geometry

Deal with connectivities

Backward Mesh : store the positions but not necessary the connectivities

 \Rightarrow The adjoint state W^* verify the DGCL property :

$$(|\mathcal{C}^{n+1}| - |\mathcal{C}^n|) - \int_n^{n+1} \int_{\partial \mathcal{C}(t)} (\mathbf{w}^* \cdot \mathbf{n}) \mathrm{d}\mathbf{s} \mathrm{d}t = 0$$

Pilot Case

22

FSI case

- Lift-off of a circle by a Mach 3 Shock Wave
- 2D geometry : $(1 \times 0.2 \ m^2)$: 9064 Vertices
- cost function $j: j: j(W) = \int_0^T \int_{\Gamma} \frac{1}{2} (p p_{air})^2 d\Gamma dt$.

Mesh generated in forward

Solve State

Mesh generated in backward

Adjoint state in backward

Current study : ALE metric Update

Let
$$t^{k}$$
 be a time into the subset $[t^{i}, t^{i+1}]$,
 $\phi': \Omega^{k} \rightarrow \Omega^{i}$
 $\mathbf{x}^{k} \rightarrow \mathbf{x}^{i} = \mathbf{x}^{k} + \mathbf{d}'(\mathbf{x}^{k}).$

$$= \begin{pmatrix} \left[\nabla^{k} \phi'(\mathbf{x}^{k}) \right]^{T} \mathcal{M}_{L^{p}}^{i, \text{ALE}} \left(\mathbf{x}^{i} \right) \mathbf{e}^{i} \left(\phi'(\mathbf{x}^{k}) \right) \\ = \left(\left[\nabla^{k} \phi'(\mathbf{x}^{k}) \right]^{T} \mathbf{e}^{k}(\mathbf{x}^{k}) \right)^{T} \mathcal{M}_{L^{p}}^{i, \text{ALE}} (\mathbf{x}^{i}) \left(\left[\nabla^{k} \phi'(\mathbf{x}^{k}) \right]^{T} \mathbf{e}^{k}(\mathbf{x}^{k}) \right) \\ = \left(\mathbf{e}^{k}(\mathbf{x}^{k}) \right)^{T} \left\{ \nabla^{k} \phi'(\mathbf{x}^{k}) \mathcal{M}_{L^{p}}^{i, \text{ALE}} (\mathbf{x}^{i}) \left[\nabla^{k} \phi'(\mathbf{x}^{k}) \right]^{T} \right\} \left(\mathbf{e}^{k}(\mathbf{x}^{k}) \right)^{T}$$

(From left to right) Metric without update, Updated metric

Current study : ALE metric Update

Hessian metric at t^k , Updated ALE Hessian metric at t^i , Moved and Updated ALE Hessian metric at t^k

Current study: ALE metric Update

(From left to right) Metric without update, Updated metric

Conclusions

- Time accurate goal-oriented mesh adaptation
- Time accurate feature-based mesh adaptation in ALE framework
- Evaluation of Unsteady Adjoint on moving meshes
- ALE metric update

Perspectives

• Time accurate goal oriented mesh adaptation in ALE framework

THANK YOU FOR YOUR ATTENTION

