Numerical model	Turbulence Model	Applications	Multirate	Conclusion
	0000000	0000000000000	00000	

I3M-Montpellier - ANR MAIDESC

Emmanuelle Itam*, Bruno Koobus*

(*) I3M, Université de Montpellier, France

Réunion MAIDESC - 8 avril 2015 INRIA Paris-Rocquencourt

<ロ> (四) (四) (三) (三) (三)

Introdu	ction and m	notivations			
introduction	00	00000000	000000000000000000000000000000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

• Implementation and development of a simulation tool whose major ingredients are :

- A numerical model suited to industrial problems
- Turbulence models suited to the simulation of turbulent flows with massive separations and vortex shedding

In the present work

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :

Multirate time advancing

00 0000000 000000000 00000 000	Introdu	ction and n	notivations			
Introduction Numerical model Turbulence Model Applications Multifate Conclus	Introduction	OO		Applications 000000000000000	00000	000

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

In the present work

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :

Multirate time advancing

Introduction	and motivat	ions		
Introduction Numerica	al model I urbuleno	Ce Model Applications	000000 00000	Conclusion 000

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :

بالم مسلحوا	م امیر میراند				
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)
- Multirate time advancing

بالم مسلحوا	م امیر میراند				
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)
- Multirate time advancing

بالم مسلحوا	م امیر میراند				
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)
- Multirate time advancing

بالم مسلحوا	م امیر میراند				
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)
- Multirate time advancing

الم مسخورا	م امصح محاجم				
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

In the present work

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)

Multirate time advancing

بالم مسلحوا	م امیر میراند				
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Work context

- Implementation and development of a simulation tool whose major ingredients are :
 - A numerical model suited to industrial problems
 - Turbulence models suited to the simulation of **turbulent flows** with massive separations and vortex shedding

- Evaluation of dynamic and hybrid VMS-LES models on the prediction of vortex shedding flows
- Simulation of the flow around circular and tandem cylinders :
 - Contain many features and difficulties encountered in industrial problems
 - Well documented benchmarks
 - First step before the computation of array of cylinders (offshore oil and gas industries, civil engineering, aeronautics)
- Multirate time advancing

Mixed_	element_vol	ume method	1		
	0	0000000	0000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- A mesh built from a non structured tetrahedrization
- Degrees of freedom located at nodes i
- Mixed variational formulation: Finite Element/Finite Volume method (FE/FV)

$$rac{\partial W}{\partial t} +
abla \cdot \mathcal{F}(W) =
abla \cdot \mathcal{R}(W)$$

- Diffusive fluxes $\mathcal{R}(W)$ evaluated by FE method
- Convective fluxes $\mathcal{F}(W)$ by **FV** method
- Variational formulation with 2 types of test functions: P1 FE functions Φ_i and characteristic functions χ_i

Time discretization

Implicit time integration by a second order backward difference scheme

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(1)

Mixed_	element_vol	ume method	1		
	0	0000000	0000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- A mesh built from a non structured tetrahedrization
- Degrees of freedom located at nodes i
- Mixed variational formulation: Finite Element/Finite Volume method (FE/FV)

$$rac{\partial W}{\partial t} +
abla \cdot \mathcal{F}(W) =
abla \cdot \mathcal{R}(W)$$

- Diffusive fluxes $\mathcal{R}(W)$ evaluated by FE method
- Convective fluxes *F*(*W*) by FV method
- Variational formulation with 2 types of test functions: P1 FE functions Φ_i and characteristic functions χ_i

Time discretization

Implicit time integration by a second order backward difference scheme

イロト 不得下 イヨト イヨト 三日

(1)

Mixed_	element_vol	ume method	1		
	0	0000000	0000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- A mesh built from a non structured tetrahedrization
- Degrees of freedom located at nodes i
- Mixed variational formulation: Finite Element/Finite Volume method (FE/FV)

$$\frac{\partial W}{\partial t} + \nabla \cdot \mathcal{F}(W) = \nabla \cdot \mathcal{R}(W) \tag{1}$$

- Diffusive fluxes $\mathcal{R}(W)$ evaluated by FE method
- Convective fluxes $\mathcal{F}(W)$ by FV method
- Variational formulation with 2 types of test functions: P1 FE functions Φ_i and characteristic functions χ_i

Time discretization

Implicit time integration by a second order backward difference scheme

イロト 不得下 イヨト イヨト 三日

Mixed	امسمم+ برما	uma mathad			
	0	0000000	0000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Wixed-element-volume metho

Spatial discretization

- A mesh built from a non structured tetrahedrization
- Degrees of freedom located at nodes i
- Mixed variational formulation: Finite Element/Finite Volume method (FE/FV)

$$\frac{\partial W}{\partial t} + \nabla \cdot \mathcal{F}(W) = \nabla \cdot \mathcal{R}(W) \tag{1}$$

- Diffusive fluxes $\mathcal{R}(W)$ evaluated by FE method
- Convective fluxes $\mathcal{F}(W)$ by FV method
- Variational formulation with 2 types of test functions: P1 FE functions Φ_i and characteristic functions χ_i

$$Vol(C_i)\frac{dW_i}{dt} + \sum_{j \in N(i)} \int_{\partial C_{ij}} \mathcal{F}(W) \cdot nd\sigma = -\int_{T, i \in T} \mathcal{R}(W) \cdot \nabla \Phi_i$$

Time discretization

• Implicit time integration by a second order backward difference scheme

Mixed	alamant val	uma mathaa			
	•0				
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- A mesh built from a non structured tetrahedrization
- Degrees of freedom located at nodes i
- **Mixed variational formulation**: Finite Element/Finite Volume method (FE/FV)

$$\frac{\partial W}{\partial t} + \nabla \cdot \mathcal{F}(W) = \nabla \cdot \mathcal{R}(W) \tag{1}$$

- Diffusive fluxes $\mathcal{R}(W)$ evaluated by FE method
- Convective fluxes $\mathcal{F}(W)$ by FV method
- Variational formulation with 2 types of test functions: P1 FE functions Φ_i and characteristic functions χ_i

Time discretization

Implicit time integration by a second order backward difference scheme

Evaluation of the convective terms by FV method :

 Convective fluxes integrated on a dual mesh built from medians (2D) and median plans (3D)

Figure 1: A control volume (the shaded area) constructed around each mesh node (in 2D)

・ロ・・雪・・雪・・雪・ 一番

• A high order numerical dissipation scheme

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
		0000000			
VMS-I	FS				

Important features of the VMS-LES approach

- No spatial filtering of the Navier-Stokes equations, but a variational projection of these equations
- A priori scale-separation
- The effects of the **unresolved structures modeled** only in the equations governing the **small resolved scales**

Figure 3: Building the VMS coarse level

Figure 2: LES filtering operation

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
		0000000			
\/N/S_I	FS				

Important features of the VMS-LES approach

- No spatial filtering of the Navier-Stokes equations, but a variational projection of these equations
- A priori scale-separation
- The effects of the **unresolved structures modeled** only in the equations governing the **small resolved scales**

Figure 4: Modeling of the unresolved scales in VMS-LES () . .

	Numerical model	Turbulence Model ○●○○○○○○	Applications 0000000000000	Multirate 00000	Conclusion 000
VMS-LE	ES				

- 4 日 ト - 4 三 ト - 4

Specificities of our VMS-LES approach

Development of a VMS model that can take into account :

- the compressible Navier-Stokes equations (3D)
- a mixed element-volume framework
- unstructured meshes
- parallel computing
- vortex shedding flows

where " ' " = small resolved scales

SGS models : Smagorinsky or WALE, with possibly dynamic procedure (Germano-Lilly, $C_{model} \rightarrow C_{model}(x, t)$)

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
	00	0000000	0000000000000	00000	000
RANS/		whrid model			

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- RANS : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- VMS-LES : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - **better accuracy** than RANS for flows dominated by large unsteady structures

• Desired feature for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
	00	0000000	0000000000000	00000	000
RANS/	VMS_LES F	whrid mode			

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- RANS : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- VMS-LES : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - **better accuracy** than RANS for flows dominated by large unsteady structures

• Desired feature for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa

RANS		whrid model			
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- RANS : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- VMS-LES : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - **better accuracy** than RANS for flows dominated by large unsteady structures

• Desired feature for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa

RANS		whrid model			
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- RANS : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- VMS-LES : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - better accuracy than RANS for flows dominated by large unsteady structures
- Desired feature for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa

RANS		whrid model			
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

- Computation of massively separated flows at high Reynolds number on unstructured mesh
- RANS : accuracy problems in flow regions with massive separation (as the flow around bluff-bodies)
- VMS-LES : more expensive than RANS, very fine resolution requirements in boundary layers at high Reynolds number
- Hybrid : combines RANS and VMS-LES in order to exploit the advantages of the two approaches :
 - less computationally expensive compared with VMS-LES
 - **better accuracy** than RANS for flows dominated by large unsteady structures
- Desired feature for the hybridation strategy : automatic and progressive switch from RANS to VMS-LES and vice versa

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
	00	○○○○●○○○	0000000000000	00000	000
RANS/	VMS-LES ł	nybrid model			

- Central idea of the proposed hybrid VMS model : Correction of the mean flow field obtained with a RANS model by adding
 - fluctuations given by a VMS-LES approach wherever the grid resolution is adequate
- Decomposition of the flow variables :

$$W = \underbrace{\langle W \rangle}_{RANS} + \underbrace{W^c}_{correction} + W^{SGS}$$

 $\langle W \rangle = \text{RANS}$ flow variables $W^c = \text{remaining resolved fluctuations obtained with VMS-LES}$ (i.e. $\langle W \rangle + W^c = W_h = \text{VMS-LES}$ flow variables) $W^{SGS} = \text{subgrid scale fluctuations}$

- Central idea of the proposed hybrid VMS model : Correction of the mean flow field obtained with a RANS model by adding fluctuations given by a VMS-LES approach wherever the grid resolution is adequate
- Decomposition of the flow variables :

$$W = \underbrace{< W >}_{RANS} + \underbrace{W^{c}}_{correction} + W^{SGS}$$

 $\langle W \rangle = \text{RANS}$ flow variables $W^c = \text{remaining resolved fluctuations obtained with VMS-LES}$ (i.e. $\langle W \rangle + W^c = W_h = \text{VMS-LES}$ flow variables) $W^{SGS} = \text{subgrid scale fluctuations}$

<ロ> < @ > < E > < E > E のQC

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
	00	00000000	000000000000000000000000000000000000000	00000	000
RANS/	VMS-LES I	nybrid model			

• Navier-Stokes equations :

$$\left(\frac{\partial W}{\partial t},\chi_i\right) + (\nabla\cdot F(W),\chi_i,\Phi_i) = 0$$

RANS equations :

$$\left(\frac{\partial \langle W \rangle}{\partial t}, \chi_i\right) + (\nabla \cdot F(\langle W \rangle), \chi_i, \Phi_i) = -\left(\tau^{RANS}(\langle W \rangle), \Phi_i\right)$$

• VMS-LES equations :

$$\left(\frac{\partial \langle W \rangle + W^{c}}{\partial t}, \chi_{i}\right) + (\nabla \cdot F(\langle W \rangle + W^{c}), \chi_{i}, \Phi_{i}) = -\left(\tau^{LES}([\langle W \rangle + W^{c}]'), \Phi_{i}'\right)$$

★白▶ ★課▶ ★注▶ ★注▶ 一注

Introduction Numerical model Turbulence Model Applications Multirate Conclusion

RANS/VMS-LES hybrid model

 \Rightarrow governing equations for the reconstructed fluctuations (VMS-LES eq. - RANS eq.) :

$$\begin{pmatrix} \frac{\partial W^{c}}{\partial t}, \chi_{i} \end{pmatrix} + (\nabla \cdot F(\langle W \rangle + W^{c}), \chi_{i}, \Phi_{i}) - (\nabla \cdot F(\langle W \rangle), \chi_{i}, \Phi_{i})$$
$$= (\tau^{RANS}(\langle W \rangle), \Phi_{i}) - (\tau^{LES}([\langle W \rangle + W^{c}]'), \Phi_{i}')$$

 \Rightarrow modified governing equations for the reconstructed fluctuations :

$$\left(\frac{\partial W^{c}}{\partial t}, \chi_{i}\right) + \left(\nabla \cdot F(\langle W \rangle + W^{c}), \chi_{i}, \Phi_{i}\right) - \left(\nabla \cdot F(\langle W \rangle), \chi_{i}, \Phi_{i}\right)$$
$$= (1 - \theta) \left\{ \left(\tau^{RANS}(\langle W \rangle), \Phi_{i}\right) - \left(\tau^{LES}([\langle W \rangle + W^{c}]'), \Phi_{i}'\right) \right\}$$

 $\theta \in [0, 1] =$ blending function $\theta \rightarrow 1 \Rightarrow$ RANS is recovered $\theta \rightarrow 0 \Rightarrow$ VMS-LES is recovered $\begin{aligned} \theta &= \tanh(\xi^2) \\ \xi &= \mu_{SGS}/\mu_{RANS} \text{ or } \xi &= \Delta/I_{RANS} \end{aligned}$

11

Introduction Numerical model Turbulence Model Applications Multirate Conclusion

RANS/VMS-LES hybrid model

 $\theta \rightarrow 0 \Rightarrow VMS-LES$ is recovered

 $\theta \\ \theta$

 \Rightarrow governing equations for the reconstructed fluctuations (VMS-LES eq. - RANS eq.) :

$$\begin{pmatrix} \frac{\partial W^{c}}{\partial t}, \chi_{i} \end{pmatrix} + (\nabla \cdot F(\langle W \rangle + W^{c}), \chi_{i}, \Phi_{i}) - (\nabla \cdot F(\langle W \rangle), \chi_{i}, \Phi_{i})$$
$$= (\tau^{RANS}(\langle W \rangle), \Phi_{i}) - (\tau^{LES}([\langle W \rangle + W^{c}]'), \Phi_{i}')$$

 \Rightarrow modified governing equations for the reconstructed fluctuations :

$$\begin{pmatrix} \frac{\partial W^{c}}{\partial t}, \chi_{i} \end{pmatrix} + (\nabla \cdot F(\langle W \rangle + W^{c}), \chi_{i}, \Phi_{i}) - (\nabla \cdot F(\langle W \rangle), \chi_{i}, \Phi_{i})$$

$$= (1 - \theta) \{ (\tau^{RANS}(\langle W \rangle), \Phi_{i}) - (\tau^{LES}([\langle W \rangle + W^{c}]'), \Phi'_{i}) \}$$

$$\in [0, 1] = \text{blending function} \qquad \theta = \tanh(\xi^{2})$$

$$\rightarrow 1 \Rightarrow \text{RANS is recovered} \qquad \xi = \mu_{SGS}/\mu_{RANS} \text{ or } \xi = \Delta/I_{RANS}$$

11

• Final hybrid VMS model equations (RANS eq. + modified governing eq. for reconstructed fluctuations) :

$$\left(\frac{\partial W_h}{\partial t}, \chi_i\right) + \left(\nabla \cdot F(W_h), \chi_i, \Phi_i\right) = \theta \left(\tau^{RANS}(\langle W \rangle), \Phi_i\right) - (1 - \theta) \left(\tau^{LES}(W'_h), \Phi'_i\right)$$

 $W_h = RANS$ solution corrected with VMS-LES reconstructed fluctuations in regions of sufficiently fine grid resolution

C'	00	0000000	•000000000000 •	00000	000
Circula	r cylinder - :	subcritical r	egime		

Test case definition

• Flow parameters: Reynolds=3900 Mach=0.1

• Computational grids: :

270K nodes, 1.6M elements

1.4M nodes, 8.4M elements

・ロト ・聞ト ・ヨト ・ヨト

Viscosity ratio μ_{SGS}/μ - non-dynamic VMS versus dynamic VMS

Circula	r cylinder -	subcritical r	erime		
	00	0000000	000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Circular cylinder - subcritical regime

Bulk coefficients

	Mach ciza	Ē		Ē	C+
	IVIESII SIZE	Cd	I_r/D	-c _{pb}	<u> </u>
LES WALE	270K	0.96	1.06	0.96	0.22
LES dyn. WALE	270K	0.96	1.20	0.87	0.22
VMS WALE	270K	0.96	1.06	0.94	0.22
VMS dyn. WALE	270K	0.97	1.08	0.93	0.22
VMS WALE	1.4M	0.94	1.47	0.81	0.22
VMS dyn. WALE	1.4M	0.94	1.47	0.85	0.22
LES Lee et al. (2006)	7.7M	0.99-1.04	1.35-1.37	0.89-0.94	0.209-0.212
LES Kravchenko et al. (2000)	500K-2.4M	1.04-1.38	1-1.35	0.93-1.23	0.193-0.21
LES Parnaudeau et al. (2008)	44M	-	1.56	-	0.207-0.209
Experiments					
Parnaudeau et al. (2008)		-	1.51	-	0.206-0.210
Norberg (1987)		0.94-1.04	-	0.83-0.93	
Ong et al. (1996)		-	-	-	0.205-0.215

	Numerical model 00	Turbulence Model	Applications	Multirate 00000	Conclusion 000
Circula	r cylinder -	subcritical re	egime		

Mean streamwise velocity profile at x/D = 1.06, 1.54 and 2.02

Circular	r cylinder -	supercritical	regime		
	00	0000000	0000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Test case definition

• Flow parameters: D = 0.057mMach = 0.1 Reynolds = 1M

- Computational grids: 1.2M nodes
 - 15M elements

・ロト ・聞ト ・ヨト ・ヨト

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
			0000000000000		
Circula	r cylinder -	supercritical	regime		

Bulk coefficients

	Mesh size	\overline{C}_d	C'_l	$-\overline{C}_{p_b}$	St
URANS	1.2M	0.24	0.06	0.25	0.46
VMS WALE	1.2M	0.36	0.22	0.22	0.10
Hybrid VMS WALE	1.2M	0.24	0.17	0.28	0.17
URANS of Catalano et al. (2003)	2.3M	0.40	-	0.41	0.31
LES of Catalano et al. (2003)	2.3M	0.31	-	0.32	0.35
LES of Kim at al. (2005)	6.8M	0.27	0.12	0.28	-
Experiments					
Shih et al. (1993)		0.24	-	0.33	-
Gölling (2006)		-	-	-	0.10
Zdravkovich (1997)		0.2-0.4	0.1-0.15	0.2-0.34	0.18

Figure 5: Vorticity magnitude - Hybride RANS/VMS-LES

▶ ≣ 20

・ロト ・聞ト ・ヨト ・ヨト

	Numerical model OO	Turbulence Model	Applications	Multirate 00000	Conclusion 000
Tandem	Cylinders				

Test case definition

• Flow parameters : Reynolds = 1.66×10^5 Mach=0.1

• Computational grids : 2.59M nodes 15M elements

< □ > < □ > < □ > < □ > < □ > < □ >

22

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
	00	00000000	000000000000000000000000000000000000000	00000	000
Tandem	n Cylinders				

Figure 6: Vorticity magnitude - Hybride RANS/VMS-LES WALE dynamique

・ロト ・ 「四 ト ・ 三 ト ・ 三 ・ つ へ

23

T 1	C II I				
	00	0000000	000000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Tandem Cylinders

Mean pressure coefficient distribution

T	C L'I LI				
	00	0000000	00000000000000	00000	000
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Tandem Cylinders

Mean centerline TKE between the two cylinders, mean C_d and mean spanwise velocity profile at x/D = 4.45 (preliminary results)

Mesh size	\overline{C}_d Cyl. 1	\overline{C}_d Cyl. 2
2.59M	0.64	0.38
2M-133M	0.33-0.80	0.29-0.52
6.7M	0.64	0.44
8.7M	0.64	0.45
	0.64	0.31
	Mesh size 2.59M 2M-133M 6.7M 8.7M	Mesh size \overline{C}_d Cyl. 1 2.59M 0.64 2M-133M 0.33-0.80 6.7M 0.64 8.7M 0.64 0.64 0.64

《曰》《聞》《臣》《臣》 [] 臣 []

25

Multira	te time sch	eme			
				00000	
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

A frequent configuration in mesh adaptation combines :

- An explicit time advancing scheme for accuracy purpose
- A computational grid with a very small portion of much smaller elements than in the remaining mesh

Examples:

- Isolated traveling shock
- Boundary layer at high Reynolds number (few tens of microns thick) in LES computations where vortices around one centimeter are captured

Explicit time advancing schemes with global time stepping too costly

イロト イポト イモト イモト 二日

Multirat	e time sch	eme			
	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

• Inner and outer zones :

- Let Δt be the global time step over the computational domain
- Define the outer zone as the set of cells for which the explicit scheme is stable for a time step KΔt, and the inner zone as its complement
- Definition of these zones through the local time steps

• Coarse grid :

- Objective :
 - Advancement in time with time step $K\Delta t$
 - Advancement in time preserving accuracy in the outer zone (space order of 3, RK4)
 - Advancement in time consistent in the inner zone
- Define the coarse grid as the macro cells in the inner zone + the fine cells
 - in the outer zone
- Methods :
 - Advancement in time of the chosen explicit scheme on the coarse grid with $K\Delta t$

	Numerical model 00	Turbulence Model	Applications 0000000000000	Multirate	Conclusion 000
Multirate	e time sche	eme			

- Evaluation of the fluxes on the coarse grid :
 - Assembling of the nodal fluxes Ψ_i on the fine cells (as usual)
 - Sum of the fluxes on each macro cell I located in the inner zone :

$$\Psi' = \sum_{k \in I} \Psi_k$$

▲□▶ ▲□▶ ▲目▶ ▲目▶

Multirate	time scher	ne			
Introduction	Numerical model	Turbulence Model	Applications 0000000000000	Multirate ○○○●○	Conclusion 000

Step 1 (predictor) :

Advancement in time with Runge-Kutta (for example) on the macro cells in the inner zone and on the fine cells in the outer zone, with time step $K\Delta t$:

Pour $\alpha = 1, \textit{RKstep}$

outer zone :
$$vol_i w_i^{(\alpha)} = vol_i w_i^{(0)} + b_{\alpha} K \Delta t \Psi_i^{(\alpha-1)}$$

inner zone : $vol' w^{I,(\alpha)} = vol' w^{I,(0)} + b_{\alpha} K \Delta t \Psi^{I,(\alpha-1)}$
 $w_i^{(\alpha)} = w^{I,(\alpha)}$ for $i \in I$

Fin α .

Multirat	e time sch	eme			
	00	0000000	0000000000000	00000	000
Introduction	Numerical model	Turbulence Model	Applications	Multirate	Conclusion

Step 2 (corrector) :

- Unknowns frozen in the outer zone
- Time interpolation of these unknowns (those useful for the next point)
- In the inner zone : using these interpolated values, advancement in time with the chosen explicit scheme and time step Δt
- Complexity mastered (proportional to the number of points in the inner zone)

	Numerical model OO	Turbulence Model	Applications 0000000000000	Multirate 00000	Conclusion ●○○
Conclus	sion, perspe	ctives			

- Significant reduction of the amount of SGS viscosity by the **dynamic procedure in VMS-LES**
- Less impact of the dynamic procedure in VMS-LES than in LES
- Nevertheless, in some cases, **sensible improvement** of the agreement with reference data made by the dynamic procedure in VMS-LES
- Presentation of a strategy for blending RANS and VMS-LES
- The supercritical flow around a circular cylinder **reasonably well predicted** by the proposed VMS hybrid model
- Still some progress to do in order to improve the hybridation strategy
- Bulk and pressure predictions of the tandem cylinder are promising

	Numerical model 00	Turbulence Model	Applications 0000000000000	Multirate 00000	Conclusion
Conclus	sion, perspe	ctives			

- Significant reduction of the amount of SGS viscosity by the dynamic procedure in VMS-LES
- Less impact of the dynamic procedure in VMS-LES than in LES
- Nevertheless, in some cases, **sensible improvement** of the agreement with reference data made by the dynamic procedure in VMS-LES
- Presentation of a strategy for blending RANS and VMS-LES
- The supercritical flow around a circular cylinder **reasonably well predicted** by the proposed VMS hybrid model
- Still some progress to do in order to improve the hybridation strategy
- Bulk and pressure predictions of the tandem cylinder are promising

	Numerical model 00	Turbulence Model	Applications 0000000000000	Multirate 00000	Conclusion
Conclus	sion, perspe	ctives			

- Significant reduction of the amount of SGS viscosity by the dynamic procedure in VMS-LES
- Less impact of the dynamic procedure in VMS-LES than in LES
- Nevertheless, in some cases, **sensible improvement** of the agreement with reference data made by the dynamic procedure in VMS-LES
- Presentation of a strategy for blending RANS and VMS-LES
- The supercritical flow around a circular cylinder **reasonably well predicted** by the proposed VMS hybrid model
- Still some progress to do in order to improve the hybridation strategy
- Bulk and pressure predictions of the tandem cylinder are promising

	Numerical model 00	Turbulence Model	Applications 0000000000000	Multirate 00000	Conclusion
Conclus	sion, perspe	ctives			

- Significant reduction of the amount of SGS viscosity by the dynamic procedure in VMS-LES
- Less impact of the dynamic procedure in VMS-LES than in LES
- Nevertheless, in some cases, **sensible improvement** of the agreement with reference data made by the dynamic procedure in VMS-LES
- Presentation of a strategy for blending RANS and VMS-LES
- The supercritical flow around a circular cylinder **reasonably well predicted** by the proposed VMS hybrid model
- Still some progress to do in order to improve the hybridation strategy
- Bulk and pressure predictions of the tandem cylinder are promising

	Numerical model 00	Turbulence Model	Applications 0000000000000	Multirate 00000	Conclusion
Conclus	sion, perspe	ctives			

- Significant reduction of the amount of SGS viscosity by the dynamic procedure in VMS-LES
- Less impact of the dynamic procedure in VMS-LES than in LES
- Nevertheless, in some cases, **sensible improvement** of the agreement with reference data made by the dynamic procedure in VMS-LES
- Presentation of a strategy for blending RANS and VMS-LES
- The supercritical flow around a circular cylinder **reasonably well predicted** by the proposed VMS hybrid model
- Still some progress to do in order to improve the hybridation strategy
- Bulk and pressure predictions of the tandem cylinder are promising

・ロト ・ 四ト ・ ヨト ・ ヨト

	Numerical model	Turbulence Model	Applications	Multirate	Conclusion
					000
Conclus	sion, perspe	ctives			

Multirate time advancing

- Implementation of the **multirate algorithm** in the parallel CFD code **AIRONUM** shared by INRIA Sophia-Antipolis, LEMMA company and university of Montpellier.
- Special attention was paid to issues related to **parallelism**, and in particular to the evaluation of the fluxes on the macro cells located at the boundary between neighboring subdomains.
- Preliminary runs with our multirate method for the tandem cylinders benchmark : results currently being processed... but the current domain decomposition limits the efficiency of this multirate approach.
- Need to improve the **domain decomposition** into subdomains, at the present time designed to minimize the inter-core communications, so that workload becomes (almost) equally shared by each computer core. For example, and for the tandem cylinders mesh (15 M tetrahedra) decomposed into 192 subdomains, some of them contain only inner nodes, and others only outer nodes.

	Numerical model	Turbulence Model 00000000	Applications 0000000000000	Multirate 00000	Conclusion ○O●
End					

Thank you for your attention!