
MAIDESC M30 :AGENDA

09:00 Accueil
10:00-10:40 Cemef : ???
10:40-11:20 Rocquencourt: Norm oriented en CFD (Loic Frazza)
11:20-12:00 Transvalor : Fully automatic meshing process for
complex structures to capture fluid-structure efforts (Alexandre
Boilley).
12:00-12:40 Lemma : Métriques discrètes (G. Brethes,
INRIA-Lemma, A. Dervieux, INRIA-Lemma)
13:00-14:00 Repas
14:00-14:40 Sophia : Adaptation ALE: théorie (E. Gauci, A.
Dervieux)
14:40-15:20 Montpellier : A Volume-agglomeration multirate
advancing approach (Emmanuelle Itam)
15:20-16:00 Table ronde

MAIDESC

Contribution Lemma à Maidesc (M30)

Gautier Brethes∗+, Olivier Allain∗, Alain Dervieux∗+

(∗) Lemma, , Sophia-Antipolis, France
(+) INRIA, , Sophia-Antipolis, France

April 12, 2016

Overview

Proposal

T4-D6: Interface meshing for unsteady simulations (M18,M30).
T5-D4: Extension of Adaptive FMG to the unsteady simulation of two-phase flows
(M42).
Test cases: Dam break (ITC1) et capillarité dans un réservoir (ITC2).

Task status
T4-D6: M18 delivered with the new method (ITC1). Next version : M36.
T4-D6: New version of discrete capillarity (ITC2).
T5-D4: Parallel FMG for CFD, in progress.
T5-D4: Adaptive FMG: investigation of tensorial criteria.

Adaptive FMG: investigation of tensorial criteria

Recalls on continuous metrics
Integrals over a discrete mesh
Second-order metric: Hessian
Second-order metric: goal-oriented
Second-order metric: norm-oriented
Optimal metric
Numerical examples

Recalls : continuous (implicit) metric

M = R

 h−2
1 0 0

0 h−2
2 0

0 0 h−2
3

 tR

Mesure locale de cellule:
h1h2h3 = (det(M)−

1
2 .

Densite locale de points:

d = (h1h2h3)
−1⇒ C(M) =

∫
Ω

√
det(M)dv

`M (ei) =
∫ 1

0

√
tab M (a+ t ab) ab dt, with ei = ab.

Unit mesh xM
ij : its edges xM

ij satisfy:
`M (xij) = 1⇔ (xM

ij ,M xM
ij) = 1 ∀ (i, j) neighboring vertices.

Recalls : optimal continuous metric, iso/Lp

Optimal continuous metric minimizing the interpolation error:

Min|u−ΠM u|L∞ , Min|u−ΠM u|Lp

|u−ΠM u| ≈ 1
8
|tr(M− 1

2 |Hu|M− 1
2)|

Hu Hessian of u.
Pointwise optimization: For both norms, same level of error in each direction
around a given point i of the computational domain (Loseille-Alauzet, SIAM 2011).

M i
opt = mi |Hi

u| ∀ i ∈ Ω.

The global optimization determines mi :

ML∞ = N
2
3 (
∫

det(|Hu|))−
2
3 |Hu|

ML1 = N
2
3

(∫
det(|Hu|)

2
5

)− 2
3

det(|Hu|)−
1
5 |Hu|

Integral on a given mesh (1)

Given a mesh xij, we can define the following partitions:

- a mesh-vertex is a vertex of an element of the mesh.
- elements : triangles or tetrahedra.
Elements are divided in sub-elements.

Sub-elements: 6 subtriangles using medians and 24 subtetrahedra using median
plans. The vertices of a subtetrahedron are : a mesh-vertex i , a center Iij of an edge
ij having i as extremity, the centroid gijk of a face ijk containing i and j, the element
centroid Gijkl. The measure of a subtetrahedron of the tetrahedron T is
1/24 meas(T).

- Cell i : for a vertex i of the mesh, cell i is union of sub-elements having i as vertex
of the sub-element. A cell measure is defined as

measx(i) = 1
dim+1 ∑Tx3i meas(Tx)

where Tx are elements of x containing i.

Integral on a given mesh (2)

- 2D-diamond Dij : union of the 4 subtriangles (of triangles ijk and ijl) having a side
beared by edge ij.
- face-diamond D̄mn, where m and n are two tetrahedra having a common face ijk :
union of 6 subtetrahedra having a subtriangle of the common face ijk as face.
- edge-diamond Dij: union of subtetrahedra having having a side beared by edge ij.

Figure : figs-diamond

Integral on a given mesh (3)

The integral of a function eij defined on the edges can be approximated by:

errL1 = ∑
i

measx(i)Γ(i)−1
∑

j
eij

or introducing the diamond partition Ω = ∪D̄mn where m and n are elements with a
common face:

errL1 =
1
3 ∑

D̄mn

measx(D̄mn) (eij + eik + ejk).

where i, j,k are vertices of the face mn.

Discretizing an arbitrary continuous metric on a given
mesh

Assume that the metric M is defined on the vertices M (xi) = M i of the given
mesh and P1-continuously interpolated. The total number of nodes of N can be
approximated on the mesh x as follows:

N = ∑i measx(i)
√

det(M i)

To simplify, we assume that the unit mesh is a deformation of x, and that xM
ij

and xij are colinear.

Then the lengths are related by:

(xM
ij ,M xM

ij) = 1 = (xij
|xM

ij |
|xij|

,M xij
|xM

ij |
|xij|

) = (xij,M xij)
|xM

ij |2

|xij|2

⇒ xM
ij ≈ xij(xij,M xij)

− 1
2

Second-order error of a metric on another mesh

We want to evaluate on mesh x a directional quadratic error eM
ij = ēij |xM

ij |2
produced by the unit mesh xM . We assume that ēij depends only on location and
direction of xM

ij , typically:

eM
ij = |xM

ij |2 ēij(
1
2 (x

M
i +xM

j),
xM

ij

|xM
ij |

).

To evaluate this error on the initial mesh x, we assume that the unit mesh is a
deformation of x in such a way that xM

ij and xij are colinear.
Then the intensity eM

ij of the error with the unit mesh evaluated at middle of xij of
the initial mesh writes:

eM
ij = |xij|2 (xij,Mijxij)

−1 ēij(
1
2
(xi +xj),

xij

|xij|
)

where Mij is evaluated on 1
2 (xi +xj).

First example of second-order error: HESSIAN

Hessian with weight g

The intensity of interpolation error of a quadratic function u on xM
ij writes:∫

|g||u−Πhu|dΩ� ∑i measx(i)Γ(i)−1
∑j eM ,g,u

ij (xij)

eM ,g,u
ij = |xM

ij |2 |gij| |Hij| ·
xM

ij

|xM
ij |
· xM

ij

|xM
ij |

.

where Hij = H(1
2 (x

M
i +xM

j)), H(x) being the Hessian of u at point x, and
gij = g(1

2 (x
M
i +xM

j)). In practice, it is evaluated on the initial mesh:

eM ,g,u
ij (xij) = |xM

ij |2 ēij(xij) = (xij,M xij)
−1 |xij|2 ēij(xij)

with:

ēij(xij) = |gij(xij)| |Hij(xij)| ·
xM

ij

|xM
ij |
· xM

ij

|xM
ij |

= |gij(xij)| |Hij(xij)| ·
xij
|xij| ·

xij
|xij| .

Second example of second-order error: GOAL (1)

Goal-oriented 3D
Quadratic errors can also be encountered in the case of a goal-oriented error
analysis. Let u be the solution of the EDP and uM the solution of the discretixed
EDP when the mesh is an unit mesh for metric M . A typical goal-oriented analysis
relies on the minimization of the error δ jgoal(M) done in the evaluation of the
scalar output j = (g,u) , error which we write as follows:

δ jgoal(M) = |(g,u−uM)|= |(g,ΠM u−uM +u−ΠM u)|. (1)

According to the Aubin-Nitsche analysis, this error is second-order with respect to
mesh size. Let us define the discrete adjoint state u∗goal:

∀ψM ∈ VM , a(ψM ,u∗goal) = (ψM ,g). (2)

In the sequel, we use a fixed-point in which the adjoint is frozen with respect to the
metric M . Injecting (5) in (4) we get:

(g,ΠM u−uM +u−ΠM u) = a(ΠM u−uM ,u∗goal)+(g,u−ΠM u)

Second example of second-order error: GOAL (2)

Goal-oriented 3D
and, using a priori estimation,

(g,ΠM u−uM +u−ΠM u) = a(ΠM u−u,u∗goal)+(f −ΠM f ,u∗goal)+(g,u−ΠM u)

thus

δ jgoal(M)≈ |a(ΠM u−u,u∗goal)+(f −ΠM f ,u∗goal)+(g,u−ΠM u)|

Recall that u is unknown. The second and third terms, similar to the main term of
the Hessian-based adaptation in previous section can be explicitly approached in the
same way.

δ jgoal(M)� |a(ΠM u−u,u∗goal)|+ |(f −ΠM f ,u∗goal)|+ |g||u−ΠM u|

Second example of second-order error: GOAL (3)

Goal-oriented 3D
The second and third terms give Hessian-like quadratic errors e

M ,u∗goal,f
ij and eM ,g,u

ij :

|(f −ΠM f ,u∗goal)|+ |g||πM uM −uM |

� ∑
i

measx(i)Γ(i)−1
∑
ij3i

(
e
M ,u∗goal,f
ij + eM ,g,u

ij

)
� ∑

i
measx(i)Γ(i)−1

∑
ij3i

(xij,M xij)
−1 |xij|2

(
ēij

u∗goal,f + ēij
g,u
)

with

ēij
u∗goal,f (xij) = |u∗goal,ij| |H

f
ij| ·

xij

|xij|
·

xij

|xij|
; u∗goal,ij = u∗goal(

xi +xj

2
)

ēij
g,u(xij) = |gij| |Hu

ij| ·
xij

|xij|
·

xij

|xij|
; gij = g(

xi +xj

2
)

and
Hf

ij = Hf (
xi +xj

2
) ; Hu

ij = Hu(
xi +xj

2
).

Second example of second-order error: GOAL (4)

Goal-oriented 3D
The first term is more complex. It can be estimated in a different way from the
continuous method presented in Belme’s PHD and used in Brethes’s second paper.

|
∫

Ω

∇(ΠM u−u)∇ΠM u∗goaldx| � ∑
∂Tmn

|∇u∗goal|Tm−∇u∗goal|Tn |·nmn

∫
∂Tmn

|ΠM u−u| dσ .

In the 3D case, the intersection ∂Tmn of two elements Tm and Tn is a common face
with vertices i, j,k and an area area(mn). The following quantity is known:

κmn(u∗goal) = |
[(

∇u∗goal
)
|Tm ·nmn−

(
∇u∗goal

)
|Tn ·nmn

]
|.

The remaining expression can be expressed in terms of interpolation errors:∫
∂Tmn

|ΠM u−u| ≈ 1
3

area(mn)(eM ,u
ij + eM ,u

ik + eM ,u
kj)

with (for αβ=ij,ik and kj):

eM ,u
αβ

= (xαβ ,M xαβ)
−1 |xαβ |2 ēu

αβ

Second example of second-order error: GOAL (5)

Goal-oriented 3D

¯eαβ
u(xαβ) = |gαβ | |Hu

αβ
| ·

xαβ

|xαβ |
·

xαβ

|xαβ |
.

We get:

|a(ΠM u−u,u∗goal)| � ∑
D̄mn

|D̄mn|
area(mn)
|D̄mn|

1
3
(eM ,u

ij + eM ,u
ik + eM ,u

jk) κmn(u∗goal)

Let us convert the RHS into an edge-by-edge sum:

|a(ΠM u−u,u∗goal)| � ∑
D̄mn

∑
αβ=ij,ik,jk

area(mn)
1
3

eM
αβ

κmn(u∗goal)

= ∑
edges ij

∑
D̄mn3ij

area(mn)
1
3

eM
ij κmn(u∗goal) = ∑

edges ij

eM ,a
ij |Dij|

Second example of second-order error: GOAL (6)

Goal-oriented 3D
where we recognize the edge-by-edge integral of a field eM ,a

ij defined on edges,
with the notation:

eM ,a
ij =

1
|Dij| ∑

D̄mn3ij

area(mn)
1
3

eM
ij κmn(u∗goal). (3)

Equivalently (at the second order) we get the previous error format:

|a(ΠM u−u,u∗goal)| � ∑
i

measx(i)
1

Γ(i) ∑
ij3i

eM ,a
ij .

Gathering the analyses of the three terms, introducing:

ēij
M ,a = (xij,M xij) |xij|−2 eM ,a

ij

we get:

δ jgoal(M) � ∑
i

measx(i)Γ(i)−1
∑
ij3i

(xij,M xij)
−1 |xij|2

(
ēij

M ,a + ē
u∗goal,f
ij + ēg,u

ij

)
which takes place in the context of (??)(??).

Third example of second-order error: NORM (1)

Norm-oriented
Quadratic errors can also be encountered in the case of a norm-oriented error
analysis.

δ jnorm(M) = |(u′M ,u−uM)|= |(u′M ,ΠM u−uM +u−ΠM u)|. (4)

Where u′M is any corrector approaching the difference u−uM . Let us define the
discrete adjoint state u∗norm:

∀ψM ∈ VM , a(ψM ,u∗norm) = (ψM ,u′M). (5)

The rest of the method follows the lines of the goal method.
The main interest is that the new formulation is focused on the L2 convergence of
the approximation, while the goal-oriented formulation garanties only the
convergence of the chosen output.

Discretizing an arbitrary continuous metric on a given
mesh (2)

For any of the three above error type, the intensity of error on mesh x̃ unit for M
can be evaluated on xij:

eM
ij = (xij)

2 (xij,M xij)
−1 ēij

The integral of it can be approximated by:

errL1 = ∑
i

measx(i)Γ(i)−1
∑
xij

(xij)
2(xij,M xij)

−1 ēij

The purpose is to minimize with respect to the metric for a given number of vertices.

Pointwise optimal metric

The purpose of the pointwise metric optimisation is to look for the optimal
stretching of the metric in any vertex, independantly of the global mesh density.
The number of vertices is fixed. We consider metric M0 such that the determinant,
or product of eigenvalues is equal to unity, i.e. λ1λ2λ2 = 1 or, equivalently
det(M0) = 1.. We know that:

(xij)
2 (xij,M xij)

−1 ēij = eM
ij ∀j.

In that expression, (xij)
2 and (xij,M xij)

−1 are not vanishing for any couple of
neighboring vertices i and j, which implies

eM
ij = 0 ⇔ ēij = 0.

Now, for any i and any j belonging to Γ(i) such that ēij 6= 0,

(xij)
−2 (xij,M xij) (ēij)

−1 = (eM
ij)−1.

Pointwise optimal metric(2)

Summing around the vertex i, it gives:

∑
j∈Γ(i)
|ēij 6=0

(xij)
−2 (ēij)

−1 (xij,M xij) = ∑
j∈Γ(i)
|ēij 6=0

(eM
ij)−1

For the sake of simplicity, let us denote: Di = ∑
j∈Γ(i)
|ēij 6=0

(eM
ij)−1.

We note that each eM
ij is positive and therefore so is Di. This implies:

Di = ∑
j∈Γ(i)

(M ē
− 1

2
ij |xij|xij, ē

− 1
2

ij |xij|xij) = M : ∑
j∈Γ(i)

ē
− 1

2
ij |xij|xij⊗ ē

− 1
2

ij |xij|xij.

Now, remembering that A : B = tr(tA.B), it is interesting to choose (among other
solutions):

M i =
Di

dim

(
∑

j∈Γ(i)
ē−1

ij |xij|−2xij ⊗ xij

)−1

⇒ M i
0 = (det(M i))−

1
2 M i. (6)

Global optimal metric (1)

The global optimal metric will be obtained by multiplying the pointwise metric by a
scalar field to be determined:

M i
opt = Ci M i

0.

We search (Ci)i which minimizes

errL1 = ∑
i

measx(i)Γ(i)−1
∑
xij

(xij)
2(xij,CiM

i
0xij)

−1 ēij

or

errL1 = ∑
i

αi C−1
i ; with αi = measx(i)Γ(i)−1

∑
xij

(xij)
2(xij,M

i
0xij)

−1 ēij

while satisfying to the constraint: ∑i measx(i)
√

det(CiM i
0) = N or:

∑
i

µi C
dim
2

i = N with µi = measx(i)
√

det(M i
0).

Global optimal metric (2)

This can be simply solved by applying the variable change di = µiC
dim
2

i , which
gives:

Min ∑
i

ηid
−2
dim
i under the constraint ∑

i
di = N, (7)

with ηi = αiµ
2

dim
i . The solution of (7) writes:

di =

(
∑

j
η

dim
2+dim

j

)−1

η

dim
2+dim

i N.

Global optimal metric (3)

Lemma: The optimal metric is defined by:

M i = Ci M i
0

with

M i
0 = (det(M i

1))
− 1

2 M i
1, M i

1 =
1

dim

(
∑

j∈Γ(i)
ē−1

ij |xij|−2xij ⊗ xij

)−1

,

Ci = µ
− 2

dim
i

(
∑

j
η

dim
2+dim

j

)− 2
dim

η

2
2+dim

i N
2

dim ,

ηi = αiµ
2

dim
i ; αi =

measx(i)
Γ(i) ∑

xij

(xij)
2

(xij,M i
0xij)

ēij ; µi = measx(i)
√

det(M i
0).�

Numerics (1)

A 2D boundary layer test case (Formaggia-Perrotto)

Figure : Fully 2D Boundary layer test case : sketch of the solution.

Numerics (1)

Figure : 2D boundary layer test case: initial uniform mesh (left), adapted mesh obtained by
continuous Hessian-based adaptation (center) and tensorial Hessian-based adaptation (right).

Numerics (1)

Figure : 2D boundary layer test case: adapted mesh obtained with continuous norm-oriented
adaptation (left)and tensorial norm-oriented adaptation (right).

Numerics (1)

Figure : 2D boundary layer test case, Hessian-based methods: error convergence in terms of
number of vertices.

Numerics (1)

Figure : 2D boundary layer test case, norm-oriented methods: error convergence in terms of
number of vertices.

We have computed the results for the continuous case and for the tensorial case,
using ten adaptations per phase. The convergences of the different methods are
given in Figures 5 and 6 in function of the number of points.We can observe the
uniform case in red, the Hessian-based continuous and tensoriel respectively in
green and dark blue and the norm-oriented continuous and tensorial respectively in
pink and clear blue, the black line being simply the order 2. The two Hessian-based
cases are very similar and, in the same way, the two norm-oriented cases are very
similar too. This tends to indicate that our tensorial method is good, at least for this
test case.

Numerics (2)

The source term is a smooth Dirac derivative.
u(x,y) = 1

2 +
1
2 sin(πψ

ε
)

with ψ = 0.25−
√
(xC− x)2 +(yC− y)2.

ε = 0.02.

Figure : Circular-test-case-domain: sketch of the solution u.

Numerics (2)

Figure : Bubble-like test case with thin interface, Hessian-based methods: error convergence
in terms of number of vertices.

Numerics (2)

Figure : Bubble-like test case with thin interface, norm-oriented methods: error convergence
in terms of number of vertices.

In this case, the tensorial version and the continuous version perform with very
similar efficiency. Somme differences appear when the resulting meshes are
compared, see Figures 10. On global mesh views, we observe that the
quasi-uniform inner and outer regions contain much more vertices with the tensorial
version. On the annular region of high variation, the behavior of both method are
very similar, and produce stretched meshes with streching ratios both of order 10.

Numerics (2)

Numerics (2)

Figure : Bubble-like test case with thin interface, norm-oriented methods, sketch of meshes:
top, global viewsof continuous option, left and tensorial option, right. Bottom, zooms near
the point of discontinuity of maximal abscissa, of continuous option (left) and tensorial
option (right).

Numerics (3)

Figure : Poisson problem with discontinuous coefficient: view of the solution.

Numerics (3)

Figure : Poisson problem with discontinuous coefficient, Hessian-based methods: error
convergence in terms of number of vertices.

Numerics (3)

Figure : Poisson problem with discontinuous coefficient, norm-oriented methods: error
convergence in terms of number of vertices.

Numerics (3)

Numerics (3)

Figure : Poisson problem with discontinuous coefficient, sketch of meshes: top, global views
of continuous option, left and tensorial option, right. Bottom, zooms near the point of
discontinuity of maximal abscissa, of continuous norm oriented option (left) and tensorial
norm oriented option, right.

Numerics (4)

Figure : 1D boundary layer, Hessian-based methods: error convergence in terms of number
of vertices.

Numerics (4)

Figure : 1D boundary layer, norm-oriented methods: error convergence in terms of number
of vertices.

Synthesis

Les deux méthodes ont des comportements proches pour les trois types de critères.

L’estimation plus fine du tensorial n’entraine pas de progrès en adaptation.

Le tensoriel a besoin d’être amélioré pour traiter des discontinuités à l’intérieur du
domaine.

Le continu se comporte un peu moins bien au bord.

L’étude continue.

	Poisson problem with discontinuous coefficient NormOriented
	A 1D boundary layer test case

