MULTIRATE METHOD AND TURBULENCE MODELLING

E. Itam⁽¹⁾, B. Koobus⁽¹⁾

(1) IMAG, Université de Montpellier, France.

MAIDESC seminar - October 2016

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separation and vortex shedding

Turbulence modelling

In the present work

- Evaluation of DDES and VMS-LES models for the prediction of the flow around a circular cylinder for two subcritical regimes
- A comparison of DDES and hybrid VMS-LES model for supercritical flow
- Hybrid simulation of a supercritical flow around a tandem cylinder :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)

Hybrid RANS/VMS-LES model

Motivations

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- **RANS** : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- **VMS-LES** : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - **better accuracy** than RANS for flows dominated by large unsteady structures
- Desired feature for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa

•		00000000000	00
Hybrid	RANS/VMS-LES	model	

• Central idea of the proposed hybrid VMS model :

Correction of the mean flow field obtained with a RANS model by adding fluctuations given by a VMS-LES approach wherever the grid resolution is adequate

• Decomposition of the flow variables :

$$W = \underbrace{< W >}_{RANS} + \underbrace{W^{c}}_{correction} + W^{SGS}$$

 $\langle W \rangle = \text{RANS}$ flow variables $W^c = \text{remaining resolved fluctuations obtained with VMS-LES}$ (i.e. $\langle W \rangle + W^c = W_h = \text{VMS-LES}$ flow variables) $W^{SGS} = \text{subgrid scale fluctuations}$

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusior

Hybrid RANS/VMS-LES model

Hybrid RANS/VMS-LES governing equations

• Semi-discretization of the RANS equations $(k - \epsilon \text{ Goldberg model} + \text{Menter correction})$:

$$\left(\frac{\partial \langle W \rangle}{\partial t}, \Phi_i\right) + \left(\nabla \cdot F(\langle W \rangle), \Phi_i\right) = -\left(\tau^{RANS}(\langle W \rangle), \Phi_i\right)$$

• Final hybrid VMS model equations (RANS eq. + modified governing eq. for reconstructed fluctuations) :

$$\begin{pmatrix} \frac{\partial W_h}{\partial t}, \Phi_i \end{pmatrix} + (\nabla \cdot F(W_h), \Phi_i) = \\ -\theta \left(\tau^{RANS}(\langle W \rangle), \Phi_i \right) - (1 - \theta) \left(\tau^{LES}(W'_h), \Phi'_i \right)$$

where W_h denotes the hybrid variables

• $heta \in [0,1]$ is the blending function

Turbulence Modelling

Multirate time advancing by volume agglomeratior

Conclusior

Hybrid RANS/VMS-LES model

Hybridization strategy

$$heta = 1 - f_d(1 - \overline{ heta})$$

 $f_d\simeq 0$ in the boundary layer $f_d\simeq 1$ outside the boundary layer

where
$$\bar{\theta} = tanh(\xi^2)$$
 with $\xi = \frac{\Delta}{I_{RANS}}$ or $\xi = \frac{\mu_{SGS}}{\mu_{RANS}}$,
 $f_d = 1 - tanh((8r_d)^3)$ and $r_d = \frac{\nu_t + \nu}{max(\sqrt{u_{i,j}u_{i,j}}, 10^{-10})K^2d_w^2}$

Introduction O	Turbulence Modelling	Multirate time advancing by volume agglomeration 00000000000000	Conclusion OO
RANS-DDE	S		

- Based on the low Reynolds $k \epsilon$ model proposed by **Goldberg and Ota**
- The turbulent viscosity is limited by the **Bradshaw's law** in a similar way to Menter's SST model

$DDES/k - \varepsilon/Menter$ formulation

The dissipation term $D_k^{RANS} = \rho \varepsilon$ in the RHS of the $k - \epsilon$ equations is replaced by:

$$D_k^{DDES} = \rho \frac{k^{3/2}}{l_{DDES}}$$

with
$$I_{DDES} = \frac{k^{3/2}}{\epsilon} - f_d \max\left(0, \frac{k^{3/2}}{\epsilon} - C_{DDES}\Delta\right)$$
 where $C_{DDES} = 0.65$ and Δ is a

measure of local mesh size

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusior

Circular cylinder at Re= $3900 \sim$ Subcritical regime

Test case definition

- Flow parameters: Mach = 0.1 Reynolds = 3900
- **Computational grids:** 1.46M nodes 8.4M elements

・ロト ・ 日 ・ ・ 正 ・ ・

≣≯

Circular cylinder at Re= 3900 ~ Subcritical regime

	Mesh	\overline{C}_d	$-\overline{C}_{P_{b}}$
Experiment			
Norberg		[0.94-1.04]	[0.83-0.93]
Present simulations			
No model	1.4M	0.88	0.73
$DDES/k - \varepsilon/Menter$	1.4M	0.88	0.73
VMS dyn.	1.4M	0.90	0.83
Other simulations, LES			
Lee	7.7M	[0.99-1/04]	[0.89-0.94]
Kravchenko	[0.5M-2.4M]	[1.04-1.38]	[0.93-1.23]

Table 1: Circular cylinder: bulk flow parameters at Re=3900

・ロト ・ 「日 ト ・ 目 ト ・ 目 ・ りへの

Turbulence Modelling

Multirate time advancing by volume agglomeratior

Conclusior

Circular cylinder at Re = $20 \times 10^3 \sim$ Subcritical regime

Test case definition

- Flow parameters : Reynolds = 20×10^3 Mach=0.1
- Computational grid :
 - 1.8M nodes 9.4M elements

・ロト ・雪 ・ ・ ヨ ・ ・ ・ ・

Circular cylinder at Re = $20 \times 10^3 \sim$ Subcritical regime

	$\overline{C_d}$	C _{Lrms}	- Cpb	Θ_{sep}	Lr	Lv	Imax	St
Experiment								
Norberg	1.16	0.47	1.16	78	1.03			0.194
Lim-Lee	1.16					1.0	37.0	
Present simulations								
no-model	1.27	0.61	1.35	82	0.96	0.94	38.7	0.201
URANS/Menter	1.27	0.71	1.25	85	0.64	0.53	33.2	0.231
$DDES/k - \varepsilon/Menter$	1.16	0.36	1.12	82	0.83	0.77	35.9	0.213
VmsWale-Dyn	1.18	0.46	1.20	81	0.96	0.71	35.8	0.201
Hybrid-VmsWale-dyn	1.15	0.48	1.15	86	0.88	0.83	35.2	0.210

Table 2: Circular cylinder : bulk flow parameters at Re=20000

・ロト・日本・日本・日本・日本

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusior

Tandem Cylinders

• Flow parameters : Reynolds = 1.66×10^5 Mach=0.1

• Computational grid : 2.71M nodes 15.7M elements

・ロト ・個ト ・モト ・モト

Turbulence Modelling

Multirate time advancing by volume agglomeration

Conclusion

Tandem Cylinders

	Mesh	\overline{C}_d Cyl. 1	\overline{C}_d Cyl. 2
Experiments			
BART		0.64	0.31
Present simulations			
$DDES/k - \varepsilon/Menter$	2.71M	0.65	0.44
Hybrid VMS dyn.	2.59M	0.64	0.38
Other simulations			
DES Aybay (2010)	6.7M	0.64	0.44
HRLES Vatsa (2010)	8.7M	0.64	0.45

Table 3: Tandem cylinder: Mean drag coefficients

Turbulence Modelling

Multirate time advancing by volume agglomeratior

Conclusior

Tandem Cylinders

Figure 1: Mean pressure coefficient distribution DDES versus Hybrid LES dyn.(left) and Hybrid VMS dyn. (right)

Work context

- Development of a new **explicit multirate time advancing scheme** for the solution of the compressible Navier-Stokes equations :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

< ロ > < 部 > < き > < き > き のの

Multirate based on agglomeration - Objectives

A frequent configuration in CFD calculations combines :

- An explicit time advancing scheme for accuracy purpose
- A computational grid with a very small portion of much smaller elements than in the remaining mesh

Examples:

- Isolated traveling shock
- Boundary layer at high Reynolds number (few tens of microns thick) in LES computations where vortices around one centimeter are captured

Explicit time advancing schemes with global time stepping are too costly \rightarrow the **multirate time stepping approach** is an interesting alternative

<ロ> <四> <四> <四> <四> <四> <四</p>

Inner and outer zones - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the **outer zone** as the set of cells for which the explicit scheme is stable for a time step *K*Δ*t*, and the **inner zone** as its complement
 - Definition of these zones through the local time steps

Inner and outer zones - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the **outer zone** as the set of cells for which the explicit scheme is stable for a time step $K\Delta t$, and the **inner zone** as its complement
 - Definition of these zones through the local time steps

Coarse grid

- Objective :
 - Advancement in time with time step $K\Delta t$
 - Advancement in time preserving accuracy in the outer zone (space order of 3, RK4)
 - Advancement in time consistent in the inner zone
- Define the **coarse grid** as the macro cells in the inner zone + the fine cells in the outer zone

Turbulence Modelling

Conclusior 00

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Definition

- Flux on the coarse grid :
 - Assembling of the nodal flux Ψ_i on the fine cells (as usual)
 - Fluxes sum on the macro cells I (inner zone) :

$$\Psi' = \sum_{k \in I} \Psi_k$$

Volumes sum on the macro cells I (inner zone) : Vol^I = ∑_{k∈I} Vol_k where Vol_k is the volume of cell_k

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Multirate based on agglomeration - Algorithm

Step 1 (predictor) :

Advancement in time with Runge-Kutta (for example) on the macro cells in the inner zone and on the fine cells in the outer zone, with time step $K\Delta t$:

For $\alpha = 1, RKstep$ outer zone : $vol_i w_i^{(\alpha)} = vol_i w_i^{(0)} + b_{\alpha} K \Delta t \Psi_i^{(\alpha-1)}$ inner zone : $vol' w^{l,(\alpha)} = vol' w^{l,(0)} + b_{\alpha} K \Delta t \Psi^{l,(\alpha-1)}$ $w_i^{(\alpha)} = w^{l,(\alpha)}$ for $i \in I$ EndEor α

20

<ロ> < @ > < E > < E > E のQC

Multirate based on agglomeration - Algorithm

Step 2 (corrector) :

- Unknowns frozen in the outer zone
- Time interpolation of these unknowns (those useful for the next point)
- In the inner zone : using these interpolated values, advancement in time with the chosen explicit scheme and time step Δt
- Complexity mastered (proportional to the number of points in the inner zone)

 \rightarrow Complexity : CostMultirate(K) = CostExplicit(N)*(1/K + Ninnernodes(K)/N)

ALE calculation of a traveling contact discontinuity

Test case definition

- Simulation :
 - Compressible Euler equations are solved in a rectangular parallelepiped
 - Density is initially discontinuous at the middle of the domain
 - Velocity and pressure are uniform

• A deforming mesh :

Nodes	Elements	Subdomains
25K	92K	2

Figure 2: Instantaneous mesh with mesh concentration in the middle of zoom

Turbulence Modelling

Multirate time advancing by volume agglomeration

ALE calculation of a traveling contact discontinuity

Figure 3: Zooms on the moving contact discontinuity using a load balancing procedure at two different time steps

K	CPU	N	$N^{small}(K)$	Expected	CPU	CPU	Measured
	expl.			gain	expli	inner	gain
	(s/dt/node)			(scalar)	phase (s/Kdt)	phase (s/Kdt)	(parallel)
5	$2.49.10^{-5}$	25000	325	4.7	0.124	0.244	1.7
10	$4.88.10^{-5}$	25000	325	8.8	0.122	0.482	2.0
15	$7.70.10^{-5}$	25000	325	12.5	0.126	0.729	3.0

Table 4: ALE propagation of a contact discontinuity: factor K between large and small time-step length, CPU parallel rate in seconds per explicit time-step per node, total number of nodes, number of nodes in inner region, theoretical gain in scalar mode, CPU of explicit phases in seconds per explicit time-step, CPU of inner phases in seconds per explicit time-step, and measured parallel gain.

(日)、

Tandem Cylinders

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic and dynamic versions of the WALE SGS model • Flow parameters : Reynolds = 1.66×10^5 Mach=0.1L/D = 3.7

(日)

.⊒ →

Tandem Cylinders

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic and dynamic versions of the WALE SGS model

• Computational grids :

Nodes	Elements	Subdomains
16M	92M	768

• Flow parameters : Reynolds = 1.66×10^5 Mach=0.1L/D = 3.7

Introduction	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
O	0000000000000		OO
Tandem	Cylinders		

Figure 4: Animation of Q-criterion to observe the vortical structures in the flow

K	CPU	N	N ^{small} (K)	Expected	CPU	CPU	Measured
	expl.		(%)	gain	expli	inner	gain
	(s/dt/node)			(scalar)	phase (s/Kdt)	phase (s/Kdt)	(parallel)
5	5.10^{-7}	15505671	18	2.63	1.55	6.93	1.25
10	$9.8.10^{-7}$	15505671	24	2.94	1.52	14.15	1.46
20	2.10^{-6}	15505671	35	2.50	1.53	28.94	2.05

Table 5: Fine mesh - Tandem cylinder

	du		

Cylinder

Test case definition

• Simulation : Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Flow parameters : Reynolds = 8.4×10^{6} Mach=0.1

Cylinder

Test case definition

 Simulation : Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Computational grids :

Nodes	Elements	Subdomains
4.3M	25M	768

• Flow parameters : Reynolds = 8.4×10^{6} Mach=0.1

	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclus
	000000000000	000000000000000000000000000000000000000	00
Cylinder			

Figure 5: Instantaneous Q-criterion isosurfaces

K	CPU	N	$N^{small}(K)$	Expected	CPU	CPU	Measured
	expl.		(%)	gain	expli	inner	gain
	s/dt/node			(scalar)	phase (s/Kdt)	phase (s/Kdt)	(parallel)
5	$4.2.10^{-7}$	4290048	15	2.86	0.36	1.53	1.25
10	$8.5.10^{-7}$	4290048	19	3.45	0.36	3.12	1.46
20	$1.7.10^{-6}$	4290048	24	3.45	0.36	6.24	1.62

Table 6: Circular cylinder

Turbulence Modelling

Space probe model

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Flow parameters : Reynolds = 1×10^6 Mach=2.0

Space probe model

Test case definition

• Flow parameters : Reynolds = 1×10^6 Mach=2.0

• Simulation : Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

Computational grids :

Nodes	Elements	Subdomains
4.38M	25.8M	192

・ロッ ・雪 ・ ・ ヨ ・

æ

Turbulence Modelling

Conclusior 00

Space probe model

Figure 6: Instantaneous pressure with streaklines

К	CPU expl. (s/dt/node)	Ν	N ^{small} (K)	Expected gain (scalar)	CPU expli phase (s/Kdt)	CPU inner phase (s/Kdt)	Measured gain (parallel)
10	$4.13.10^{-6} \\ 4.17.10^{-6}$	4381752	56	10	1.81	4.36	2.18
40		4381752	151	40	1.83	17.35	2.89

Table 7: Spatial probe

◆□→ ◆□→ ◆臣→ ◆臣→ □臣□

Conclusion, perspectives

- Presentation of a new multirate scheme based on agglomeration and relying on a **prediction step** and a **correction step**
- The proposed multirate strategy has been applied in complex CFD problems such as the prediction of three-dimensional flows around bluff bodies with complex hybrid turbulence models
- Efficiency improvement for all investigated problems
- Still some progress to do to **adapt the domain decomposition** in such a way that the cores workload becomes shared equally for both steps of the multirate scheme
- Further efficiency can be gained in some cases if more than two zones can be considered (Inner zone Medium zone Outer Zone)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ の

Introduction	Turbulence Modelling	Multirate time advancing by volume agglomeration	Conclusion
0	00000000000	000000000000	00

Thank you for your attention !