(ロ) (問) (E) (E) (E)

A VOMUME-AGGLOMERATION MULTIRATE TIME ADVANCING APPROACH

E. Itam⁽¹⁾, B. Koobus⁽¹⁾

(1) IMAG, Université de Montpellier, France.

Réunion MAIDESC - Avril 2016 - Saclay

Introduction MultiPate ti	0000000	00
Introduction		

• Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :

< □ <
< □ </li

Introduction	Multirate time scheme 00000	Applications 000000000	Conclusion
Introduction			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
Introduction			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
In the design of the second			
Introduction			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation

・ロト ・留ト ・目ト ・目ト 三日

• developed in a parallel numerical framework

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
Introduction			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

In the present work

• Evaluation of the efficiency of the present multirate time integration scheme on several benchmarks flows :

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
Introduction			
Πητροπιστιο			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

In the present work

- Evaluation of the efficiency of the present multirate time integration scheme on several benchmarks flows :
 - a moving contact discontinuity

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
Introduction			
Πητροπιστιο			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

In the present work

- Evaluation of the efficiency of the present multirate time integration scheme on several benchmarks flows :
 - a moving contact discontinuity
 - flows around bluff bodies like a tandem cylinders

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
Introduction			
Πητροπιστιο			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

In the present work

• Evaluation of the efficiency of the present multirate time integration scheme on several benchmarks flows :

- a moving contact discontinuity
- flows around bluff bodies like a tandem cylinders
- a circular cylinder

Introduction	Multirate time scheme	Applications	Conclusion
	00000	00000000	
Introduction			
Πητροπιστιο			

- Development of a new **explicit multirate time advancing scheme** for the simulation of PDEs which is :
 - based on control volume agglomeration
 - well suited to our numerical framework using a mixed finite volume/finite element formulation
 - developed in a parallel numerical framework

In the present work

• Evaluation of the efficiency of the present multirate time integration scheme on several benchmarks flows :

- a moving contact discontinuity
- flows around bluff bodies like a tandem cylinders
- a circular cylinder
- a space probe model

	ς.			
	۰.			

Multirate based on agglomeration - Definition

- A frequent configuration in mesh adaptation combines :
 - An explicit time advancing scheme for accuracy purpose
 - A computational grid with a very small portion of much smaller elements than in the remaining mesh

◆□ → ◆□ → ◆ □ → ◆ □ → ● □ □

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Definition

A frequent configuration in mesh adaptation combines :

- An explicit time advancing scheme for accuracy purpose
- A computational grid with a very small portion of much smaller elements than in the remaining mesh

Examples:

- Isolated traveling shock
- Boundary layer at high Reynolds number (few tens of microns thick) in LES computations where vortices around one centimeter are captured

Multirate based on agglomeration - Definition

A frequent configuration in mesh adaptation combines :

- An explicit time advancing scheme for accuracy purpose
- A computational grid with a very small portion of much smaller elements than in the remaining mesh

Examples:

- Isolated traveling shock
- Boundary layer at high Reynolds number (few tens of microns thick) in LES computations where vortices around one centimeter are captured

Explicit time advancing schemes with global time stepping too costly

Multirate based on agglomeration - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the **outer zone** as the set of cells for which the explicit scheme is stable for a time step *K*Δ*t*, and the **inner zone** as its complement
 - Definition of these zones through the local time steps

+ -		i		

Multirate based on agglomeration - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the **outer zone** as the set of cells for which the explicit scheme is stable for a time step *K*Δ*t*, and the **inner zone** as its complement
 - Definition of these zones through the local time steps
- Coarse grid :
 - Objective :
 - Advancement in time with time step $K\Delta t$
 - Advancement in time preserving accuracy in the outer zone (space order of 3, RK4)
 - Advancement in time consistent in the inner zone
 - Define the **coarse grid** as the macro cells in the inner zone + the fine cells in the outer zone

Multirate based on agglomeration - Definition

- Inner and outer zones :
 - Let Δt be the global time step over the computational domain
 - Define the outer zone as the set of cells for which the explicit scheme is stable for a time step KΔt, and the inner zone as its complement
 - Definition of these zones through the local time steps
- Coarse grid :
 - Objective :
 - Advancement in time with time step $K\Delta t$
 - Advancement in time preserving accuracy in the outer zone (space order of 3, RK4)
 - Advancement in time consistent in the inner zone
 - Define the **coarse grid** as the macro cells in the inner zone + the fine cells in the outer zone
 - Methods :
 - Advancement in time of the chosen explicit scheme on the coarse grid with $K\Delta t$
 - Residual smoothing for stability purpose

	Multirate time scheme ○○●○○	Applications 00000000
Multirate time	advancing by	volume agglomeration

Multirate based on agglomeration - Definition

- Flux on the coarse grid :
 - Assembling of the nodal flux Ψ_i on the fine cells (as usual)
 - Fluxes sum on the macro cells I (inner zone) :

$$\Psi' = \sum_{k \in I} \Psi_k$$

• Smoothing of the coarse flux (inner zone) :

$$\Psi^{I} = (\sum_{K \in \mathcal{V}(I)} \Psi^{K} \textit{vol}^{K}) / (\sum_{K \in \mathcal{V}(I)} \textit{vol}^{K})$$

Applications 000000000 Conclusion

・ロト・日本・モート ヨー うくの

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Algorithm

Step 1 (predictor) :

Advancement in time with Runge-Kutta (for example) on the macro cells in the inner zone and on the fine cells in the outer zone, with time step $K\Delta t$:

Pour $\alpha = 1, RKstep$

outer zone : $vol_i w_i^{(\alpha)} = vol_i w_i^{(0)} + b_\alpha K \Delta t \Psi_i^{(\alpha-1)}$ inner zone : $vol' w^{l,(\alpha)} = vol' w^{l,(0)} + b_\alpha K \Delta t \Psi^{l,(\alpha-1)}$ $w_i^{(\alpha)} = w^{l,(\alpha)}$ for $i \in I$

Fin α .

tr			÷.	

Applications 000000000

Conclusion

Multirate time advancing by volume agglomeration

Multirate based on agglomeration - Algorithm

Step 2 (corrector) :

- Unknowns frozen in the outer zone
- Time interpolation of these unknowns (those useful for the next point)
- In the inner zone : using these interpolated values, advancement in time with the chosen explicit scheme and time step Δt
- Complexity mastered (proportional to the number of points in the inner zone)

Applications

Conclusion

ALE calculation of a traveling contact discontinuity

Test case definition

- Simulation :
 - Compressible Euler equations are solved in a rectangular parallelepiped
 - Density is initially discontinuous at the middle of the domain
 - Velocity and pressure are uniform

Applications ••••••

ALE calculation of a traveling contact discontinuity

Test case definition

- Simulation :
 - Compressible Euler equations are solved in a rectangular parallelepiped
 - Density is initially discontinuous at the middle of the domain
 - Velocity and pressure are uniform

• A deforming mesh :

Nodes	Elements	Subdomains
25K	92K	2

Figure 1: Instantaneous mesh with mesh concentration in the middle of zoom

Introduction	Multirate time scheme	Applications	Conclusion
	00000	0000000	
ALE calculation	of a traveling contac	t discontinuity	

9

Figure 2: Animation of the moving contact discontinuity using a load balancing procedure

Introduction	00000	0000000	Conclusion
ALE calculation	of a traveling	contact discontinuity	

Figure 2: Animation of the moving contact discontinuity using a load balancing procedure

K	Nodes in the inner zone (%)	Gain in efficiency
5	1.3	1.15
10	1.3	1.58
15	1.3	1.75

Table 1: Efficiency of the multirate scheme

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

tr				

Applications

Conclusion

Tandem Cylinders

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic and dynamic versions of the WALE SGS model • Flow parameters : Reynolds = 1.66×10^5 Mach=0.1 L/D = 3.7

Q-criterion isocontours coloured by velocity magnitude

Applications

Tandem Cylinders

Test case definition

Simulation :

Hybrid VMS-LES simulation combined with non-dynamic and dynamic versions of the WALE SGS model

• Computational grids :

Nodes	Elements	Subdomains
2.59M	15M	192
16M	92M	768

• Flow parameters : Reynolds = 1.66×10^5 Mach=0.1L/D = 3.7

Q-criterion isocontours coloured by velocity magnitude

Figure 3: Coarse (left) and fine (right) unstructured grids

ntroduction	Multirate time scheme 00000	Applications	Conclusion
Tandem	Cylinders - Coarse grid		

K	Nodes in the inner zone (%)	Gain in efficiency
5	16	1.09
10	25	1.14

Table 2: Efficiency of the multirate scheme

Figure 4: Instantaneous vorticity magnitude contours

Introduction	
Incloauction	

Applications

Conclusion

Tandem Cylinders - Fine grid

Figure 5: Animation of Q-criterion to observe the vortical structure in the flow

Applications

Conclusion

Tandem Cylinders - Fine grid

Figure 5: Animation of Q-criterion to observe the vortical structure in the flow

Figure 6: Speedup multirate versus explicit (RK4), (=) (=

Cylinder

Test case definition

• Simulation : Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model • Flow parameters : Reynolds = 8.4×10^{6} Mach=0.1

Cylinder

Test case definition

• Simulation : Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Computational grids :

Nodes	Elements	Subdomains
4.3M	25M	768

• Flow parameters : Reynolds = 8.4×10^{6} Mach=0.1

Introd	luction
Incloc	luction

Applications

Conclusion

Cylinder

	Multirate time scheme	Applications	Conclusion
	00000	000000000	
Cvlinder			

K	Nodes in the inner zone (%)	Gain in efficiency
5	15	1.25
10	19	1.46
20	24	1.62

Table 3: Efficiency of the multirate scheme

・ロト ・御ト ・ヨト ・ヨト 三臣

Spatial probe

Test case definition

• Simulation :

Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

• Flow parameters : Reynolds = 1×10^{6} Mach=2.0

Applications

Spatial probe

Test case definition

• Flow parameters : Reynolds = 1×10^{6} Mach=2.0

• Simulation : Hybrid VMS-LES simulation combined with non-dynamic version of the WALE SGS model

Computational grids : Nadaz Elementa Subdaz

Nodes	Elements	Subdomains
4.38M	25.8M	192

・ロ・・雪・・雨・・雨・ 一周・ 名

	ct:	
10	~~	

Multirate	scheme
00000	

Applications

Spatial probe

Figure 7: Instantaneous pressure with streaklines

K	Nodes in the inner zone	Gain in efficiency
10	56	2.18
40	151	2.89

Table 4: Efficiency of the multirate scheme

16

(ロ) (問) (E) (E) (E)

	Multirate time scheme	Applications 000000000	Conclusion
Conclusion, p	perspectives		

• Presentation of a new multirate scheme based on agglomeration and relying on a **prediction step** and a **correction step**

	9	•		

Applications 000000000

Conclusion, perspectives

- Presentation of a new multirate scheme based on agglomeration and relying on a **prediction step** and a **correction step**
- The proposed multirate strategy has been applied in complex CFD problems such as the prediction of three-dimensional flows around bluff bodies with complex hybrid turbulence models

	9	•		

Applications 000000000

<ロ> <四> <四> <四> <四> <四> <四</p>

17

Conclusion, perspectives

- Presentation of a new multirate scheme based on agglomeration and relying on a **prediction step** and a **correction step**
- The proposed multirate strategy has been applied in complex CFD problems such as the prediction of three-dimensional flows around bluff bodies with complex hybrid turbulence models
- Efficiency improvement for all investigated problems

Conclusion, perspectives

- Presentation of a new multirate scheme based on agglomeration and relying on a **prediction step** and a **correction step**
- The proposed multirate strategy has been applied in complex CFD problems such as the prediction of three-dimensional flows around bluff bodies with complex hybrid turbulence models
- Efficiency improvement for all investigated problems
- Still some progress to do to adapt the domain decomposition in such a way that the cores workload becomes shared equally for both steps of the multirate scheme

Applications 000000000 Conclusion

Thank you for your attention !

◆□ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 → りへ(