Curved mesh generation for fluid dynamics problems.

Ghina El Jannoun*, Cécile Dobrzynski*

* IMB - Université de Bordeaux and Team Cardamom - INRIA Bordeaux Sud-Ouest, Bordeaux, France

Introduction

- Increase solution accuracy by using high order schemes
- True accuracy of these methods requires that the mesh boundary are represented with at least the same accuracy

 \Rightarrow Need to generate curved meshes.

- Bézier/Nurbs representation for curved element
- 3-order simplicial element

Guideline

Curved element definition

Curvilinear mesh generation validity criterion Computing curved mesh via linear elasticity analogy

Boundary treatment

Curved element vs classical element

Curved element definition

Bezier basis functions

Bézier basis functions of k+1 order over a simplex

- λ_i the barycentric coordinates,
- α multi-index of length k,
- the Bézier basis function is:

$$B_{\alpha}(M) := c(\alpha) \prod_{i=1}^{d+1} \lambda_i(M)^{\alpha_i}$$

1D basis function of 3-order

$$\lambda_{1} = (1 - t) \quad \lambda_{2} = t$$

$$B_{20} = \lambda_{1}^{2} \qquad B_{02} = \lambda_{2}^{2} \quad B_{11} = 2 \lambda_{1} \lambda_{2}$$

2D basis function of 3-order

$$\lambda_{1} = (1 - \eta - \xi) \quad \lambda_{2} = \xi \qquad \lambda_{3} = \eta$$

$$B_{200} = \lambda_{1}^{2} \qquad B_{020} = \lambda_{2}^{2} \qquad B_{002} = \lambda_{3}^{2}$$

$$B_{110} = 2 \lambda_{1} \lambda_{2} \qquad B_{101} = 2 \lambda_{1} \lambda_{3} \qquad B_{011} = 2 \lambda_{2} \lambda_{3}$$

Curved element representation

Properties $(\varphi : \text{Bézier basis functions})$ $\begin{cases}
B_{\alpha}(M) \geq 0 \text{ for any } \alpha, |\alpha| = k \text{ and } M \in K \\
\sum_{\alpha, |\alpha| = k} B_{\alpha}(M) = 1
\end{cases}$

Curved element definition

Lets $\mathcal{P} = \{P_{\alpha} \in \mathbb{R}^{p}, \alpha \in \mathcal{I}\}$, be a family of control points, we approximate a function ψ by

Properties of a Bézier element

Convexity of control polygon

A Bézier curve is contained in the convexe hull of its control polygon

Tangent property (for a segment)

At the ends of the curve, the curve is tangent to the control polygon.

Curved mesh generation

Problematic

• How to generate curved meshes ?

Our approach

• Starting from a classical mesh of the domain (piecewise linear), we modify it to generate curved mesh.

Validity criteria

blue area = $det(\vec{v}_{24}, \vec{v}_{25}) \le 0$

Remark on the element validity.

Previous validity criteria \Rightarrow uniqueness of the mapping

• isogeometric mapping invertible $\rightarrow det(J_{\psi}) > 0$ on the element.

Validity criteria

How to curve straight mesh ?

Given

A piecewise linear mesh + Bézier curves on the boundary

Idea

Using linear analogy on control points subdivided mesh.

Thanks to the previous inequalities,

Subdivided mesh legal + other determinants $\geq 0 \Rightarrow {\rm curved}$ mesh valid.

Steps:

- create mid-edge points and consider them as control points,
- subdivide the mesh with those points,
- deform the subdivided mesh using elasticity analogy to fit with \mathcal{NURBS} boundary curves.

How to curve straight mesh?

Curved mesh examples

Boundary problem

How to generate a valid mesh starting from a invalid curved boundary?

Given

A simplicial mesh + curved boundaries

- Check mesh validity
- Output to untangle invalid elements while respecting the curved boundary and structure of the mesh?
 - node repositioning
 - curvature propagation

Untangling via local topological optimization

Given

A piecewise linear mesh + Bézier curves on the boundary

Idea

Solve a constrained optimization problem on a local patch around the invalid element. A patch of elements with determinants $\geq 0 \Rightarrow$ curved valid mesh.

Steps:

- Construct a patch \mathcal{P}_k of elements surrounding the invalid element T_k under investigation,
- Set the freedom of the nodes and control points inside the patch,
- deform the patch using local topological optimization to fit with the **NURBS** boundary curves.

Local topological optimization

Constrained optimization problem

$$\begin{array}{ll} \max_{\mathbf{x}_k,s} & s \\ \text{s.t.} & \\ \forall T_i \in \mathcal{P}_k \left\{ \begin{array}{ll} det(\vec{v}_{16},\vec{v}_{14}) & \geq s \\ det(\vec{v}_{24},\vec{v}_{25}) & \geq s \\ det(\vec{v}_{35},\vec{v}_{46}) & \geq s \\ det(\vec{v}_{16},\vec{v}_{25}) + det(\vec{v}_{45},\vec{v}_{46}) & \geq s \\ det(\vec{v}_{35},\vec{v}_{16}) + det(\vec{v}_{46},\vec{v}_{43}) & \geq s \\ det(\vec{v}_{35},\vec{v}_{45}) + det(\vec{v}_{25},\vec{v}_{36}) & \geq s \end{array} \right.$$

Variables:

- $\bullet~{\bf x}$ the coordinates of the free nodes and control points.
- *s* a lower bound on the determinants.

(1)

Curvilinear mesh untangling algorithm

Algorithm 1 Curvilinear mesh optimization algorithm

- 1: for each invalid element k, do
- 2: construct the patch of elements \mathcal{P}_k
- 3: determine the free nodes in the patch with coordinates \mathbf{x}_k
- 4: while s < 0 do
- 5: Maximize s
- 6: end while
- 7: Reposition the nodes and control points.
- 8: **end for**=0

First example

Future work

- Test untangling optimization in 2d then on a surface
- Perform compressible simulation with the curved meshes

• Mesh adaptation