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Introduction

@ Increase solution accuracy by using high order schemes

o True accuracy of these methods requires that the mesh
boundary are represented with at least the same accuracy

= Need to generate curved meshes.

o Bézier/Nurbs representation for curved element

@ 3-order simplicial element
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Curved element vs classical element
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Curved element definition
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Bezier basis functions

Bézier basis functions of k+1 order over a simplex

@ )\; the barycentric coordinates,
o « multi-index of length k,

o the Bézier basis function is:
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1D basis function of 3-order
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Curved element representation

Properties (i : Bézier basis functions)
By(M) >0 for any o, |a| =k and M € K

S Ba(M)=1

a,lal=k

Curved element definition
Lets P = {P, € RP,a € 7}, be a family of control points,
we approximate a function 1 by

(M)~ Y PaBR(M).

a,a€L

Example of elements
FPoos

u Control Points
® DoFs



Properties of a Bézier element

Convexity of control polygon
A Bézier curve is contained in the convexe hull of its control
polygon

[l Control points
Control polygon

Convex hull of the
control polygon

Tangent property (for a segment)
At the ends of the curve, the curve is tangent to the control
polygon.



Curved mesh generation
Problematic

o How to generate curved meshes ?

Our approach

e Starting from a classical mesh of the domain (piecewise
linear), we modify it to generate curved mesh.
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Validity criteria,

pink area = det (¥, T14) > 0
blue area = det (¥4, Ta25) > 0
yellow area = det(¥ss,Uag) > 0



Example for invalid element

4 :

straight element

blue area = det(T24,T25) < 0



Remark on the element validity.

Curved element of 3-order
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Previous validity criteria # uniqueness of the mapping

e isogeometric mapping invertible — det(Jy) > 0 on the
element.



Validity criteria

4 :

blue area = det (24, V25)

pink area = det(¥16, U14)
yellow area = det(Uss, Uag)
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How to curve straight mesh 7

Given
A piecewise linear mesh + Bézier curves on the boundary

Idea

Using linear analogy on control points subdivided mesh.
Thanks to the previous inequalities,

Subdivided mesh legal + other determinants > 0 = curved
mesh valid.

Steps:

o create mid-edge points and consider them as control points,
@ subdivide the mesh with those points,

o deform the subdivided mesh using elasticity analogy to fit
with NURBS boundary curves.



How to curve straight mesh?




Curved mesh examples

(a) 2d analytic: 6 iter (b) Airplane: 9 iter

(C) Mechanical part: 2 iter (d) Three components wing: 1 iter



Boundary problem

Edn: ~1%+1 76404 =0



How to generate a valid mesh starting from a invalid
curved boundary?

Given
A simplicial mesh + curved boundaries

@ Check mesh validity

© How to untangle invalid elements while respecting the
curved boundary and structure of the mesh?
e node repositioning
e curvature propagation



Untangling via local topological optimization

Given
A piecewise linear mesh + Bézier curves on the boundary

Idea

Solve a constrained optimization problem on a local patch
around the invalid element. A patch of elements with
determinants > 0 = curved valid mesh.

Steps:

o Construct a patch Py of elements surrounding the invalid
element 7}, under investigation,

@ Set the freedom of the nodes and control points inside the
patch,

o deform the patch using local topological optimization to fit
with the NURBS boundary curves.



Local topological optimization

Invalid element
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Local topological optimization

Constrained optimization problem

max s
X,S

s.t.
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Variables:
@ x the coordinates of the free nodes and control points.

@ s a lower bound on the determinants.



Curvilinear mesh untangling algorithm

Algorithm 1 Curvilinear mesh optimization algorithm

1: for each invalid element k, do

2 construct the patch of elements Py
3:  determine the free nodes in the patch with coordinatesxy
4 while s < 0 do
5: Maximize s
6 end while

7:  Reposition the nodes and control points.
8: end for=0




First example

Tangled Untangled



Future work

e Test untangling optimization in 2d then on a surface

e Perform compressible simulation with the curved meshes

e Mesh adaptation
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