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Abstract

We present a synthesis of research on tools for automatic program analysis
and transformation. We give basic principles of static analysis of programs,
and focus on two specific transformations: Automatic Parallelization and
Automatic Differentiation (AD). We show how the formalism developped for
parallelization is applied for a more efficient AD. We also present research
on the usage in scientific computing of derivatives obtained through AD. We
describe in detail the software tools that we developed for parallelization and
AD, and we show perspectives of future research in AD.

Keywords: Compilation, Static Analysis, Data Flow Analysis, Program
Transformation, Parallelization, Loop Nest Parallelization, Program Opti-
mization, Data Dependency, Parallelization Tool, SPMD parallelization, Au-
tomatic Differentiation, Automatic Differentiation Tool, Scientific Comput-
ing, Optimal Shape Design, Optimization, Inverse Problems, Data Assimila-
tion, Adjoint Models.



Résumé

Nous faisons une synthèse de recherches dans le domaine des outils d’analyse
et transformation automatiques de programmes. Nous décrivons les principes
des analyses statiques de programmes, et plus particulièrement la Parallélisa-
tion et la Différentiation Automatique (DA). Nous soulignons comment le for-
malisme développé pour la parallélisation peut être utilisé pour améliorer les
performances de la DA. Nous présentons aussi des recherches sur l’utilisation
efficace en calcul scientifique des dérivées calculées grâce à la DA. Nous
décrivons en détail les outils logiciels que nous avons développés pour la
parallélisation et la différentiation, et nous donnons des pistes pour des
recherches futures en DA.

Mots-clés: Compilation, Analyse Statique, Analyse de Flot de Données,
Transformation de Programme, Parallélisation, Nids de boucles, Optimisa-
tion de Programmes, Dépendances des Données, Outil de Parallélisation,
Parallélisation SPMD, Différentiation Automatique, Outil de Différentiation
Automatique, Calcul Scientifique, Optimisation de Formes, Problèmes In-
verses, Assimilation des Données, Modèles Adjoints.
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Chapter 1

Introduction

– Should we leave computer programming to humans ?

The answer seems obvious:

– Of course we should ! Who would do it otherwise ?

At second thought, the answer is not so clear. All computer users know
that most codes are imperfect and contain errors. All programmers know
that this comes from programming errors made by fellow programmers. After
some maturation, most experienced programmers will even admit that they
can’t avoid errors in their own code ! So human-made programs are unsafe.

Also, almost anyone in charge of a big code development project will
complain about the time it takes to write a code. Delays are short and success
is uncertain. Several studies found an incredibly low average production of a
dozen lines of code per programmer per day. So human-made programs are
expensive.

Third, program design is certainly more interesting and more creative
than program writing. Designing algorithms and data structures can be
thrilling, implementing a small prototype can be fun, but writing the com-
plete code can be a bore. Making modifications and updates into a large
existing code rank among the most tedious activities with computers. So
computer programming is most often boring.

– After all, maybe we don’t want to leave programming to humans !
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Indeed, it is true that humans are progressively relieved from program-
ming tasks. Almost no one writes machine code nor assembly language any
more. Programming languages are more abstract, and the effective computer
programming task is done by a compiler, which is one of the most complex
programs on a computer. The advantages are clear: writing a program in an
elaborate programming language is faster, more interesting, and translation
to machine code introduces virtually no error.

This evolution doesn’t stop at compilers. On one hand, computer archi-
tectures offer more power, at the cost of increased complexity. Compilers can
take this into accout very decently, but to take full profit of multi-level cache
or parallel architectures often requires specialized code analyzers. These
tools, with the help of the programmer, can transform a program into an
equivalent program that will perform better on the target architecture. Pro-
grammers are relieved from this code optimization task, and their input
comes at a more abstract level.

Similarly, programmers need to update or to adapt increasingly large ex-
isting codes. Code understanding, sometimes called reverse engineering, is
crucial. This is not done only by hand but also with tools that analyze ex-
isting codes. These tools can even find subtle errors, especially when the
original programming language is abstract enough to embed some specifica-
tion of the desired results. We see here that there is a mutual benefit to
program at higher abstraction levels, both for initial code developpers and
for following code adapters. These analyses are called static or compile-time,
opposed to dynamic or run-time, because their result must be valid for every
possible program input. This constraint is strong, but static analyses take
up this challenge.

An ultimate objective is to replace programming languages by specification
languages. Technology has taken several steps in this direction. For instance
declarative languages like prolog describe what the program result must be,
rather than how it must be computed. It is the task of a separate tool to de-
cide how this result will actually be computed. The declarative program can
be used as an abstract specification [9], on which some proofs can be made,
with the help of other tools. This can lead to certified programs. Similarly,
one can check that the compiler that builds the running program actually
builds a program which has the same semantics as the original specification.
This leads to certified compilers.

Programs are growing more and more ambitious, especially in Scientific
Computing. Complete generation of a scientific application from specifica-
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tions is still out of reach. But there are several ways to generate some parts
of the application. One classical example is symbolic computation environ-
ments, such as maple, where equations can be translated into small program
pieces. We shall give special attention to Automatic Differentiation (AD),
where the input specification is a program part that evaluates some function,
and the generated program part computes some mathematical derivatives of
the function. AD has very promising applications in Scientific Computing,
especially for inverse problems and optimization. We claim that AD is just
another program transformation, which will take profit from existing com-
piler and parallelizer technology.

1.1 What this report is about

This report presents a synthesis of work done in the areas of program static
analysis and transformation. We use classical compiler theory, along with
some specific extensions, to study tools that generate new programs from ex-
isting programs. This generation is semi-automatic: on one hand it depends
on information obtained by static analysis of the given program, but on the
other hand it uses information provided by the end-user, because static anal-
yses are limited and cannot find everything. We study in detail two program
transformations: Automatic Parallelization and Automatic Differen-
tiation (AD). AD is more recent, and therefore it was very interesting to
transpose the techniques and tools developed for parallelization to AD.

Essentially, these compiler techniques are based on graph theory: the in-
ternal representation of programs combines trees (abstract syntax trees) and
several sorts of directed cyclic graphs (call graphs, flow graphs, dependence
graphs). Analyses and transformations boil down either to computation of
attributes on trees, or graph algorithms such as topological sorting, loop
detection or acyclic condensation. This graph representation is also ade-
quate to prove essential properties, such as algorithm termination. These
analyses are implemented by programs and run on programs, therefore most
of them are undecidable. Informally, this means that the analysis result
will often be approximate, or even unknown. Other approximations come
from cost/benefit tradeoffs in the analysis, such as coarse approximations on
pointers or arrays. When arrays are concerned, analysis of indexes is often
approximate. In favourable cases, array index analysis can be done using lin-
ear programming techniques on integers, yielding precise information. After

9



analysis comes the actual program transformation, where finding the optimal
choice is often a NP-hard question. Therefore, heuristics must be developed.
A typical example is finding a good storage/recomputation tradeoff to speed
up the computation of derivatives for a large expression.

In our work, we give a particular importance to the actual implementa-
tion of usable tools. We think this is necessary to validate our techniques on
real programs, and also to get feedback from industrial users. As a conse-
quence, we can’t restrict our prototypes to mini-languages or clean academic
programs. The three application tools that we describe in sections 3.4, 3.5,
and 4.6 are meant to be real tools, working on full fortran77 and for-
tran95. This implies some constraints on the architecture, such as a clear
separation between a language-specific front-end and back-end, and a more
language-independent middle-end that does the analysis and transformation.
In this middle-end, many fundamental static analyses are common, and can
be shared so that a tool can be kept as a platform to develop another pro-
gram transformation tool. In order to adress industrial programs, it also
requires that analyses perform well not only on clean, structured, academic
programs, but also do their best on deprecated features such as unstructured
jumps or GOTO’s, or COMMON-EQUIVALENCE declarations. We believe this is
also interesting from a research point of view. For example in section 3.4.4,
we show an extension of a loop parallelization algorithm that can extract
parallelism from “dirty” loops with jumps and old-fashioned style.

1.2 How to read this report

We organized this report to reflect this transposition process, from software
technology developped for compilation and parallelization, towards new pro-
gram transformations such as Automatic Differentiation, which is our cur-
rent research focus. Therefore, after general comments on static analyses
and transformations of programs in chapter 2, the two following chapters 3
and 4 highlight this transposition in their structure. Figure 1.1 displays
the correspondence between chapter 3 devoted to Parallelization, and chap-
ter 4 devoted to Automatic Differentiation. Obviously, AD is less famous
than Parallelization, and therefore an introductory section 4.1 is necessary,
as well as some motivating applications for this technology in section 4.2.
Apart from that, the structure is similar. We identify three major aspects
of compiler technology, namely the internal representation of analyzed pro-
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technology transposed to

3: Parallelization 4: Differentiation

4.1: Presentation of AD
Basic principles
Focus on the Reverse Mode

4.2: Motivating Applications of Reverse AD
Data Assimilation; Optimization

3.1: Internal Representation of Programs 4.3: Using Flow Graphs for Reverse AD

3.2: Static Data-Flow Analyses for better // 4.4: Static Data-Flow Analyses for better AD

3.3: Parallelization using the Dependence Graph 4.5: Using the Dependence Graph in AD

3.4: Application Tool 1: PARTITA

3.5: Application Tool 2: SPMD Parallelization

4.6: Application Tool : TAPENADE

Figure 1.1: Compared structures of chapters 3 and 4

grams, the static data flow analyses, and the dependence graph. Each aspect
is presented in a section of chapter 3, because it originates from this com-
pilation/parallelization domain. In front of this, corresponding sections of
chapter 4 show how we transpose these aspects into AD, and what benefits
come from that. Both chapters terminate with a section devoted to the ap-
plication tools we have developped. These tools show the interest of program
analysis technology on real-world, large applications.

Maybe one doesn’t need to read this report completely, according to one’s
main interests.

• If interested in concepts and algorithms for code analysis, transforma-
tion, and optimization, then look at chapter 2 and sections 3.2, 3.3, 4.3,
4.4, and 4.5. There are also very specific algorithms in the application
sections 3.4 and 3.5.

• If interested in a description of automatic parallelization, look at sec-
tion 3.3, followed by 3.4 for a focus on loop-level parallelisation or by 3.5
for a focus on coarse-grain SPMD parallelization.

• If interested in AD principles and the use of AD in Scientific Com-
puting, then look at sections 4.1 and 4.2. Section 4.6 may also prove
interesting.
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• If interested in common points between parallelization and AD, then
look at sections 2.2 and 4.3 together, or sections 3.2 and 4.4, or sec-
tions 3.3 and 4.5.

• If interested in what functionalities a program transformation tool may
offer, look at sections 3.4, 3.5, and 4.6.

• If interested in AD research problems and their links with general static
analysis of programs, look at sections 4.3 through 4.5, and to the sum-
mary of open problems in chapter 5.
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Chapter 2

Program Static Analyses and
Transformations

This chapter presents general remarks on program static analyses and trans-
formations, which are common to parallelization, discussed in chapter 3, and
to differentiation, discussed in chapter 4. We first define and discuss static
analyses in section 2.1, then section 2.2 discusses the internal representation
of programs that we think is best adapted. Section 2.3 focuses on data flow
static analyses. Finally, section 2.4 focuses on classical practical difficul-
ties arising in all data flow analyses of imperative programs, namely aliases,
pointers, and arrays.

2.1 Static vs. Dynamic

An analysis or transformation on a program is static, as opposed to dynamic,
when it doesn’t know the actual run-time inputs nor the run-time behavior of
the program. Therefore, the actual value of most variables is unknown, as are
the results of the switches that determine the flow of control. Actually, since
a program can usually run on a very large set of possible different inputs,
it is natural to assume this input is arbitrary, and therefore perform static
analyses. However, there exist dynamic analyses, such as execution traces,
any statistic analysis of a particular run, profiling, etc. Detection of cache
misses, blocking communications, processor idle time, are typical dynamic
analysis, whose results are of great help to improve the program.

The frontier between static and dynamic analyses is not even clear-cut.

13



For example partial evaluation, that we consider a static analysis, uses knowl-
edge of a part of the run-time input to specialize and simplify the program
(cf section 2.1.4). Also, most static analyses need extra, dynamic informa-
tion on the run-time values to give better results. This information may be
provided by the user, e.g. with directives, or can be found by a previous
dynamic analysis.

Basically, the art of static analysis is to extract information, not from the
run-time arguments which are hidden, but from the structure of the program
itself. This gives abstract information on the run-time values, which in turn
is useful for program transformations.

2.1.1 Undecidability

There is a theoretical limit to the precision of static analyses, called unde-
cidability. It states that is is impossible to design a program which, given
any program as an argument, will determine whether this argument program
terminates or not. There exist a variety of corollaries. For instance, one can’t
write a software tool that finds out if two programs are equivalent, giving the
same results in response to the same inputs. A program can’t even decide
that any two expressions of the analyzed program always evaluate to the
same result.

The consequence is that most static analyses that must answer to a
“boolean” question on the given program will give one of the three answers
“yes”, “no”, or “I can’t tell”. Obviously, if the answer is “I can’t tell”, the
tool that asked this question must be prepared to take the good decision.
This decision must be conservative, i.e. it must produce a transformed pro-
gram or an answer which is correct, whatever the run-time arguments. In
other words, the tool that asked this question and got the “I can’t tell” an-
swer must take no chances: it must continue with its work considering that
the run-time answer can be “yes” or “no” (there is no other possibility at
run-time).

Notice that undecidability is an absolute but very far barrier. In practice
other barriers will arise much sooner than undecidability, which have little
relation with it. For example comparison of expressions in array indexes
can become very complex and tools generally give up when the expressions
are not linear with respect to the loop index. Array indexes can also involve
indirection arrays, i.e. other arrays with unknown values. Comparison would
require an enumeration of all possible cases, which is of course out of reach

14



practically. Also, deciding whether two pointers reference the same memory
location would require to enumerate all possible flows of control, and this is
also practically out of reach.

Undecidability should not discourage anyone from implementing analyz-
ers: in a sense, it just means that a given analyzer can always be improved,
asymptotically!

2.1.2 Dynamic arguments and values

Run-time values of variables are simple elements of well-known domains,
such as character strings or real numbers. Static information on these values
must represent all possible run-values, and therefore belong to more complex
domains, known as abstract domains. It can be intervals for example, or
any kind of enumeration. The abstract domain may be more complex if one
wants to capture possible relations between different values. For example,
one can take simplexes or polyhedra in multi-dimensional spaces to represent
inequalities between run-time values. A theoretical framework is Abstract
Interpretation [13], that considers a static analysis as a special execution of
the program that computes not values, but elements of the chosen abstract
domains. Choice of the abstract domain determines the precision of the
static analysis, i.e. the moment when approximations will become necessary.
It also determines the computational cost of the static analysis.

Suppose we choose the abstract domain of intervals for values that are
real numbers at run-time. Then we need to redefine the standard operations
so that they run on intervals, and return intervals too. This is already more
expensive than basic operations on real numbers. Now if we choose the
abstract domain of polyhedra, the precision of the analysis is better, because
it can capture and propagate relative information such as a ≥ b, but one can
be frightened by the cost of the standard operations defined on polyhedra.

2.1.3 Dynamic control

A static analysis must consider what happens during each possible run. This
implies that each piece of information found is attached to one or many possi-
ble runs. Therefore we need a way to represent these runs abstractly. Maybe
the most general representation is instruction instances (cf [10]), an alge-
braic notation that captures the history of all successive program switches
and loops that lead to one particular run-time execution of an instruction.
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There is a natural order between instruction instances, that reflects the exe-
cution order. Thus, for each textual instruction of a program, a static anal-
ysis chooses a partition of all possible instances of this instruction, and for
each subset in this partition, it holds a piece of information relevant to this
particular case. When the static analysis studies a relation between differ-
ent run-time imstructions, it may need two or more instruction instances for
each piece of information. Consider for example data-dependence analysis,
that looks for every pair of run-time instructions such that the first one must
always be executed before the second one. Each data-dependence must be
attached to a pair of instruction instances, one for each textual instruction.
The cost of this can be enormous.

The notion of instruction instances is essential in the theory of static
analyses. In particular, it allows for algebraic manipulations such as proofs
of correctness of transformations based on these analyses. A long-term goal
would be certified implementations of static analyses and transformations,
based on a formal specification. However, for nowadays complex static analy-
ses running on large applications, drastic simplifications are necessary. Most
often, all possible instances of an instruction are considered at the same time.
Only in carefully selected cases, the set of instruction instances is partitioned
into a few subsets. This may happen for a crucial conditional instruction, or
for the body of some subroutine. In the case of subroutines, this question is
also know as specialization vs. generalization: should one generalize, i.e. an-
alyze the subroutine only once, in a context which is the union of all possible
instances of all calls to the subroutine, or should one specialize, i.e. analyze
the subroutine many times, generally once for each call site, in a context
which is the union of all possible instances of this call? The rule of thumb is
to stick to generalization as much as possible, because a piece of code that
is called many times is generally used in a uniform manner. Conversely, two
really different operations are generally performed by distinct pieces of code.
In general, we might say that “syntax gives hints”. Exceptions to this rule
often come from specific properties of the program, only known to the end-
user. Therefore a good strategy for a static analysis tool would be to let the
user force specialization when appropriate, from the user-interface.

This partition of all instruction instances into a small number of more
generic instances has a strong impact on the way static analyses run. If each
instruction instance is analyzed separately, then for this instance the previous
instructions form a straight-line code, which is easier to analyze. But this
is impractical because there are so many instruction instances, even often
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an infinity. At the other extreme, if all instances are analyzed jointly, static
analysis of a conditional goes into each of the two branches, and the resulting
abstract values at the end of the two branches must be merged to get the
abstract values at the end of the conditional. Similar things happen for every
syntactic construct. For loops, a fixpoint analysis is generally necessary (cf
section 2.3.2). This merging probably looses a part of the information, but
the good side is that the analysis can follow the nested syntactical structure
of the program, and this decreases complexity even more (cf section 2.2.4).

For analyses that look for a relation between two different instruction in-
stances, it is often better to generalize all instruction instances and only spec-
ify the distance between each pair of corresponding instances. This distance
indicates difference between two instances, and an example is in section 3.3
about data dependences.

2.1.4 An example: Partial Evaluation

Partial Evaluation is a transformation technique that specializes a program
for a fixed value of a part of its inputs. Suppose we formally split the inputs
of program P into two parts x and y. Partial evaluation of P(x, y) for the
fixed input x = x0 is a new program Px0 such that for all y,

Px0(y) = P(x0, y)

Usually, one hopes that a good constraint propagation (which is a static
analysis) will help make the specialized program Px0 smaller and quicker
than P.

The choice of the abstract domain for variables is crucial. For example,
polyhedra allow us to capture and propagate an inequality between two vari-
ables. For variables with discrete values, a simple abstract domain is the
sets of possible values. Constraints add a precious level of precision: when
constraint propagation proves that some variable has only one possible value,
then one may simplify the operations it is involved in. Later on in the pro-
gram, when a conditional uses a test, say a ≥ b, the abstract values of a and
b may prove that the test is always true or always false, and specialization
may just remove the test and the other branch or the conditional.

The question of when to specialize a subroutine for a given subset of its
inputs is crucial. In Partial Evaluation, the answer is given by heuristics.
Partial Evaluation, in essence, relies on specialization, but we saw that this
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may lead to combinatorial explosion. The heuristics limits specialization
to cases when it is probably harmless. Notice that both specialization and
generalization return correct programs, but one may be faster while the other
may be smaller in code space. In imperative languages, each specialization
of a procedure creates an additional procedure in the specialized program,
which is therefore heavier. On the other hand, this additional procedure can
be automatically simplified, and thus probably runs faster. Choice of a good
heuristic really is at the heart of Partial Evaluation systems.

To illustrate the power of Partial Evaluation, here is a rather pretty ex-
ample that we studied when we were developping a Partial Evaluation system
for inference rules [26, 27]. Suppose P is a set of inference rules that specify
that a given regular expression accepts a given string of atoms. Classically, P
can be written using rewrite rules: when a prefix atom can be accepted by the
regular expression, this expression rewrites into a new regular expression and
the tail of the string must be accepted by the rewritten regular expression.
If we denote

E
a→ E ′

the predicate saying that regular expression E rewrites into E ′ after accepting
atom a, the core of P consists of the following inference rules:

accepts(E1, ∅) E1
a→ E ′1 E2

a→ E ′2 and(E ′1, E2, R1) or(R1, E
′
2, R)

E1.E2
a→ R

¬ accepts(E1, ∅) E1
a→ E ′1 and(E ′1, E2, R)

E1.E2
a→ R

E1
a→ E ′1 E2

a→ E ′2 or(E ′1, E
′
2, R)

E1 + E2
a→ R

E
a→ E ′ and(E ′, E∗, R)

E∗
a→ R

atom a
a→ empty

a′ 6= a

atom a′
a→ stop

where accepts(E, ∅) checks that regular expression E may accept the empty
string, and and or respectively rebuild a normal form of the concatenation
“.” and the alternative “+” of their two argument regular expressions, and
stop denotes that the the regular expression failed to accept the given prefix.
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We can do partial evaluation on this program P, fixing the given regular
expression E, for example E = 6.(2.3 + 4∗)∗.5, and letting the string vary.
Obviously what we get is a specialized program that checks that a given string
matches 6.(2.3 + 4∗)∗.5. Actually we need to perform partial evaluation on
the solving process itself, i.e. the program that combines inference rules
to get the answer. Therefore the abstract domain we choose is the set of
proof trees, that are built by logical combination of inference rules. We also
introduce in the abstract domain constraints that hold information on the
variables that appear in the proof trees. Specialization versus generalization
is decided by a heuristic that accepts specialization only when the number
of possible proof trees doesn’t grow too much and no proof tree becomes too
large. Each specialization of the → predicate to a given “state” of the regular
expression will be denoted here as Sn →, where Sn is a fixed name. What
we end up with is the following set of specialized inference rules:

S0
∅→ “reject”

S1
i→ r

S0
6•i→ r

S1
∅→ “reject”

S2
i→ r

S1
2•i→ r

S3
i→ r

S1
4•i→ r S1

5•i→ “accept”

S2
∅→ “reject”

S1
i→ r

S2
3•i→ r

S3
∅→ “reject”

S3
i→ r

S3
4•i→ r

S2
i→ r

S3
2•i→ r S3

5•i→ “accept”

which implements the finite state automaton shown on figure 2.1. Notice that
this finite state automaton is not minimal, because this Partial Evaluation
algorithm could not find that the two regular expressions

4∗.(2.3 + 4∗)∗.5 and (2.3 + 4∗)∗.5

are equivalent. Therefore nodes S1 and S3 are not merged. Yet partial
evaluation actually compiled the regular expression into a finite automaton.
This classical operation is usually done by ad-hoc algorithms, such as the
“first and follow” algorithm [5]. Here it is a mere consequence of the basic
principles of Partial Evaluation!
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Figure 2.1: Specialized finite automaton built by Partial Evaluation

2.2 Internal Representation of Programs

The internal representation of programs is essential for good static analyses.
It must be easy to follow each thread of control. To this end, we advocate
Call Graphs and Structured Flow Graphs rather than plain Abstract Syntax
Trees. Information on variables, which is required very often, should be
available quickly. It is not surprising that the answer to this is a Symbol
Table. Also, anticipating on section 2.2.4, a structured representation helps
to keep complexity reasonably low.

2.2.1 Symbol Tables and Memory

In the program’s statements, variables are identified by their name, which is
a string. From this name, we must get the type, the size, and many other
pieces of information. This is classically done with a Symbol Table which,
given a key (a string) returns whatever is stored for this key. Symbol Tables
use hash coding for a quicker retrieval of the key.

Symbol Tables must provide nesting to implement scoping. When a new
scope is opened, e.g. when a local variable is declared, a new Symbol Table
is built on top of the existing Symbol Table. It can see all variables in
deeper Symbol Tables, but new declarations at this level will hide deeper
declarations. When this scope ends, the initial Symbol Table is visible again.

Nesting Symbol Tables is somewhat more complex for Object-Oriented
languages. When a class C inherits from a parent class P, the Symbol Table
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of C is built on top of the P. Depending on access properties, C is sometimes
built only on top of the public Symbol Table of P. If C inherits from several
parent classes, then its Symbol Table is built on a sort of union of its parents’
Symbol Tables. The langugage standard specifies the order in which a string
is searched in the parents’ Symbol Tables.

All this is valid for properties of variables that do not change at run-
time. For a property that evolves, such as “is the variable initialized or not”,
it must be stored in distinct structures, probably one for each program’s
instruction. Instead of creating a new hash table mechanism, it is a good
practice to simply create arrays, with one entry per variable. The index
allocated to represent a variable is a fixed property of this variable, and thus
can be stored in the Symbol Table.

This correspondence from variables to indices forms a map of a sort of
virtual memory. We call the indices zones. At one extreme, one may choose
to attach only one zone to each array variable. However there are cases where
it is best to create several zones for one array. For example it may happen
that two arrays partly overlap in memory, due to aliasing or in fortran us-
ing the EQUIVALENCE declaration. This is captured esily by creating different
zones for the different overlapping array regions (cf figure 2.2). At the other

memory: A B V X Y Z C

zones: 1 2 3 4 5 6 7 8 9

Figure 2.2: Creating different memory zones captures memory overlapping

extreme, one may wish to assign one different zone to each array cell. This is
not always possible, though, because some arrays have a dynamic size, and
therefore one can’t tell how many cells they will need. Moreover it is proba-
bly a poor strategy, especially if accesses to the array are uniform. Here also,
“syntax gives hints!”. If an array is always referenced with a generic loop in-
dex, such as A(i) or even A(f(i)), it is most likely that these references are
uniform and all array cells are somewhat equivalent. One zone is enough for
A. On the other hand, if the program refers explicitly to A(1) or A(37), the
corresponding memory cells may be best analyzed individually, like ordinary
scalar variables.
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2.2.2 Flow Graphs

For the record, Abstract syntax Trees (AST’s) are the best way to see through
the concrete syntax, getting rid once and for all of tedious tasks such as
counting white spaces or checking precedence in expressions. The nodes of
the syntax tree are operators that represent constructs of the programming
language, such as arithmetic or logic operations, assignment, array indexing,
or structured control. The leaves of the syntax tree are constant litterals or
references to the name of a variable. Syntax trees are nearly everywhere: for
readability, in the remainder of this report we shall often display syntax trees
as pieces of source program text instead of a “real” tree. This is when there
is no ambiguity. For example on figure 2.3, the individual instructions in the
Flow Graph are indeed syntax trees shown as natural text.

Atomic instructions are best represented as AST’s Structured instruc-
tions, such as loops and conditionals can be either kept as AST’s or as Flow
Graph’s. In either case, it is easy to follow the thread of control. Then comes
the problem of non-structured control (e.g. GOTO’s). Let’s face it, real pro-
grams sometimes use constructs that are not absolutely clean. When a lan-
guage offers such instructions, we must be prepared to analyze them. Many
academic research simply considers small languages, where non-structured
control is forbidden. We can’t afford to do that, because we want to de-
velop tools that apply to real programs. For non-structured control, the only
representation that captures the thread of control is the Flow Graph.

The advantage of Flow Graphs is that they handle any kind of control
in a uniform manner. Analyses based on Flow Graphs are therefore more
general. A Flow Graph is a directed graph, whose nodes are basic blocks,
i.e. sequences of instructions. Precisely, a basic block contains a list of
instructions which are always executed in sequence, from first to last, with
the same Symbol Table context. Thus the current Symbol Table is attached
to the basic Block. Arrows in the Flow Graph represent the flow of control,
i.e. the possible destinations of the execution pointer after completion of a
basic block. At run-time, a test located at the end of the basic block decides
on the actual next basic block to execute. Figure 2.3 shows the Flow Graph
of a small procedure. Notice the special basic block at the beginning of
the procedure, called the Entry Block. Similarly, the Exit Block represents
the end and return from the procedure. There are some other special basic
blocks that hold loop headers: this is a simplified way to introduce syntactic
structure back into the flow graph. A more general way, Structured Flow
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push

pop

pop

cycle

do exit

do loop

if true if false

Entry

small(A,B)

n = 0
1,100

Loop Header

DO 100 i=1,100

IF (A(i).ge.0)

A(i) = n
n = n + 1
B(i) = 0

A(i) = B(i)

print *,n

Exit

end

SUBROUTINE small(A,B)
INTEGER A,B,i,n
DIMENSION A(100), B(100)

C
n = 0
DO 100 i=1,100

IF (A(i).ge.0) THEN
A(i) = n
n = n + 1

ELSE
A(i) = B(i)
GOTO 200
n = n + 3

END IF
B(i) = 0

100 CONTINUE
200 print *,n

end

Figure 2.3: The Flow Graph of a small procedure

Graphs, is described below. Notice also that the arrows must hold some
extra information in the following cases:

• when several arrows leave from a basic block, they must indicate which
arrow is taken in which case at run time. For example the arrow labelled
do exit is chosen when the iteration control decides that the loop is
terminated.

• when an arrow doesn’t remain in the same loop syntactic structure,
this is denoted by a push when it jumps into a loop, a pop when it
jumps out of the loop, or a cycle when it just goes to the loop’s next
iteration.

Generally, two special Symbol Tables are built for a procedure:

• The public Symbol Table holds all symbols that can be seen by the
outside context. This includes the formal parameters, most other pro-
cedures, and all sorts of global variables.
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• The private Symbol Table holds all local symbols, whose scope ends
when the procedure returns. This includes local variables and proce-
dures.

Of course the private Symbol Table is built on top of the public one, because
the procedure instructions can see both private and pubic symbols, whereas
the calling context can only access to the public symbols.

Flow Graphs have a bad reputation in academic research, because they
alledgedly loose the control structure, and because one cannot keep nice
algebraic notations such as instructions instances [10]. It is true that struc-
tured programs are preferable to “spaghetti code”, and plain Flow Graphs
do not distinguish a well-structured program from a “spaghetti” program!
However, we find this judgement unfair. Flow Graphs can actually capture
structure: not surprisingly, these are known as “Structured Flow Graphs”!
Structured Flow Graphs [2, section 10.10] represent procedures as a Flow
Graph whose instructions can be atomic instructions, or recursively Struc-
tured Flow Graphs. The “dirty” effect of a GOTO’s is therefore limited to the
inside of its enclosing Structured Flow Graph. It is well known [4] how to
transform any Flow Graph into an optimal Structured Flow Graph, which
is the good base to then regenerate a cleaner source program. This is done
in particular by restructuring tools. We end up with this general scheme,
whatever the structuration of the initial procedures:

1. build the Flow Graph, therefore temporarily loosing existing structure,
then

2. using “dominator” analysis, (re)build a structure on Blocks, and

3. run static analyses recursively on this structured Flow Graph;

4. if regenerating a procedure from the Flow Graph, use this structure to
build an equivalent structured code.

Figure 2.4 shows an example of restructuration based on Structured Flow
Graph. The input on the left is some kind of old-style fortran program.
The result on the right meets the newest standards. The internal represen-
tation (bottom left) is style-independent and static analyses and transforma-
tions apply to it easily.
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100 IF (x1-x0.le.e) GOTO 300
xi=(x0-x1)/2.0
yi=F(xi)
IF (yi.lt.0.0) GOTO 200
x0=xi
y0=yi
GOTO 100

200 x1=xi
y1=yi
GOTO 100
res=0.0

300 res=x0

if false if true

if true if false

IF (x1-x0.le.e)

xi=(x0-x1)/2.0
yi=F(xi)
IF (yi.lt.0.0)

x1=xi
y1=yi

x0=xi
y0=yi

res=x0

LOOP

res=x0

WHILE (x1-x0.gt.e)

xi=(x0-x1)/2.0
yi=F(xi)
CONDITIONAL

if true if false
IF (yi.lt.0.0)

x1=xi
y1=yi

x0=xi
y0=yi

DO WHILE (x1-x0.gt.e)
xi=(x0-x1)/2.0
yi=F(xi)
IF (yi.lt.0.0) THEN

x1=xi
y1=yi

ELSE
x0=xi
y0=yi

ENDIF
ENDDO
res=x0

Figure 2.4: Restructuration using a Structured Flow Graph
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2.2.3 Call Graphs

The Call Graph is the topmost level of program representation. The Call
Graph is a directed and possibly cyclic graph. Each node of the Call Graph
represents one procedure, and there is an arc from procedure P1 to procedure
P2 if P1 may make a call to P2. A cycle in the Call Graph means that the
program is recursive. Since a node represents a proedure, it indeed contains a
Flow Graph, except in special situations, like for external, library, or intrinsic
procedures, whose source code is not given. Arrows in the Call Graph can
be built only after the static type-checking phase, because many languages
use the types to determine which procedure is called. This happens with
overloading, or in object-oriented programs.

The Call Graph is a static representation for static analysis. In particular,
an arrow from procedure P1 to procedure P2 only implies that P1 may call
P2, but it may also not call P2 in some contexts. Conversely there is only one
node for P2, even if it may be called by many different procedures in many
different contexts. This corresponds to our choice to stick to generalization
as much as possible: when P2 can be called in many contexts, first merge
these into a single general context, and analyze P2 only once in this general
context. As we said earlier, this choice of generalization leads to some loss of
precision during static analyses, but in general the loss is very limited.

Static analyses on Call Graphs fall into two principal categories: top-down
and bottom-up.

• top-down: Assuming that there is a TOP procedure (e.g. the main pro-
cedure), a top-down analysis propagates information initially known for
TOP, down into all procedures possibly called under TOP. The general-
ization principle tells us that a given procedure P can be analyzed only
when all its calling contexts are known, and therefore only when all pro-
cedures that may call P have been analyzed. Thus, procedures must
be analyzed in a well-chosen order. When the Call Graph is acyclic,
this order is the topological sorting of nodes below TOP. When the
Call Graph is cyclic, there is no such order, and the analysis must be
run repeatedly until fixpoint. But the Depth-First Spanning Tree algo-
rithm [2, section 10.9] gives a very good order that keeps the number
of iterations low.

• bottom-up: Starting from the bottom nodes of the Call Graph, i.e.
procedures that call no other procedures, a bottom-up analysis synthe-
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sizes properties of procedures, independent of their particular calling
context. This process eventually stops at the TOP procedure. A given
procedure P can be analyzed only when all the procedures it calls have
been analyzed. Again, recursive programs that have a cyclic Call Graph
require an iterative process. In contrast with top-down analysis, there is
no need to remember and accumulate calling contexts. Symmetrically,
after the analysis of each procedure P, a summary of the synthesized
information for P must be built and stored, to be used by the callers of
P.

Let us mention an extra difficulty that arises in object-oriented programs,
or when run-time overloading is used. On a given CALL to a procedure, the
actually called procedure may be unknown at static analysis time. It only
ranges in a – hopefully finite! – set of procedures. When running a bottom-up
static analysis, one cannot just read the analysis result for the called subrou-
tine. Instead, one must take the results for each procedure possibly called,
and build a conservative union of these results. This is yet another cause for
imprecision. This is one of the reasons why most static transformations of
programs, and especially Automatic Differentiation, still focus on “classical”
languages and delay analysis of object-oriented languages, which is still an
open problem.

2.2.4 Complexity issues

This hierarchical representation (Instructions, Flow Graphs possibly with
structured Blocks, Call Graph) allows us to control combinatorial explosion
during analyses.

Careless implementation of a program static analysis would probably start
from the first line of the main subroutine, and then follow the “execution
pointer”. If a procedure S is called many times in the program, it would be
analysed many times, once for each call site. Moreover, procedures called
by S would also be analyzed many times with S. Most likely, information
on variables carried along analysis would concern all variables of calling pro-
cedures. This leads to unacceptably inefficient analyzers, and we need a
better strategy, based on the nested levels of our hierarchical representation
of section 2.2..

In general one can identify a computationnally expensive part of the com-
puted information, which can be synthesized. This means it is computed

27



bottom-up, starting on the lowest (and finest) levels of the program repre-
sentation, and then recursively combined at the upper (and coarsest) levels.
Consequently, this synthesized information must be made independent from
the context, i.e. the rest of the program. When the synthesized information
is built, it is used in a final pass, essentially top-down and context depen-
dent, that propagates information from the “ends” of the program (the main
procedure’s beginning and end), to each particular procedure, basic Block,
or instruction. We refer the interested reader to the classics of Compiler
Theory, and in particular [2].

At the Call Graph level, bottom-up analyses build a context-independent
signature of each procedure, which is then used during analysis of each call

instruction of a calling procedure. Conversely, top-down analyses on a call

instruction of a calling procedure accumulate their calling context into the
general calling context of the called procedure. This general context is then
retrieved when in turn analyzing the called procedure. Recursive programs
require an extra fixpoint at this level in the algorithm.

At the Flow Graph level, analyses most often require a fixpoint because
Flow Graphs are seldom acyclic. The number of iterations required to reach
the fixpoint is generally about the number of loops in the Flow Graph, pro-
vided each iteration visits the basic block in a good enough order, usually
found by the Depth-First Spanning Tree algorithm. Yet this fixpoint mech-
anism can be expensive. Let us present two approaches to reduce its cost:

• Basic blocks: iterations repeatedly call for propagation of a piece of
information through a basic block. Instead of doing this by sequen-
tial propagation through each successive instruction, one can build a
summary of the “effect” of the entiere basic block on the computed in-
formation, and apply this effect each time propagation across the basic
block is required.

• Structured Flow Graphs: similarly, if the Flow Graph is structured,
one structured sub-flow-graph is just seen as one instructution at the
level above. One can compute the effect of this structured instruction
once, and then use it during propagation of computed information.
Moreover, when the structured sub-flow-graph is a loop, the fixpoint
mechanism is limited to this sub-flow-graph, and no fixpoint is needed
at the other levels.

Examples in sections 2.3.3 and 4.4 illustrate these techniques.
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2.3 Data Flow Analyses

Apart from rare exceptions, static analyses needed by program transforma-
tions find information on variables, on their run-time value, and on their
relationship. These are called data flow analyses. It is important to specify
these analyses formally, to make sure that they terminate, of course, and also
to implement them with algorithms of smallest possible complexity.

2.3.1 Set-based specification of Data Flow Analyses

At the Flow Graph level, each Data Flow analysis is described concisely by
so-called Data Flow equations. In their most general form, these equations
apply to unstructured Flow Graphs, because real programs have unstruc-
tured Flow Graphs in general. On the other hand, these general equations
can be specialized to structured Flow Graphs, i.e. cleanly nested loops and
conditionals, yielding structured Data Flow equations. The latter may be
applicable to a smaller class of programs, but are usually more efficient, and
also more illustrative.

Assume that the information computed by the data flow analysis can be
represented as a set of variables. This can be, for example, the set of all
initialized variables at a given location in the program. Data Flow equa-
tions are constraints that relate these sets before and after each individual
instruction. Because of loops, these constraints form in general a system that
defines the sets implicitly. In other words the system must be solved, e.g. by
a fixpoint approach, to obtain the desired sets. The constraints themselves
express the nature of the data flow information seached. The fixpoint prop-
agation mechanism is just a mechanical step, independent of the nature of
the data flow problem. Therefore data flow equations completely specify the
data flow analysis.

Consider for example the problem of detecting variables used before ini-
tialized. The set S we need to propagate is in fact the set IV of initialized
variables. On a general, unstructured Flow Graph, it needs only two Data
Flow equations, shown on figure 2.5. They just state that OutIV, the IV set
of initialized variables just after a basic block B, is equal to InIV, the IV set
just before B, which in turn is the union of the OutIV sets of all incoming
basic blocks, augmented with Written(B), the set of all variables that are
overwritten by the basic block itself.

In the case of structured flow graphs, data flow equations can be special-
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...

B

...

InIV(B) =
⋃

P predecessor of B

OutIV(P )

OutIV(B) = InIV(B) ∪Written(B)

Figure 2.5: General data flow equations for initialized variables

ized for well-known structures, giving more efficient rules. Considering again
the variable initialization problem, the general rules of figure 2.5 give the
specialized rules for a loop structure shown on figure 2.6. Notice that since
repeated unions with a constant set don’t change the result, the fixpoint
could be solved statically and therefore the structured data flow equations
are more efficient than the unstructured.

B → B1

InIV(B1) = InIV(B) ∪Written(B1)

OutIV(B) = InIV(B1)

Figure 2.6: Structured data flow equations for initialized variables, in the loop
case

Assuming again that the analysis propagates sets of variables, it is ad-
visable not to represent these sets as a collection of names, i.e. of character
strings, because comparing strings is expensive. Since the space of all names
is known a priori, t is far better to assign a unique integer index to each
possible name, as discussed in section 2.2.1. The sets are thus represented
as “bitsets”, on which the classical set operations can be implemented very
efficiently.

2.3.2 Termination issues

It is necessary to make sure that the fixpoint resolution eventually termi-
nates. Abstract interpretation gives the general framework for this. When
the analysis is defined by set-based data flow equations, we can give a helpful
lemma. Suppose we compute set “Set”. The iterative resolution algorithm
starts with an initial state (InSet0,OutSet0), and iteratively computes new
states (InSeti,OutSeti), for increasing i’s. Each state is built of two mappings

30



from each block B to InSeti(B) the value of Set before B, and to OutSeti(B)
the value of Set after B. Each iteration i applies the data flow equations on
each block B (excluding the entry and exit blocks) to build InSeti(B) and
OutSeti(B) using the previous state (InSeti−1,OutSeti−1). Then we have:

Lemma : Iterative resolution of data flow equations for set Set reaches a fix-
point in a finite number of iterations if the set of possible values of Set is finite
and ∀i > 0,∀B, InSeti−1(B) ⊆ InSeti(B) and OutSeti−1(B) ⊆ OutSeti(B).

Proof :
Since there is only a finite number of possible values of Set, there is a finite
number of possible states. Set inclusion induces a partial order ⊆ on states
and the hypothesis just says that (InSeti−1,OutSeti−1) ⊆ (InSeti,OutSeti)
for each iteration i > 0. If the iterative resolution does not reach a fixed
point, all the inclusions are strict, and thus the successive states form an
infinite set of states. This is impossible since there is only a finite number of
different states. 2

There are cases where the set of possible values is infinite. For example
when the data-flow information consists of intervals of possible values of
variables. Then the analysis must provide a mechanism to prevent infinite
sets of successive states. One method is to allow each interval bound to grow
only a fixed number of times, and then the bound is pushed to infinity. This
classical method is called widening.

2.3.3 An example: Read-Written data flow analysis

The Read-Written data flow analysis finds, for each procedure, and for each
argument of this procedure, what the effect of the procedure on the argument
is. This can be one of:

• “rw”: the initial argument value is read and later it is overwritten

• “r”: the initial argument value is read and not iverwritten

• “w”: the initial argument value is not read, but it is overwritten

• “n”: the argument value is not read nor overwritten

This analysis is bottom-up on the Call Graph.
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Essentially because of arrays, things are not so simple. We choose to
consider any array as an atomic variable. Thus a variable, if it is an array,
can have a part which is read (resp. written), and another part which is not.
Also, since the control is not known, a variable can be read (resp. writen) for
one control, and not for another. So, at a given location in the program, we
represent the Read-Written information as a collection of four sets RW, R,
W, and N. The set RW (resp. R, W, N) is the set of all variables for which
there exists a possible flow of control from the procedure entry to the current
location along which some part of the variable may be initially read and
later overwritten (resp. only read, only overwritten, not accessed).
Now, a given variable can belong to one or many of these sets! Naturally, the
sets are computed following the direction of the Flow Graph arrows, because
all sets have a simple initial value on the entry block, whereas the values of
the sets on the exit block is exactly the desired result. At any location, the
sets that we would naturally use, “Read” and “Written”, are nothing but
shortcuts defined as

Read = R ∪ RW

Written = W ∪ RW

Notice also that the set of all variables whose input value is completely over-
written by a piece of code B, known as the Kill set, can be defined as:

Kill = Written \ (R ∪ N)

Figure 2.7 gives the general data flow equations that specify Read-Written
analysis. The first four equations are straightforward: they say that there
exists a flow of control from the procedure entry to B’s entry along which
a variable is “rw”, “r”, “w”, or “n” if there exists at least one such flow of
control from the procedure entry to the exit of some predecessor block Pi.
The last four equations combine the incoming sets with the sets RW(B),
R(B), W(B), and N(B), which hold local, context-independent information
about the block B. For example a variable is in RW(B) if its value when
entering B may have been at least partly read and overwritten when reaching
the exit of B. Let us read the equation that gives OutR(B): a variable is
“only read” from the procedure entry to the exit of B if it is only read till the
entry of B and then it is only read or not accessed inside B, or else if it is not
accessed till the entry of B and only read inside B. The next equation, that
gives OutW(B) says that a variable is “only overwritten” from the procedure
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...

B

...

P1 P2 Pn

InRW(B) =
⋃
i

InRW(Pi)

InR(B) =
⋃
i

InR(Pi)

InW(B) =
⋃
i

InW(Pi)

InN(B) =
⋃
i

InN(Pi)

OutRW(B) = InRW(B) ∪ (InN(B) ∩ RW(B)) ∪ (InR(B) ∩ (RW(B) ∪W(B)))

OutR(B) = (InR(B) ∩ (R(B) ∪N(B))) ∪ (inN(B) ∩ R(B))

OutW(B) = InW(B) ∪ (InN(B) ∩W(B))

OutN(B) = InN(B) ∩N(B)

Figure 2.7: General data flow equations for Read-Written analysis

entry to the exit of B if it is “only overwritten” on some control path till
the entry of B (and what happens in B doesn’t matter because the initial
value is lost anyway), or else if it is not accessed till the entry of B and only
overwritten inside B.

Naturally, in the general case where the Flow Graph is cyclic, resolution
of the data flow equations is iterative. The initial situation sets every In
and Out set to ∅, except for the OutN set of the entry block, which must
contain all variables in the current scope. This represents the initial step of
any execution of the procedure: every variable is brand new, neither read nor
written yet. On the other hand when iterative resolution reaches the fixed
point, the exit block contains the desired result, whihc is the effect of the
procedure on each of its arguments.

It is very easy to check that after each iterative sweep on the flow graph,
all sets strictly grow. Moreover, the sets can have a finite number of values.
Using the above lemma, this ensures that the iterative process terminates.

Let us show now how structured flow graph can improve efficiency. Con-
sider for instance a structured loop (figure 2.8), and let’s see how the general
data flow equations can be specialized to this situation. Similar specializa-
tion work for conditionals and other structured patterns. The fixed point
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can be solved statically and the specialized equations need no fixpoint any
more. Consider first the equations for the InN and OutN sets. The general
data flow equations tell us that

InN(B1) = InN(B) ∪OutN(B1)

and
OutN(B1) = InN(B1) ∩ N(B1)

from which we easily find the fixpoint equation:

InN(B1) = InN(B) ∪ (InN(B1) ∩ N(B1))

The set InN(B) is fixed here, and the set N(B1) is constant during all the
resolution. InN(B1) is initialized to ∅, and therefore the fixed point solution
is

InN(B1) = InN(B)

Let’s consider now the InW and OutW sets. The general data flow equations
give:

InW(B1) = InW(B) ∪OutW(B1)

and
OutW(B1) = InW(B1) ∪ (InN(B1) ∩W(B1))

Again InW(B), W(B1) are constants, and we can use the value of InN(B1)
we found above. Therefore the fixed point is obvious:

OutW(B1) = InW(B) ∪ (InN(B) ∩W(B1))

Similar reasoning leads to the specialized rules on figure 2.8, and one can
check that no more fixed point resolution is needed, and thus resolution is
faster.

To terminate this section, let us show how the use of bitsets can simplify
the whole implementation. Obviously, all sets InRW, OutRW, RW, etc can
be represented as bitsets, as mentioned in section 2.3.1. Classical set oper-
ations ∪ and ∩ are implemented as the classical bitwise-or and bitwise-and
operations of c or java. We can even use this to ease the technical task
of translating the Read-Written signature of a procedure P, from the local
name space of P to the name space of the calling procedure CP. This is of
course essential to the bottom-up Read-Written analysis on the Call Graph.
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B → B1

InRW(B1) = InRW(B) ∪ (InR(B) ∩ (RW(B1) ∪W(B1)))
∪ (InN(B) ∩ (RW(B1) ∪ (R(B1) ∩W(B1))))

InR(B1) = InR(B) ∪ (InN(B) ∩ R(B1))

InW(B1) = InW(B) ∪ (InN(B) ∩W(B1))

InN(B1) = InN(B)

OutRW(B) = OutRW(B1) = InRW(B1)

OutR(B) = OutR(B1) = (InR(B) ∩ (R(B1) ∪N(B1))) ∪ (inN(B) ∩ R(B1))

OutW(B) = OutW(B1) = InW(B1)

OutN(B) = OutN(B1) = InN(B) ∩N(B1)

Figure 2.8: Structured loop data flow equations for Read-Written analysis

The Read-Written signature of P is written in P’s local name space. There
is a convention that assigns each variable of P to one “zone”, i.e. to one
index in the bitsets. In the calling subroutine CP, actual parameters have
different names than formal parameters of P, and therefore the Read-Written
signature SP of P must be translated into SCP, so that it uses the zone num-
ber conventions of CP. This is done by multiplying SP by a fixed matrix of
booleans, which is a constant characteristic of this particular call site, and
which we call the translation matrix. For example, suppose P actually has
three formal parameters, plus two global parameters in a COMMON block /C1/.
Suppose they have received zone numbers 1 to 3 and 4 to 5 respectively.
On the calling site, P is called with actual parameters that correspond to CP

zones 4, 2 and 5 respectively, and the COMMON block /C1/ was split differently,
as a single array whose zone is numbered 6. The translation matrix of this
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call to P inside CP is thus:

TCP←P =



. . . . .

. 1 . . .

. . . . .
1 . . . .
. . 1 . .
. . . 1 1


Suppose that the RP effect of P on its arguments is that arguments 1 and 2
and the second variable in the common are possibly partly read (bitvector
(. 1 1 . 1)), then the effect RCP of this call of P inside CP is obtained simply
by:

RCP = TCP←P.RP =



. . . . .

. 1 . . .

. . . . .
1 . . . .
. . 1 . .
. . . 1 1


×


.
1
1
.
1

 =



.
1
.
.
1
1


Which can be implemented in a few machine operations.

2.4 Some classical, practical, difficulties

2.4.1 Arrays

The value of an array index generally isn’t known at run time, except when it
is an immediate constant. In general, it is an expression, often depending on
the index of surrounding loops, and involving other variables. The question
whether one array reference at one instruction instance is identical to another
reference at another instruction instance is probably undecidable fro one
thing, and in practice problems arise much before that: for example, the
array indices may depend on a variable whose value we didn’t care to analyze.
In other words, we cannot hope to manipulate arrays as if they were just a
collection of isolated scalar variables.

Therefore most static analysis will have to make conservative approxima-
tions for arrays. This problem has received a lot of attention, for instance
in [15, 14, 44]. The key to these approximations is to choose which “regions”
of the arrays the analyzer will be able to handle.
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• One extreme is to consider all cells of the array are equivalent. In
other words, one never knows for sure if one reference to an array
overlaps in memory or not, with another reference to the same array.
All information on one array cell is immediately diluted to all array
cells, leading to a great deal of “blurring”. Approximations are thus
very conservative, and very little can be known for sure on the array.
On the other hand the analysis requires very little space.

• At the other extreme, one could consider each array cell as a sepa-
rate scalar variable, for which information must be built individually.
This would be extremely expensive in memory space during analysis,
but no approximation would be necessary. However, this extreme is
impossible, because array dimensions are often unknown at static anal-
ysis time, and it is not always possible to compute the value of array
indices at any instruction instance.

In practice, we look for a compromise between these extremes. This is a
matter of taste, and depends on the way the arrays are referenced to by the
program. Again, “syntax gives hints!”. Existing accesses to arrays follow a
certain pattern, and the array regions must be able to capture this pattern.
Conversely when regenerating pieces of program, the chosen array regions
must be easily manipulated by the program’s language.

Here are some popular choices: Consider a two-dimensional array A: When
indices of A are linear functions of surrounding loop counters, this indicates
that array regions could be regular patterns in the array. When arrays are
used in loops whose bounds depend on surrounding loop indexes, then the
array regions could be (convex) polyhedra (or “polytopes”) that define “parts”
of A’s index space. This can be a rectangle, or a triangle... Researchers also
think of a combination of a regular pattern somehow “clipped” by a polytope,
or of a given polytope regularly repeated following a pattern.

One advantage of the above regions is that intersection needs no approxi-
mation: the intersection of two regular patterns is a regular pattern, and the
intersection on two convex polyhedra is a convex polyhedron. Unfortunately,
some static analyses occasionaly require the union of two such regions, and
this is not defined exactly. For example the union of two convex polyhedra
is not convex any more. Usually, the conservative approximation requires to
take the convex envelope.

Let us mention last the compromise that is made in partita and tape-
nade: we only capture array overlap, due to EQUIVALENCE, COMMON blocks or
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array parameter passing (cf figure 2.2). In practice, most arrays are consid-
ered atomic, with only one region, except for overlapping arrays which may
have two or three. We also investigated creating special regions for array
cells accessed explicitly with immediate indices, like in A(2) = x*A(1). In
our opinion, the partial failure of HPF-fortran, which was specialized for
systematic regular access to arrays, shows that real applications have far
more complex array indexes, that cannot be captured by the array regions
above. Since this was not our main research focus, we remained with very
coarse-grain regions that only distinguish overlapping arrays.

2.4.2 Aliases

Suppose a subroutine has many arguments (i.e. formal parameters, globals,
etc). At each call site, each of these formal parameters is given an actual
parameter. Aliasing happens when the same actual parameter is given to two
different formal parameters, and one of these two formal parameters is over-
written by the subroutine. More generally, aliasing happens when two actual
parameters overlap in memory, and at least one may be overwritten. Note
that this aliasing does not conform to the fortran standard [38, section
5.7.2 page 91], but is often found in real codes.

Aliasing makes many static analyses and transformations fail, because
they assume there is no aliasing. For example, if the called subroutine is

subroutine COPYINTO(A,B,n)

integer n,i

real A,B

do i=1,n

B(i) = A(i)

enddo
end

a parallelizer will probably declare the loop as PARALLEL. However, if the call
is

call COPYINTO(T(150),T(100),200)

then A and B actually overlap, and since the parallell loop can be executed
in any order, the result is unpredictable and the program is wrong.
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2.4.3 Pointers

Pointers add an extra level of uncertainly, about which variable is accessed
by a given reference. Statically, one cannot tell where a pointer points to.
Therefore, the conservative approximation “blurs” the information available
for each possible target of the pointer.

This can be improved partly if one knows the possible targets of a pointer
for one given instruction instance. This is the purpose of pointer analysis,
implemented for example in partita. This analysis improves the situation
when the set of targets is smaller than the set of all existing variables, because
fewer variables will get a “blurred” piece of information.

Pointer analysis is similar to dependency analysis (cf section 4.4.1). It
propagates, for each pointer, the set of its possible targets and updates this
set each time an instruction modifies a pointer. Yet, this anlaysis is expensive
for a limited benefit: it is very often that the possible targets are very many.
We think that probably, the best way to cope for that is to ask for user
knowledge of the application, with directives. Notice this is similar to what
fortran95 does when requiring the TARGET attribute be put on possible
array targets.
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Chapter 3

Automatic Parallelization:
Techniques, Tools, and
Applications

This chapter is devoted to Program Parallelization, which is just one par-
ticular static analysis and transformation of programs. We emphasize the
fundamental concepts that are common to the numerous flavors of paral-
lelization. This chapter summarizes research that we made in the 1990’s,
when we developped the partita semi-automatic parallelization tool [28],
which was incorporated into the commercial environment foresys [46]. In
this chapter, our main goal if to describe the influence of the techniques for
representing and analyzing imperative programs. Parallelization tools are
a proeminent application domain for these techniques, and provide ample
justification for them. We shall especially focus on

• representing programs by a Call Graph and Flow Graphs (in section 3.1),

• extracting Data Flow information (in section 3.2),

• using Data Dependences to optimize scheduling of instructions (in sec-
tion 3.3).

Specifically for parallelization, these techniques were implemented in the
partita tool for fortran parallelization, and we describe two main con-
crete applications:

• the initial application to parallelization of loop nests (in section 3.4),
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• a more recent SPMD parallelization of mesh-based applications [29, 31]
(in section 3.5).

Many other program transformations can take advantage of these techniques.
The following chapter 4 describes how they can be extended and applied to
Automatic Differentiation, with what benefits.

3.1 Internal Representation of Programs

The internal representation of programs has a strong impact on the quality
of the static analyses that can be run on them. It also impacts the possible
transformations of these programs. An example for this is Automatic Differ-
entiation in “reverse” mode, described later in section 4.3. Possible internal
representation are discussed in section 2.2 and in the classics of compiler the-
ory, and in particular in [2]. Of course everything starts with a parsing step,
that builds an abstract syntax tree for the whole program. But this must not
be the final internal representation. The most appropriate program repre-
sentation for static analyses and transformations appears to be composed of
the following three nested levels, from the finest to the coarsest:

• The individual, “atomic” instructions are represented as abstract syn-
tax trees.

• The Flow Graphs represent the scheduling of instructions inside each
given procedure. Each instruction has access to a symbol table holding
the static properties of variables and other symbols.

• The Call Graph represents the procedures that compose the program.

The Call Graph captures the structure of the program as a set of proce-
dures that call each other. Each procedure is a node in the Call Graph, and
there is an arrow from procedure A to B if A contains a call to B. In object-
oriented languages, or when pointers to functions are used, it is sometimes
unclear statically whether A calls B. In this case, there is an arrow from A to
B if A might call B. The Call Graph can contain cycles, which indicate recur-
sion. There is generally one particular node representing the main procedure.
There may be several Call Graphs involved in an analysis, for example when
the program uses a separate library.
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After internal representation is built and analyzed, transformation tools
must build a new (parallelized, differentiated, etc) program. As shown on
figure 3.1, we naturally build it in internal form, then go back through each
step that led to the internal representation, to come up with a result in the
natural, textual form. Downwards arrows on figure 3.1 show the successive

Program Text

Abstract Syntax Tree

Flow Graph

Results of
Static analyses

Dependence Graph

new
Flow Graph

new
Abstract Syntax Tree

new
Program Text

Figure 3.1: Analysis and Regeneration pattern

abstraction levels, from program text to syntax tree and then to Call Graph of
Flow Graphs. At each level downwards, representation is more abstract, and
probably also more language-independent. Then static analyses are run. For
parallelization, their principal output is the dependence graph. The results
of analyses are then used to build a new program in internal form. Upwards
arrows show the final steps that lead to the new textual program. Notice the
extra rightwards arrows: at each level, some information that was abstracted
away on the way down may be reused on the way up.
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3.2 Static Data Flow Analyses for a better

Parallelization

Parallelization needs precise data flow analyses. Anticipating on section 3.3,
a good parallelization relies on a good data dependence analysis, which in
turn requires precise knowledge of the values involved in array indices.

As shown in section 2.1, conservative over-approximations must be made
at some point, and they strongly impact the rest of the analysis particularly
in the case of arrays. One can use array regions (cf section 2.4.1). Notice
however that not all applications access arrays with regular indexes, and
therefore other algorithmic developments may get a higher priority. Actu-
ally, it is often enough to consider a coarse over-approximation, in which
each whole array is considered atomic, therefore generalizing the data flow
properties of each array cell to the whole array.

For parallelization, as well as for most program transformations, the fol-
lowing static analyses prove particularly useful for the ultimate goal of a
minimal data dependence graph.

• A pointer analysis builds, for each place in the program, the list of a
pointer’s possible destinations. This helps reduce the number of de-
pendences.

• Constraints on the value of variables involved in array indexes help
prove independence. These constraints may be detected automatically,
or they may be provided by the end-user through the use of directives.
For instance, such a constraint can be the lower and upper bounds of
the value of variables. The variable bounds analysis propagates these
bounds through the program. For other program transformations (e.g.
Partial Evaluation), this anaysis is crucial and one needs to propagate
more precise information than just variable bounds.

• Parts of the program that will never be reached will never create de-
pendences. For example, variable bounds can tell us that some tests
never return a given value. We shall call this reach analysis.

• Some arguments of a procedure are not read or not overwritten by the
procedure. This may therefore remove data dependences to and from
each call. For each procedure, this information is computed by the
Read-Written analysis.
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• When an array is overwritten at some location, it is important to know
whether all cells of the array are overwritten, or only some cells. We
call this killed arrays analysis. More generally, it would be good to
know which “part” of the array is overwritten. This is the purpose of
the array region analysis [14], not available in partita.

• Finding induction variables helps. Those are variables that are linear
functions of the normalized loop index. When an induction variable
appears in an array index, the data dependence analysis is more accu-
rate.

These analyses often depend on one another. Figure 3.2 shows the relative
order between those implemented in partita. Sometimes, different analyses
may benefit circularly from each other. Dotted arrows on figure 3.2 illustrate
just some of these circularities. We may ignore these circularities, and there-
fore loose some precision in the results. Alternately, we may run the analyses
many times, until some fixpoint is reached, but this may be costly.

3.3 Parallelization of Programs, using the De-

pendence Graph

This section presents our definition of parallelization, organized around the
central notion of Dependence Graph. After giving the motivation for Data
Dependences, we give the structure of the Dependence Graph, whose arrows
are the data dependences. We discuss some aspects of the effective construc-
tion of the dependence graph, which takes profit of the static analyses from
previous section 3.2. We then show how the dependence graph is used for
parallelization of loop nests. The next two sections 3.4 and 3.5 show con-
crete applications inside parallelization tools that we developped. The first is
fine-grain parallelization of loop nests, and the second is coarse-grain SPMD
parallelization of mesh-based computations.

3.3.1 Execution Order and Data Dependences

Any imperative programming language explicitly defines its execution or-
der. The execution order of a program is the order in which all operations
specified in the program text actually take place at run time. This order is
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Figure 3.2: Ordering of static data flow analyses in partita
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fundamental, as the programmer relies on it to implement algorithms. For
example in the following program fragment:

X = X * 4

SQ = SQRT(X)

the programmer assumes that instructions are executed in sequence. This
assumption is granted by the definition of the language (here the fortran
standard). The program results would probably be different if this execution
order was modified, because the value read for variable X would be different.

Notice however that the execution order is generally not specified com-
pletely. The definition of the language may leave some parts of it undefined.
Let us call the order specified by the language definition the language order.
The compiler is then free to choose any execution order compatible with the
language order. For example, still in fortran, the evaluation order of the
actual parameters of a procedure call, or of the operands of an arithmetic
operation, is not specified. This can sometimes lead to nondeterminism. For
example the following program fragment:

J = I + INCR(I)

where function INCR increments and returns its argument, is not deterministic
and is therefore illegal, because its result depends on the order in which
operands of + are evaluated.

Supercomputers offer improved performances because some operations
can be done concurrently. To take profit of this architecture, parallel lan-
guages define a weaker, more open language order, that allows the compiler to
select a compatible execution order which is the most efficient on the target
parallel machine. Figure 3.3 shows the language orders between the instances
of instructions in a loop, defined by sequential, vectorial, and parallel loops.
Of course, such a parallel program must be “correct”, whatever it means. If
there is no reference specification available, we must at least check that it
is deterministic i.e. the result does not depend on the particular execution
order. This is a more convincing case of nondeterminism because it depends
not only on the choices made by the compiler, but also on the run-time state
of the “parallel processors”, which may very well change at next execution
for a number of reasons.

Correctness is clearer in the case of parallelization, because we have an
original sequential program which serves as a reference. Let us assume that
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Figure 3.3: Language Order of different kinds of loops

parallelization does not change the operations done by the program, but only
their language order. Parallelization transforms a deterministic sequential
program P1 (in language L1) into a parallel program P2 (in “target” language
L2). Parallelization is correct if for any execution order compatible with the
L2 language order of P2, the result is the same as the result of P1.

Now how could this result be different? Remember that we assume that
the very same operations are done, operating on the same variables. Only
their relative order may change. The result can be different only when some
variables contain different values when they are read, and the only reason
for that is that the execution order between reads and writes of the same
memory cell has changed. This order due to reads and writes is called data
dependences. In other words, data dependences are the subset of the language
order where the origin and destination instructions contain at least one pair
of depending read-write operations. Thus, parallelization is correct if data
dependences are respected in any execution order of the parallelized program,
or equivalently if data dependences are enforced by the language order of the
parallelized program. As for vocabulary, data dependences fall into three
categories (see figure 3.4 for how we draw them):

• true or flow dependences go from a write of a value into a variable to
a subsequent read that may return this value.
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• anti dependences go from a read of a value from a variable to a subse-
quent write that may overwrite this value.

• output dependences go from a write of a value into a variable to an-
other subsequent write that may overwrite this value.

flow: anti: output:
O

value:
V

control:
C

Figure 3.4: Graphical notation for data dependences

To summarize: from program P1 we can extract the data dependences, that
form a subset of the L1 language order of P1, and parallelization to P2 is
correct if these data dependences also form a subset of the L2 language order
of P2. Figure 3.5 illustrates this: an original program (sketched on the left)
which is a loop, might be modified into a fully parallel loop (middle), or into
a parallel loop followed by a sequential loop (right). Thin arrows indicate
the respective language orders. Thick arrows indicate data dependences,
probably found by data dependence analysis on the original program. It turns
out that transformation into the middle program is invalid, because the new
language order does not enforce all data dependences. On the other hand,
the program on the right preserves all data dependences, and is therefore
valid.

Figure 3.5: An invalid and a valid parallelization of a loop
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Data dependences are constraints that forbid some (incorrect) transfor-
mations. The fewer data dependences, the better. But extraction of data
dependences is a static analysis, undecidable in general. Sometimes, con-
servative assumptions must be made, that lead to unnecessary “false” data
dependences. False dependences are a nuisance and should be avoided when-
ever possible. This explains why good static analyses are essential to a good
data dependence analysis.

3.3.2 Memory management and communications

The previous section only deals with scheduling of operations. But most
parallel environments not only distribute operations on many processors,
but also distribute memory. Coherence between distributed memory spaces
must be maintained, and data dependences are also the fundamental tool for
this. Memory issues also arise in monoprocessor architectures, for example
to improve data locality and cache management. Here also data dependences
are fundamental.

Suppose again that we start from a given sequential program which serves
as a reference, and that we want to check correctness of one parallelized
version. We must check that every value read from a variable is the same
in the two versions. If the value was written into one distributed piece of
the memory, and the processor that does the read sees another piece of the
memory, some communication must take place. Most often, to avoid repeated
communication of the same value, the second piece of memory holds a local
copy of the variable, which is updated by this communication.

In other words for each flow dependence, if the origin write and the
destination read affect different pieces of the distributed memory, a commu-
nication must be inserted to propagate the written value towards the mem-
ory from where it will be read. Conversely, anti and output dependences
between different pieces of memory can be neglected, because memory distri-
bution has indeed created copies of variables, so that these so-called artificial
dependences just vanish.

When evaluating the cost of a given memory distribution, flow data de-
pendences indicate the amount of communication that this distribution re-
quires. Section 3.5 describes an application of this strategy to the case of
SPMD parallelization. Similarly, when splitting a piece of program into a
number of parallel tasks, the flow dependences between operations sent to
different tasks indicate communications and synchronizations between tasks.
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3.3.3 The structure of the Dependence Graph

We said Data Dependences define a partial order between the program’s run-
time operations. Since we are here talking about static analyses (i.e. compile-
time tools), we cannot list the exact set of run-time operations. Therefore
we are obliged to consider static operations, i.e. the textual program’s op-
erations. When a textual operation is enclosed in control structures such as
loops or tests, it represents all its run-time instances, which may be many,
or none... The nodes of our Dependence Graph are the static operations,
and not the run-time operations. Data dependences naturally project on
static operations, and this induces the arrows of the Dependence Graph. But
now this graph may be cyclic, because static operations may represent many
run-time operations, folded into one single node. Consider for example two
instructions A and B in a loop, A textually before B. Consider run-time in-
stances ai of A at loop iteration i, and bj of B at loop iteration j. If i > j,
bj is executed before ai. If there is a data dependence from bj to ai, it in-
duces an arrow in the Dependence Graph, from node B to node A. Another
consequence is that dependences in the Dependence Graph are now equipped
with a distance, that represents the relation between the iterations of the
enclosing loops, between the origin and destination run-time operations. A
distance is a vector, with one element per common enclosing loop, topmost
first. On the above example, the distance is (i − j). Each element of this
vector is either an integer, or some set of integers, such as an interval.

According to our needs, we may choose various granularities of the nodes
of the Dependence Graph. For example, we may create one static operation
for each atomic instruction in the program’s text. Alternatively in partita,
we want to be able to split instructions to extract more parallelism. Therefore
we create one static operation for each textual reference to a variable and
one for each arithmetic operation. In that case, the language order between
operands and elementary operations introduces additional dependences, that
we call value dependences. Finally, and because controlling instructions
must be executed before controlled instructions, we introduce the control
dependences, that go from each loop counter or test result, to each operation
that actually depends on it. See figure 3.4 for how we draw them.

Figure 3.6 shows the Dependence Graph for the original loop of figure 3.5.
Here we chose a granularity of one node per atomic instruction, and therefore
there are no value dependences. There are control dependences from the
node that represents the loop counter to each node in the loop. The other
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data dependences are equipped with a distance. As one can expect, the De-
pendence Graph has lost some precision from the original data dependences,
in the sense that it implicitly adds new, false, data dependences. Most paral-
lelization techniques can live with this problem. Otherwise, the dependence
distance must probably be refined.

C
C
C

C
C

C
(0)

(2)
(1)(1)

Figure 3.6: A simple loop’s Dependence Graph

3.3.4 Effective construction of the Dependence Graph

Given two static operations, we want to detect whether there is a memory
cell which is accessed by both operations, with one access being a write. This
question easily boils down to the following: “given two array references, can
they access the same memory cell, and at which conditions?” This question
has motivated a great deal of research, and is still a hot problem. However a
general strategy is commonly accepted, and we implemented it in partita.
Consider for example the following fortran program:
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subroutine test(T,g,k0,m,n)

integer i,j,k,k0,m,n,g,T

dimension T(-20:1000,300)

if (g.ge.7) then
k = k0

do i=0,n

do j=1,m,2

T(j,k) = ...

... = ... T(j+g,k+6) ...

enddo
k = k - 3

enddo
endif
end

Let us look for the dependences from the static write of array T to the static
read of T, i.e. from any write of T to any read of T, possibly after a number
of iterations of the enclosing loops. If both operations access the same mem-
ory cell, this implies that the array indices are equal. On the example, this
writes:

j = j′ +g′

k = k′ +6

where the ′ sign distinguishes the values at the destination time (iteration
context) from the values at origin time. Now we take profit of the static anal-
yses done beforehand. In particular, detection of induction variables tells us
that j and k are linearly related to the enclosing loop counters, lc1 for the
outer loop and lc2 for the inner loop, by:

j = 2*lc2 +1

k = -3*lc1 +k0

Loop counters are always positive by definition. Therefore, the two initial
equations become respectively:

-3*lc1 +3*lc′1 = 6

2*lc2 -2*lc′2 -g′ = 0

The bounds of the enclosing loops also imply constraints on lc1 and lc2, and
we also know that lc′1 >= lc1 because origin time must be before destination
time. Read-Written analysis has shown that m, n, and g are loop constants,
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and variable bounds analysis tells us that inside the loop, we always have
g >= 7. This constraint may be helpful for our problem. We end up with
the following set of linear (in)equations:

lc1 lc′1 lc2 lc′2 m n g

−3 3 = 6
2 −2 −1 = 0

1 −1 ≤ 0
1 ≥ 0

1 −1 ≤ 0
1 ≥ 0

2 −1 ≤ −1
1 ≥ 0

2 −1 ≤ −1
1 ≥ 0

−1 1 ≥ 0
1 ≥ 7

There are many techniques to solve this system, with different tradeoffs be-
tween quickness and precision. The simplest are the gcd and separability test,
Among the most refined are the Omega test [43], or parametric integer pro-
gramming [41, 42] or simplexes [48]. We used Janus, a library developped
by Jean-Claude Sogno [47]. It uses classical methods, such as the gcd test
or the Fourier-Motzkin elimination. The tactiques that decide when these
methods should be applied are internal to Janus, and external users such
as partita need not worry about these choices. This is natural because
these choices mostly depend on the actual linear system. On this example,
Janus finds that this system has integer solutions, and therefore there exists
a dependence. Moreover, it returns necessary constraints on the dependance
distance vector:

2 ≤ lc′1−lc1 ≤ 2
−∞ < lc′2−lc2 ≤ −4

so that the distance vector writes, with topmost iteration first: (2, ]−∞,−4])
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3.4 Application 1: Loop Nests Parallelization

with PARTITA

This section describes the actual use of the Dependence Graph in the par-
tita tool, which is the fine-grain loop parallelizer component of the commer-
cial environment foresys. The people who contributed to the development
of partita are Laurent Angeli, Didier Austry, Bernard Dion, Laurent Hill,
Nicole Rostaing, Jean-Claude Sogno, Guillaume Viland, Dominique Vilard,
and myself. Development of partita was also supported by several Euro-
pean projects, the last one about extension to OpenMP [1].

Based on the objectives stated in section 3.4.1, we first define a paralleliza-
tion tactic for a single loop, in section 3.4.2, then we define in section 3.4.3 a
general representation for dependences inside arbitrary loop nests, and show
in section 3.4.4 how the loops transformations we are targetting at, express
nicely on this representation. These tansformations are then combined into
a tactic, and its result is shown on examples in section 3.4.5. We terminate
with a glimpse of partita’s user interface in section 3.4.6.

3.4.1 Objectives of the PARTITA tool

The goal of partita is to transform fortran77 programs into equivalent
programs in various parallel “dialects” of fortran, such as hpf, for-
tran95, OpenMP, etc. partita must extract as much parallelism as pos-
sible from the loops found in real programs. Therefore, we don’t want to put
restrictions on the style of the input program. Also partita can decide to
split expressions when they contain a sizeable parallel part. Also, we want
to apply most classical program improvements, even when they are not di-
rectly related to parallelization. All these transformation have in common
the fact that they are best expressed on the Dependence Graph. Therefore,
among the jungle of parallelizing program transformations, here are the loop
transformations that partita targets at:

• dead code elimination: removing code that is either never reached,
or which has no influence on the program’s outputs.

• invariant code motion: taking code out of loops when it executes
identically at each iteration.
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• variable expansion: expanding local variables of a loop into arrays,
therefore removing some anti-dependences and allowing for more vec-
torization.

• loop distribution, fission, fusion: splitting or merging loops on the
same iteration domain, to maximize the size of those resulting loops
which turn out to be parallel or vectorial.

• reduction detection: finding reduction operations, such as global
sums or products of some array’s elements, in order to use a parallel
reduction primitive.

• loop rotation: peeling off some instructions from the first and last
iterations of a loop, in order to reorder its instructions and find more
loop-local variables.

• loop exchange: exchanging two nested loops, in order to push the
“parallel” level inwards, or to pull it outwards, according to the target
parallel language.

There are more sophisticated loop transformations, also based on the De-
pendence Graph, that take into account several levels of nested loops. These
are

• loop unimodular transformations: modifying the traversal order of
the iteration domain of nested loops, to exhibit new parallel dimensions.

• loop sectioning, strip mining, tiling: changing a single loop into
two (possibly nested) loops, one of which is parallel.

These sophisticated transformations did not fit well in the framework we
have designed, so we chose to subcontract them to another tool, bouclette
developped by the lip laboratory in Lyon [7]. An interface was built to couple
the tools, so that partita could benefit from the transformations provided
by bouclette. On the large basis of application programs that partita
was used on, experience shows that loops that can benefit from bouclette
are very rare, but for these loops the improvement is obvious. We shall not
consider these sophisticated transformations in the sequel.
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3.4.2 Parallelization of a single loop using Acyclic Con-
densation

To detect whether a given loop is in fact parallel, or vectorial, or not (we
shall say sequential), one just has to look at the Dependence Graph. The
rules are simple:

• If the Dependence Graph for the loop contains a cycle, then the loop
is not parallel. However there are interesting special cases:

– If the cycle is only due to a variable which, at each step, is modi-
fied by adding or multiplying to its previous value, then the cycle
corresponds to a reduction, which can be done efficiently on su-
percomputers.

– If the cycle is due to a variable which is overwritten at each iter-
ation of the loop, it may be profitable to perform variable ex-
pansion or equivalently localization. The cost is to introduce
an array where there was a scalar. The benefit is to remove some
anti and output dependences, which may break the cycle.

– Otherwise the loop must remain sequential.

• If there is no cycle in the loop’s Dependence Graph, then the loop can
probably be rewritten efficiently for the target architecture:

– If the instructions are simple enough (e.g. no procedure calls,
array indices always in the same order,...) then it can be rewritten
vith vectorial syntax (fortran95 so-called array notation).

– If all flow dependences in the loop’s Dependence Graph have dis-
tance (0), then it can be rewritten as a parallel loop.

– Otherwise, unfortunately the loop must remain sequential.

Furthermore, it is well known that any loop can be split if there is no de-
pendence cycle between the two split parts of the loop. This leads us to a
general tactic for parallelization of a given loop, which is called acyclic con-
densation. It begins building the Dependence Graph between all the static
operations in the loop. This means we choose a fine granularity, with ev-
ery single variable reference and arithmetic operation yielding one node in
the Dependence Graph. Then these nodes are gathered into groups. Firstly
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all nodes involved in a cycle must go to the same group, which will be la-
belled as sequential, or when appropriate as reduction. The other nodes
go into one singleton group each, which is labelled as vectorial, parallel,
or sequential, following the rules above. Each group represents a separate
new loop (or a vectorial instruction) in the future parallelized program. By
construction, the dependences between groups are now acyclic, and define
the relative order of these future loops.

Then grouping (condensation) goes on, to further reduce the number
of groups. This will reduce the cost of loop overhead and the number of
temporary variables due to split instructions. But there are opposite con-
straints: (a) two groups can be merged only when there is no third group
caught between them in the Dependence Graph, and (b) when two groups
with different labels are merged, the resulting label is of course the worst,
e.g sequential merged with vectorial gives sequential. To implement this
tradeoff, partita defines an evaluation of the cost of each group, based on
atomic costs of each operation and loop construct. We choose among possi-
bilities according to their cost.

DO  i

S  =  S  + Exp1

Instr2

Instr3 Exp3

Instr4

Instr5

ENDDO

(2)
(2)

(1)

(4)

DO  i

S  =  S  + Exp1

Instr2

Instr3 Exp3

Instr4

Instr5

ENDDO

(1)

(2)

([0,4])

(2)
Reduction

Sequential

Parallel

DO  i
Instr2
tmp(i) = Exp3

ENDDO

PARALLEL  DO  i
Instr3...tmp(i)...
Instr4
Instr5

END PARALLEL  DO

S  =  S  + SUM(Exp1)

Figure 3.7: Acyclic Condensation on a single loop

Figure 3.7 illustrates this tactic. On the left is the original loop with
its Dependence Graph. Dependence distances are shown only when different
from (0). For readability, we didn’t push granularity to its finest: only a
couple of expressions are shown split, therefore introducing a couple of value
dependences. The boxes below show the original acyclic condensation. As
condensation goes on, we reach the situation shown in the middle, where the
parallel parts have been merged. The cost of introducing a temporary array
“tmp” for the third instruction has been judged acceptable, compared to the
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benefit of keeping the left half of the instruction parallel. The right part of
the figure sketches what the resulting parallelized program might look like.

3.4.3 Representing Nested Loops with Nested Groups

In the above we supposed there was only one loop, but in general loops can
be nested. To cope for that, we introduce a tree structure for groups, that we
call the group tree. The leaves of this tree are simple instructions from the
original procedure, possibly split. Each node of this tree is a group, repre-
senting the code for the sons of this node, wrapped into a new loop structure.
The type of this loop (sequential, parallel, vectorial, etc) is determined by
the type of the group. In short the group tree summarizes the structure of
nested loops. For example, figure 3.8 shows the group tree of the small code
fragment on the left, that features various types of loops, nested. The leaves
are single instructions. The groups above represent an iteration of their en-
closed subgroups, of type specified by the group. When such a group derives
from a loop of the original program, it retains the iteration domain of this
original loop. The top group does not iterate: it mainly gathers the toplevel
of the procedure. The Group Tree is a convenient structure for loop trans-

Top Group

Vectorial
Loop Group

Instr

Sequential
Loop Group

Instr
Parallel

Loop Group
Sequential

Loop Group

Instr Instr Instr

Test(i)

C(i,j) = B(i,j) B(i,j) = B(i-1,j-1) + B(i,j) B(i,j) = B(i,j-1) + B(i,j)

B(1,2:M) = 0

DO i=1,N
IF (Test(i)) THEN

PARALLEL DO j=2,M
C(i,j) = B(i,j)
B(i,j) = B(i-1,j-1) + B(i,j)

END DO
ELSE

DO j=2,M
B(i,j) = B(i,j-1) + B(i,j)

END DO
END IF

END DO
B(1,2:M) = 0

Figure 3.8: The Group Tree of a small code fragment

formations. All the loop transformations implemented in partita amount
to simple modifications on it. This allows us to concentrate on the essence of
the transformation, forgetting all the syntactic details that would come up
if transforming the program itself. Transformations of the Group Tree are
driven by Data Dependences between sub-groups of a given group. Such a
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group dependence between two groups specifies their relative order with re-
spect to the parent group. Its distance is the iteration distance with respect
to the parent group loop. Group dependences are obtained by simple projec-
tion of the data dependences. Here are the rules governing this projection:
If two groups have different parent groups, their order is guaranteed by the
order between the parents. Therefore, a data dependence will be projected
between two groups only if these groups have the same parent group. For the
same reason, when a dependence projects on the parent group with a distance
that cannot be zero, it will not be projected between the groups underneath,
because this dependence will be respected as soon as the father group re-
spects it. Notice that a dependence of distance zero from a group to itself
is meaningless, because it is systematically respected. Formally, consider
two (possibly identical) groups g1 and g2, their ancestor groups (top-down)
Top = a0, a1, ...,an, and a dependence of distance (d1, d2, ..., dn, ...) from an
operation in some leaf of g1 to an operation in some leaf of g2. The di are
integers or integer variables ranging in an interval. The dependence will be
projected between groups g1 and g2 if

• For all i such that 0 < i < n, di is or may be equal to zero.

• Either g1 6= g2, or dn is or may be different from zero.

When it exists, the projected group dependence will receive distance dn. By
definition of the top group, for n = 0, d0 = 0. The projected dependence
retains the kind (flow, anti, output, value, or control) of the original
dependence.

Figure 3.9 shows this projection for some example group trees, for the
same data dependence of distance (0, 1). Figure 3.10 shows that the projec-
tions are quite different when the distance of the original data dependence is
(1, 0). One can see that projections vary according to the distance of depen-
dence and the configuration of the group tree. This corresponds to the idea,
expressed for example by Kennedy and Allen in [3], that each dependence
has a nesting level, such that the dependence does not exist in loops nested
deeper than this level. In other words, if the distance of a dependence sup-
poses some iteration of an outer loop, then for a fixed iteration of this outer
loop, this dependence vanishes.

When the Group Tree is modified, dependence projection must be up-
dated, which is cheap, but the Dependence Graph need not be recomputed,
which would be expensive. We believe this is the main advantage of this
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Figure 3.9: Projections of a data dependence of distance (0,1)
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Figure 3.10: Projections of a data dependence of distance (1,0)
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representation compared to other tools which repeatedly regenerate a new
program after each transformation, and analyze it again before the next
transformation.

The group tree is not executable. It has lost the information about
branches of conditionals. For parallelization analysis, this has no conse-
quence. This just keeps the data structure simple and manageable. For code
regeneration, however, this control information is necessary, and it will be
extracted from the original Flow Graph.

3.4.4 Expressing Elementary Parallelizing Transforma-
tions on Group Trees

In this section, we present some of the most representative parallelizing trans-
formations available in partita. For each of them, we show how applicability
is checked on the group tree, and how it is then actually performed on the
group tree.

Loop Distribution

Loop Distribution is probably the most classical parallelizing transforma-
tion. What we are talking about here is indeep called loop fission, because
it preserves the meaning of the program. Consider a sequential loop group
G1, such as G1 on figure 3.11. Loop distribution first finds the strongly con-
nected components of the dependence graph projected between all immediate
descendents of G1. This uses the classical Tarjan algorithm [45]. Each cycle
may be transformed into a separate sequential loop group. Other components
(not cyclic), become separate parallel loop groups. After the transformation,
the group G1 disappears and is replaced by the new sequential and parallel
groups. Then data dependences are then re-projected.

Sequential
Loop GroupG1:

Vectorial
Loop GroupInstr Instr Instr

Instr
X(i).gt.Y(i-1) X(i) = 0 Y(i) = Y(i-1) + 1

Z(i,1:n) = Y(i)

1

C
C

C

1

Sequential
Loop Group

Parallel
Loop Group

Parallel
Loop Group

Vectorial
Loop GroupInstr Instr Instr

Instr
X(i).gt.Y(i-1) Y(i) = Y(i-1) + 1 X(i) = 0

Z(i,1:n) = Y(i)

1C
1

C
CDO i=1,1000

IF (X(i).gt.Y(i-1)) THEN
X(i) = 0

ELSE
Y(i) = Y(i-1) + 1
Z(i,1:n) = Y(i)

END IF
END DO

Figure 3.11: Loop Distribution on the group tree
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Notice that a leaf Instr group can always be distributed, because since an
Instr group expresses no iteration, there is no risk of finding a dependence
cycle Distributing an Instr group means splitting one instruction into many,
using temporary intermediate storage, in a three-address code fashion. The
advantage is the possibility to exhibit parallelism , later, for just a part of
an instruction. Figure 3.12 shows a case where distribution of a Instr group,
followed by a loop distribution, exhibits a parallel part of the instruction.
Notice that the value dependence between the two final loop groups implies

DO i=10,100
A(i-2) = A(i-5) + A(i)/B(i)

END DO

Sequential
Loop Group

Instr

A(i-2) = A(i-5) + A(i)/B(i)

23

Sequential
Loop Group

Instr Instr

A(i-2) = A(i-5) + ... A(i)/B(i)

3 V

2

Sequential
Loop Group

Parallel
Loop Group

Instr Instr

A(i-2) = A(i-5) + ... A(i)/B(i)

3

V

2

Figure 3.12: Instr Distribution followed by Loop Distribution

a temporary storage, to communicate the value from a loop to the other.
The size of this storage is determined by the nesting level of the two groups.
Here, a one-dimensional array is necessary. The cost of that is taken into
account by partita when evaluating the cost of this configuration of the
group tree. A similar remark applies to the control dependence between the
final loop groups of figure 3.11.

Distribution of Natural Loops

The above loop distribution is powerful enough to work on natural loops. We
just need to introduce a new atomic operation, that we call the loop counter.
There is one loop counter for each loop. This “operation” is in charge of
giving the value of all induction variables of the loop. In particular, it gives
the value of the DO loop index. For a normal DO loop, the loop counter
immediately knows the number of iterations of the loop and all the induction
values. So far, for clarity, we did not represent this loop counter on the
figures.

Now suppose that for a given loop, loop exit is not known when the loop
starts. This is the case when a DO loop contains an exit, of for WHILE loops,
or for natural loops. This is the case on figure 3.13. We claim one should not
abandon hope of parallelization yet. The loop counter now has dependences
towards all uses of the induction variables, as usual, but also receives control
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dependences from the places where “exit” decision is taken. Therefore, loop
distribution will leave it in a sequential loop group, and instructions involved
in the dependence cycle will remain in this group. Other instructions may, as
in figure 3.13, be out of the cycle, because they are not involved in the “exit’
decision. Therefore they might be parallelized. This is just plain application
of our loop distribution on groups. Here again, the control dependences from
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Loop Group

Parallel
Loop Group

Instr

Instr Instr Instr Instr Instr Instr

Instr

i = i0

loop
counter

T(i) = T(i-1)+T(i+1)

T(i).lt.0
i = i+1 A(i) = 0 B(i) = SQRT(T(i))

i = 0
1

C C

i = i0
lc = 0

400 T(i) = T(i-1)+T(i+1)
IF (T(i).lt.0) THEN

GOTO 500
ENDIF
i = i+1
lc = lc+1
GOTO 400

500 PARALLEL DO i=i0,i0+lc-1
A(i) = 0
B(i) = SQRT(T(i))

ENDDO
A(i0+lc) = 0
i = 0

Figure 3.13: Loop Distribution applied to an arbitrary Natural Loop

the loop counter will require a temporary storage. Typically, one must store
the actual rank of the last iteration. Figure 3.13 shows the resulting program
generated by partita.

Variable Expansion and Localization

It is well known that artificial dependences (i.e. anti and output dependences)
can be removed by rewriting the program in a single-assignment fashion. This
amounts to creating new variables, to avoid variable overwriting. In particu-
lar, in loops, local variables are overwritten at the beginning of each iteration.
Variable expansion replaces the local variable by an array of variables, one
for each iteration. Equivalently, localization tells the compiler to create one
variable per parallel processor.
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Variable expansion or localization may be applied, with profit, to a vari-
able in a sequential group if cutting the artificial data dependences due to
this variable actually breaks the dependence cycle between the subgroups of
this group. This is the main condition, although minor restrictions apply.

When each iteration of the loop does not start with an overwrite of the
expansion candidate variable, partita is able to perform another transfor-
mation, loop rotation, to try to move the overwrites at the beginning of
each iteration. If this succeeds, then partita may apply variable expan-
sion. We shall not describe this in greater detail.

We talk of variable expansion rather than scalar expansion because
all the above applies also to arrays. Since partita is able to detect when
arrays are completely overwritten, it can perform array expansion or local-
ization.

When variable expansion is chosen, the effect on the group tree is to an-
notate the read and write of the variable, and the artificial data dependences
between them, as “expanded” with respect to the loop. As a consequence,
expanded dependences will not be projected at this loop level in the group
tree. Then ordinary loop distribution may be applied to the sequential loop
group again, yielding new parallel loop groups. The other effect, which is the
actual expansion or localization of the variable, will be postponed until pro-
gram regeneration time. The advantage is that, if for some reason, variable
expansion is decided not profitable, it may be undone at very low cost, sim-
ply removing the corresponding “expanded” annotations. Figure 3.14 shows
an example of variable expansion of scalar x and the effect on the group tree.
The little star represents the “expanded” annotation.

DO i=1,N
x=A(i)
B(i)=x
IF (C(i).le.0)

C(i)=x
END DO

Sequential
Loop Group

Instr Instr Instr Instr

x=A(i) B(i)=x C(i).le.0 C(i)=xO
1

1
1

O
1

1
1

C

Sequential
Loop Group

Instr Instr Instr Instr

x=A(i) B(i)=x C(i).le.0 C(i)=xO
1*

1*
1*

* * *

C

    Parallel
Loop Group

    Parallel
Loop Group

    Parallel
Loop Group

Parallel
Loop Group

Instr Instr Instr Instr

x=A(i) B(i)=x C(i).le.0 C(i)=xO
1*

1*
1*

* * *

Figure 3.14: Scalar Expansion followed by Loop Distribution

Detection of Reductions

Before any specific analysis, reduction operations appear as sequential groups.
This is because the same variable is repeatedly read then written at each it-
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eration. However, most target architectures implement reductions far more
efficiently. Therefore we need to detect them. A sequential loop group cor-
responds to a reduction if the following conditions hold:

• Group dependences follow a standard pattern (e.g. all anti depen-
dences have distance 0).

• sub-groups are either Instr or other reduction groups.

• The involved operation is a reduction (e.g. sum or product)

In this case, the sequential group may be replaced by a reduction group.
Like for variable expansion, some data dependences will be annotated, so
that they will not be projected as long as the group type remains reduc-
tion. Typically this is the case for the output dependences on the reduction
variable. Figure 3.15 shows an example of reduction detection.

DO i = 1,N
IF (Test(i)) THEN

s = A(i)*B(i) + s - C(i)
ENDIF
s = s - D(i)

ENDDO

Vectorial
Loop Group

Vectorial
Loop Group

Vectorial
Loop Group

Sequential
Loop Group

Instr Instr Instr Instr Instr Instr Instr

Test(i) A(i)*B(i) - C(i) D(i) ...+s-... s=... s-... s=...

0 0
O

O O

Vectorial
Loop Group

Vectorial
Loop Group

Vectorial
Loop Group

Reduction
Loop Group

Instr Instr Instr Instr Instr Instr Instr

Test(i) A(i)*B(i) - C(i) D(i) ...+s-... s=... s-... s=...

0 0
O

s = s+SUM(A*B-C, mask=Test)
s = s-SUM(D)

Figure 3.15: Detection of a global sum Reduction

Invariant Code Motion

In a loop, some operations may be invariant: instead of being repeated at
each iteration, they may be moved out of The loop, without modifying the
semantics of the program. On the initial program of figure 3.16, this happens
for the first and last instructions, as well as for for the sub-loop. Note that
variable expansion of scalar tmp is also possible, but invariant code motion is
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DO i=1,N
tmp = 2*x
DO j=1,100

tmp = A(j) - tmp
END DO
B(i) = B(i-2) + tmp
prev = B(i-1)

END DO

Sequential
Loop Group

Sequential
Loop Group

Instr

Instr
Instr Instr

Instr

(loop counter)
i=1,N

tmp = 2*x

tmp = A(j) - tmp

B(i) = B(i-2) + tmp
prev = B(i-1)

0
O0
O

1

0
2

O 1

Invariant
Loop Group

Invariant
Loop Group

Sequential
Loop Group

Invariant
Loop Group

Sequential
Loop Group

Instr

Instr Instr Instr
Instr

tmp = 2*x

tmp = A(j) - tmp

(loop counter)
i=1,N B(i) = B(i-2) + tmp

prev = B(i-1)

tmp = 2*x
DO j=1,100

tmp = A(j) - tmp
END DO
DO i=1,N

B(i) = B(i-2) + tmp
END DO
prev = B(N-1)

Figure 3.16: Invariant Code Motion on the Group Tree

more profitable. Invariant code detection and motion is discussed in compiler
litterature, for example in [2]. However, it focuses on instructions that can be
moved before the loop. In partita, we also detect the instructions that can
be moved after the loop. This leads to the idea that there are some operations
that must definitely remain in the loop. We shall say they are anchored
in the loop. These are the loop’s loop counter, and the write operations,
except those who write in the same memory location at different iterations,
and whose written value is only used during the same iteration and then
overwritten at next iteration. Therefore a write operation is anchored except
if we have at the same time:

• all outcoming flow dependences have a distance of exactly 0.

• there is at least one outcoming output dependence of distance 0 or 1,
and none of distance greater than 1.

All operations that are caught in a chain of dependences between two an-
chored operations must remain in the loop too. The other operations may be
moved out of the loop. This algorithm detects invariant code both before and
after the loop, even in complex situations involving sub-loops. Figure 3.16
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shows an example. We suppose we know N > 0, so that the loop body is exe-
cuted at least once. For clarity, only dependences useful to the algorithm are
shown. The groups that contain anchored operations are shown darkened.

Loop Fusion

Loop Fusion is the reciprocal of Loop Distribution. It reduces the number
of distinct loops, and therefore the loop overhead. Also, when fusing oper-
ations from the same original instruction, Loop Fusion reduces the number
of temporary variables. The condition to apply Loop Fusion is that the
fused groups must have the same parent group, and no other group is caught
between them in the projected dependence graph.

The drawback of Loop Fusion is that the type of the fused group often
turns out to be the worst of the original types. One subtlety comes when
fusing two parallel groups. One must examine the projected dependences
between the sub-groups of the fused group. If all dependences are of distance
zero, then the new group may be parallel. Otherwise, fusion can be a bad
idea, or there must be a synchronization between two iterations of the loop,
or a BARRIER in the loop body. In the worst case, it may happen that fusion
of two parallel groups returns a sequential group.

Figure 3.17 shows Loop Fusion applied on groups, top-down, first between
parallel groups, then between Instr groups. We suppose that procedure F1

DO i=1,N
C(i)=B(i)-A(i)*B(i-1)
CALL F1(D,B(i)*C(i))

END DO

Parallel
Loop Group

Parallel
Loop Group

Parallel
Loop Group

Sequential
Loop Group

Instr Instr Instr Instr

A(i)*B(i-1) C(i)=B(i)-... B(i)*C(i) CALL F1(D,  ...)

V V

Parallel
Loop Group

Sequential
Loop Group

Instr Instr Instr Instr

A(i)*B(i-1) C(i)=B(i)-... B(i)*C(i) CALL F1(D,  ...)

V
0 0

V Parallel
Loop Group

Sequential
Loop Group

Instr Instr Instr

C(i)=B(i)-A(i)*B(i-1) B(i)*C(i) CALL F1(D,  ...)

0

V

Figure 3.17: Loop Fusion between Loop Groups and Instr Groups

has no side-effect, but has some effect on its first argument that induces
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a cycling dependence. Notice that the dependance distances inside the re-
sulting parallel groups are all zero. Therefore the fused group is parallel.
Figures 3.11 and 3.12 are also examples of group fusion, when read in the
reverse direction!

Loop Exchange

Consider the nested groups of figure 3.18, corresponding to two perfectly
nested loops. Classically, these loops may be exchanged if some constraint

DO i = 1,N
DO j = 1,M

T(i,j) = T(i,j-1) + T(i+3,j+5)
ENDDO

ENDDO

Sequential (i)
Loop Group

Sequential (j)
Loop Group

Instr

T(i,j) = T(i,j-1) + T(i+3,j+5)

3

1

(0,1)
(3,5)

Sequential (j)
Loop Group

Vectorial (i)
Loop Group

Instr

T(i,j) = T(i,j-1) + T(i+3,j+5)

5

1

(1,0)
(5,3)

Figure 3.18: Loop Exchange on the Group Tree

holds on the distance vector of all data dependences in the loop. Precisely,
all dependance distances with respect to the inner loop must be greater or
equal to 0. This must be checked on the data dependences before projection,
because the projection operation has lost the distance at the inner loop level.
On the example of figure 3.18, the constraint holds. The rightmost group
tree is better for a vectorial architecture because the inner group is vectorial.

3.4.5 A tactic combining Elementary Transformations

When working on large applications, it is unrealistic to apply elementary loop
transformations interactively. Some tactic (heuristic) must be provided that
gives good results on most loops. The tactic in partita has the following
successive phases:

1. initialization: The initial group tree reflects the initial subroutine:
one sequential loop group per loop, one Instr group per instruction.
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2. splitting: Loop distribution is applied repeatedly, bottom-up on the
group tree. The resulting groups are typed as sequential or parallel ac-
cording to the dependencies pattern, and special algorithms refine some
groups type as invariant, reduction, or induction. sequential groups that
can benefit from Variable Expansion are transformed.

3. merging: Loop fusion is applied repeatedly, top-down on the group
tree. A cost/benefit is run at each step, to evaluate whether fusion is
profitable for the given target architecture. During this phase, paral-
lel groups may be turned into vectorial or forall groups if the syntax
permits this and if the target architecture can use this.

4. cleaning: Some transformations, such as Variable Expansion or detec-
tion of induction variables are useful only if they allow for extraction of
parallel loops. If the cost/benefit analysis turned these loops back to
sequential, then Variable Expansion or induction variables expansion
become counterproductive, and must be undone. This is easy to do on
the group tree.

5. ordering: Until then, the order of the sub-groups of a group was
meaningless. Now we order these groups, actually choosing the order
or the regenerated program. The ordering must respect the projected
dependencies between the sub-groups. We look for the best possible
order, which is presumably an NP-hard problem, so we implement a
heuristic.

We show the result on small example programs. The parallelization tactic
is strongly driven by a description of the target language and architecture, so
for each program the result is most often different for different targets. Let
us start with vectorization. Figure 3.19 shows vectorization towards target
Fortran95 of a single loop fragment. This required loop distribution, and
a temporary array to remember a test. The test could not be duplicated
because array Y is modified.

Consider now a target language, such as OpenMP, that in addition pro-
vides parallel loops. On figure 3.20 the outer loop is parallelized, while the
inner loop must remain sequential. Also, variable k is localized with respect
to loop i. On figure 3.21, partita was obliged to insert a BARRIER synchro-
nization, because there is a dependence of distance 3. Functions Func1 and
Func2 are user-defined, and have no side-effect. Since target OpenMP also
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DO 100 i = 1,SZ
IF (X(i).gt.Y(i-1)) THEN

X(i) = 0
ELSE

Y(i) = Y(i-1) + 1
IF (U(i).gt.0) THEN

T(i) = X(i) * U(i)
ELSE

T(i) = X(i) - T(i-1)
V(i) = V(i) + U(i)

ENDIF
ENDIF

100 CONTINUE

F95

DO i = 1,SZ
tmp0(i) = X(i) > Y(i-1)
IF (.not. tmp0(i)) THEN

Y(i) = Y(i-1) + 1
ENDIF

END DO
WHERE (.not.tmp0(:) .and. U(:)>0)  T(1:SZ) = X(:) * U(:)
DO i = 1,SZ

IF (.not.tmp0(i) .and. U(i)<=0) THEN
T(i) = X(i) - T(i-1)

ENDIF
END DO
WHERE (.not.tmp0(:) .and. .not.U(:)>0)  V(:) = V(:) + U(:)
WHERE (tmp0(:))  X(:) = 0

Figure 3.19: Vectorization with Loop Distribution

DO 30 i = 1,totnod
irc(i) = 0
DO 20 j = ja(i),ja(i+1) - 1

irc(i) = irc(i) + irl(j)
k = ja(j)
irow(1,irc(i),i) = k
irow(2,irc(i),i) = j

20 CONTINUE
30 CONTINUE

OpenMP

irc(1:totnod) = 0
!$omp parallel do private(k)

DO i = 1,totnod
DO j = ja(i),ja(i+1)-1

irc(i) = irc(i) + irl(j)
k = ja(j)
irow(1,irc(i),i) = k
irow(2,irc(i),i) = j

END DO
END DO

Figure 3.20: Generation of a Parallel DO Loop

70



provides vectorization, with a higher preference, the third instruction of the
loop has been vectorized.

DO 100 i=1,1000,2
R(i) = Func1(S(i))
T(i) = Func2(R(i+3))
A(i) = 2*T(i) - A(i)

100 CONTINUE

OpenMP

!$omp parallel do
PARALLEL DO i = 1,1000,2

T(i) = Func2(R(i+3))
!$omp barrier

R(i) = Func1(S(i))
END DO
A(1:1000:2) = 2*T(1:1000:2) - A(1:1000:2)

Figure 3.21: Automatic Insertion of Necessary Synchronization

Target language hpf provides the forall construct, which is an extension
to vectorial notation, and the syntax of the parallel loops changes slightly.
Figure 3.22 shows code generation for this target. Note that the dependence
pattern of the loop forces partita to split one instruction. Function Func1

is supposed pure and Proc2 has no side-effects. Note also that the test is
invariant with respect to the inner loop.

DO 40 i = 1,n
DO 50 j = 1,m

IF (test(i,i).ge.0) GOTO 50
M1(i,j) = M2(i,j+1) + aa(j) + M1(i+1,j)
M2(i,j) = Func1(3*M1(i+1,j-1) + bb(j,i))

50 CONTINUE
CALL Proc2(test(i,i),i)

40 CONTINUE

HPF

FORALL ( i=1:n , test(i,i) < 0)
tmp1(i,1:m) = 3*M1(i+1,0:m-1) + bb(1:m,i)
M1(i,1:m) = M2(i,2:m+1) + aa(1:m) + M1(i+1,1:m)

END FORALL
!HPF$ INDEPENDENT

DO i = 1,n
IF (test(i,i) < 0) THEN

!HPF$ INDEPENDENT
DO j = 1,m

M2(i,j) = Func1(tmp1(i,j))
END DO

ENDIF
CALL Proc2(test(i,i),i)

END DO

Figure 3.22: Generation of FORALL and INDEPENDENT loops

Changing the target changes dramatically the generated program: fig-
ure 3.23 shows the output of partita for the three targets above. Function
Func2 is PURE in the hpf sense. This same example with target f95light

would remain unmodified (sequential), because f95light is a less “agressive”
parallelization which forbids instruction splitting.

Let us now illustrate other transformations automatically applied by par-
tita when they appear profitable. Figure 3.24 shows invariant code motion
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DO i = 1,n
T(i) = Func2(T(i+2) * T(i+3)

&                          * U(i)/V(2*i)  )
END DO

F95

tmp0(1:n) = T(3:n+2) * T(4:n+3) * U(1:n) / V(2:2*n:2)
DO i = 1,n

T(i) = Func2(tmp0(i))
END DO

OpenMP

!$omp parallel do private(tmp0)
DO i = 1,n

tmp0 = Func2(T(i+2)*T(i+3)*U(i)/V(2*i))
!$omp barrier

T(i) = tmp0
END DO

HPF
FORALL ( i=1:n )
T(i) = Func2(T(i+2)*T(i+3)*U(i)/V(2*i))

END FORALL

Figure 3.23: Results for different Target Descriptions

of the first half of the loop, and scalar expansion to allow vectorization of
the second half. The remaining sequential loop could be vectorized too, if
expanding scalar tt along dimension i, but target f95light forbids two-
dimensional expansions. On figure 3.25 another fragment takes profit of in-

DO 10 i=1,n-1
mxc = 0.
DO 5 ic=1,N

mxc = mxc + C(ic)*x
5 CONTINUE

DO 20 j=2,m
tt = 1. - (x*A(i,j) + y*B(i,j)) / mxc  
A(i,j) = B(i,j) - tt
B(i,j) = B(i,j) + tt

20 CONTINUE
10 CONTINUE

F95light

mxc = 0.
mxc = mxc + SUM(C(1:N)*x)
DO i = 1,n-1

ttXP0(:) = 1. - (x*A(i,2:m)+y*B(i,2:m))/mxc
A(i,2:m) = B(i,2:m) - ttXP0(:)
B(i,2:m) = B(i,2:m) + ttXP0(:)

END DO

Figure 3.24: Invariant code motion, reduction, and scalar expansion

variant code motion and detection of induction variables. Variables l, m, and
k, have been found induction. Only the exit values of l and k are regenerated,
because the other induction variables are not used after of the loop, nor do
they appear in the formal arguments of the subroutine. When an induction
variable is detected, its occurences in the program are not directly replaced
by the induction value. Therefore if no parallelism is found, there is no need

72



SUBROUTINE invar2(a,l,s,k,T)
INTEGER a,l,m,s,i,j,k,T
DIMENSION T(2000,2000)

C
DO 720 i=2,1000

s = 1
DO 730 j=1,100

l = a + i
m = a + j
T(l,m)=0
s = s + j
k = k + a

730 CONTINUE
k = k + 1

720 CONTINUE
END

F95

SUBROUTINE invar2(a,l,s,k,T)

...

!
T(a+2:a+1000,a+1:a+100) = 0
l = a + 1000
s = 1
s = s + SUM((/ (j, j = 1,100) /))
k = k + 99900*a + 999
END SUBROUTINE invar2

Figure 3.25: Induction variables, invariant code, and reduction

to undo the expansion. Thus on figure 3.26 variable k, although inductive,
is not expanded. Reductions are frquent and deserve some care. Figure 3.27

DO 100 i=1,100
T(k) = T(k-3) + 3
k = k + 3
C(i) = 0

100 CONTINUE

F95

DO i = 1,100
T(k) = T(k-3) + 3
k = k + 3

END DO
C(1:100) = 0

Figure 3.26: Undoing unnecessary induction variable expansion

shows a reduction that involves many instructions and tests. Directives are
available to improve parallelization. On figure 3.28 parallelization is possible
only because offset > 1 and array IV is injective.

3.4.6 A glimpse at the User Interface

The goal of the interface is to show which parallelization is chosen by par-
tita and why. The user can then modify the target or the program, e.g. with
directives, to improve the result. There is a color code to display the paral-
lelization status on the original code. Figure 3.29 shows this interface for a
selected loop in a large application. As this report is printed in black and
white, we have replaced the colors with patterns. Since we are not satisfied
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DO i=1,N
s1 = 3*C(i) + s1 - A(i)*B(i)
IF (A(i).ge.10) THEN

s1 = s1 - A(i)
ENDIF

ENDDO
DO i=1,N

s2 = s2 + B(i)
s1 = s1 + B(i)*C(i)
s2 = 2 - s2

ENDDO
DO i=20,80

DO j=10,90
p1 = p1 * D(i,j)
p1 = p1 / E(j,i)

ENDDO
ENDDO

F95

s1 = s1 + SUM(3*C - A*B)
s1 = s1 - SUM(A, MASK = A>=10)
s1 = s1 + SUM(B*C)
DO i = 1,N

s2 = s2 + B(i)
s2 = s2 - 2

END DO
p1 = p1 * PRODUCT(D(20:80,10:90))
p1 = p1 / PRODUCT(E(10:90,20:80))

Figure 3.27: Detection of Reduction Operations

C$PRED (offset .gt. 1)
DO 10 i=m1, m2

A(i) = A(i+offset) + B(i)
B(i-offset) = A(i) + B(i+offset)

10 CONTINUE
C$INJECTIVE IV

DO 20 i=m1,m2
A(IV(i)) = B(IV(i))+ x*A(IV(i)+1)
k=IV(i)
B(k) = B(k)*y - A(k)

20 CONTINUE

F95

!$PRED (offset .gt. 1)
A(m1:m2) = A(m1+offset:m2+offset) + B(m1:m2)
B(m1-offset:m2-offset) =

A(m1:m2) + B(m1+offset:m2+offset)
!$INJECTIVE IV
DO i = m1,m2

A(IV(i)) = B(IV(i)) + x*A(IV(i)+1)
END DO
B(IV) = B(IV)*y - A(IV)

Figure 3.28: Use of directives by partita
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Vectorial

Sequential

Figure 3.29: Parallelization status display

with the large part painted as “sequential”, we look at the dependence graph
for this loop. It comes in a separate window, as shown on figure 3.30, and
exhibits the dependence cycle that causes non-parallelizability. The bottom
of this window shows the precise data dependence information. From it we
can find out that some data dependence are actually false dependences. Here
we can remove them because we know that array NAV is INJECTIVE. Then
the new parallelization status is much better, and we get the fortran95
result in the window shown in figure 3.31.

3.5 Application 2: SPMD Parallelization

This section describes the use of the Dependence Graph in partita, in order
to provide a tool for Single Program Multiple Data (SPMD) parallelization of
programs working on unstructured meshes. These programs are very frequent
in numerical simulation. They are highly adapted to SPMD parallelization
because they are very regular with respect to mesh elements (nodes, edges,
triangles, tetrahedra, etc), and therefore a geometric partitioning of the mesh
gives a very efficient parallelization.

We describe the SPMD parallelization approach and the goal of the tool
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Figure 3.30: Displayed dependence graph for selected loop

Figure 3.31: Generated fortran95 program after directive insertion
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in section 3.5.1. Then in section 3.5.2 we formalize this problem in terms
of a global analysis of the program’s data dependence graph. We discuss
implementation in section 3.5.3 and we terminate with a glimpse of the tool’s
user interface in section 3.5.4.

3.5.1 Objectives of the SPMD tool

As opposed to section 3.4, the SPMD parallelization approach only makes
minimal changes to the source program. In some tools, it is necessary to
introduce extra indirection arrays to reflect the partition of the mesh []. We
believe this even is not necessary. In our approach, the only modification to
the source program is the insertion of a handful of calls to communication
routines. Each partitioned sub-mesh receives a new node numbering, which
is standalone, and only communication routines need to know about the
correspondence between sub-meshes boundaries. This knowledge is stored as
“communication lists” that are built by the mesh partitioner. The remaining
question is where to insert the communications between the sub-meshes into
the original program. This decision is driven by the kind of overlap that was
created on the boundary of the sub-meshes.

We must emphasize that this SPMD approach is restricted to one (large)
class of procedures, that repeatedly perform gather-scatter loops and global
reductions of arrays based on mesh elements:

• A gather-scatter loop is a loop on some sort of mesh entities (nodes,
edges, triangles, etc), that access values that are stored on neighbor
mesh entities, compute with these values, and store contributions back
onto neighbor entities. These contributions are accumulated with a
commutative-associative operation (generally +), so that the mesh el-
ements may be swept in any order.

• A global reduction accumulates values that are computed on each mesh
node, edge, triangle, etc, through a commutative-associative opera-
tion. This results in a scalar, which can be used for example to decide
whether the computation has reached convergence or not.
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Here is an example sketch of this kind of procedures:

New_Values = initialization
Repeat

Old_Values = New_Values

New_Values = 0
Foreach Element ∈ Mesh

gather the Old_Values from neighbors of Element
compute the contribution of Element
assemble into New_Values for neighbors of Element

End Foreach
Until ‖ New_Values − Old_Values ‖ < ε

This SPMD approach relies on a geometrical partition of the mesh into
sub-meshes, possibly with some amount of overlap on the boundaries. Parti-
tion itself is performed by specialized tools, which try to minimize the size of
the interface between sub-meshes, called the boundaries. These tools use a
variety of heuristics, such as the “recursive bissection” method. The amount
of overlap itself (the “overlapping pattern”) is chosen by the end-user, and
given as a constraint to the mesh partitioner. We show here two possible
overlapping patterns, with one layer of overlapping nodes on figure 3.32,
and with one layer of overlapping triangles on figure 3.33.

Let’s take a closer look at communications between sub-meshes, for ex-
ample on the partitioned mesh of figure 3.33. Node a, on the boundary of
sub-mesh A, is duplicated as a′ on sub-mesh B. We say that a is in the kernel
of A, while a′ is in the overlap of B. Suppose that just before execution of
a gather-scatter loop, the Old_Values stored in a′ are coherent with those
in a. We can see on the figure that, during a gather-scatter loop on trian-
gles, the values are correct for all triangles, even duplicated. Therefore the
accumulated New_Values are correct for all kernel nodes such as a or b, but
not for overlap nodes such as a′ or b′. As a consequence, before the next
gather-scatter loop, every overlap node must receive the correct value from
its corresponding kernel node. This can be achieved by calling a single com-
munication procedure from the original program. Figure 3.34 summarizes the
complete parallelization process. Our tool focuses on the “Communications
insertion” problem, to generates the SPMD source program.
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Figure 3.32: Partition with one layer of overlapping nodes
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Figure 3.33: Partition with one layer of overlapping triangles
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Figure 3.34: General parallelization process

3.5.2 Formalization of SPMD synchronization place-
ment

To formalize the problem of insertion of synchronization calls, we introduce
the notion of state of the values stored on mesh elements. For each array
which is distributed on nodes, edges, triangles, etc, as well as for scalars
resulting from reduction operations on these arrays, we define one “good”
state, i.e. when values on the overlap nodes are coherent, or when the re-
duction is finally done on the complete mesh. We also define other “worse”
states, when the values on the overlap nodes are out of date. When there
are many layers of overlapping elements, there are many progressively worse
and worse states, as the incoherence propagates from one overlap layer to
another. We shall denote these states with the number of incoherent layers
as an index. In our simple examples, this index can only be “1”. Naturally,
the coherent states are indexed with a “0”. Therefore, for the overlapping
pattern of figure 3.33, the possible states are the following:

Tri0, Edg0, Edg1, Nod0, Nod1, Sca0, and Sca1.
Notations Tri, Edg, and Nod refer to values distributed on triangles, edges,
and nodes respectively, and Sca refers to a scalar resulting from a reduction.
The index has the meaning stated above. We can see there is no such state
as Tri1 for this overlapping pattern.

The idea is that the state of the values that flow through the program
evolves. Across a gather-scatter loop, it evolves probably to a “worse” state,
which is a consequence of the mesh topology. Conversely, it can evolve to
a “better” state across a call to a communication routine that updates the
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overlap values. Figure 3.35 describes the evolution of the state across two
sorts of gather-scatter loops: on the left a loop on mesh triangles, on the right

Tri0

Nod0 Edg0 Tri0 Sca0

Nod1 Edg1 Tri0 Thd0

Nod1

Nod0 Nod1 Edg0 Tri0 Thd0 Sca0

Nod1 Sca1

Reduce

Figure 3.35: State of the flowing data across loops on triangles and nodes

a loop on mesh nodes, except the overlap nodes (a′ or b′). These diagrams
are built by hand, and follow from the mesh topology and the overlapping
pattern. Conversely, there are additional “Update” transitions, that repre-
sent the updates of the overlap variables by appropriate communication calls.
All these diagrams can be combined into a single finite state automaton that
describes all the allowed evolutions of the state. Figure 3.36 shows this so-
called “Overlap Automaton” for the overlapping pattern of figure 3.33. The
Overlap Automaton is specific to each data organisation and its overlapping
pattern. It is independent from the particular program, data, or partition.
In principle, it must be provided by the user. However, in the very frequent
case of 2D triangular meshes and 3D tetrahedron meshes, these automata
are predefined for the most popular overlapping patterns. For example, fig-
ure 3.37 shows the Overlap Automata for, on the left a 2D mesh split like on
figure 3.32, and on the right a 3D mesh split with one layer of overlapping
tetrahedra.

A placement of the communications in the SPMD program is valid if
the evolution of the state of data across all flow and value dependences of
the program obeys the overlap automaton. More precisely, we must find a
mapping Mn from the nodes of the Dependence Graph to the states of the
Overlap Automaton, and Ma from the Data Dependences to the transitions
of the Overlap Automaton, such that:

1. For every Dependence Graph node N of the program’s input, Mn(N)
equals its given initial state.
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Figure 3.36: Overlap Automaton for 2D mesh split with overlapping triangles
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Figure 3.37: Other Overlap Automata for 2D and 3D meshes
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2. For every Dependence Graph node N of the program’s output, Mn(N)
equals its required final state.

3. For every flow and value Data Dependence A in the program,

origin(Ma(A)) = Mn(origin(A))

destination(Ma(A)) = Mn(destination(A))

From this mapping, we deduce how to build the SPMD parallelized program:

1. Each Data Dependence mapped to a transition labelled “Update”,
requires a communication between its origin and its destination.

2. Each loop mapped to a state with subscript 1, must not be run on
duplicated mesh elements.

3.5.3 Implementation and Results

We implemented the algorithm above inside the foresys environment. We
took profit of the Dependence Graph already available for the partita paral-
lelization tool. Finding a mapping of the Dependence Graph on the Overlap
Automaton is a classical problem. However, the search for the mapping
is exponential with respect to the size of the Dependence Graph, which is
large. Moreover, there often exist many solution mappings, and the search
algorithm must implement backtracking to find them all. Therefore, we
implemented a heuristic that uses Dependence Graphs of recursively nested
parts of the program. We run the mappings detection on each part, bottom-
up. Each part is analyzed to find all possible mappings. Then only the “best”
mappings are kept and used at the enclosing level. This might miss some
solutions in very rare cases, but experience shows there is no problem in prac-
tice. Each solution is given an approxiamte cost, based on elementary costs
for communications and also on the overhead for executing a gather-scatter
loop on the overlap mesh elements. Finally, only a few “best” solutions are
proposed to the end-user.

Nevertheless, this implemented algorithm is rather slow. On our largest
application example (NSC3DM, 34 routines, 4800 code lines), it runs for
approximately 1 hour. We now believe that this implementation based on
the Dependence Graph is good for its close link with the formalization, but
is inefficient because
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• the Dependence Graph is very large,

• we don’t need the fine grain rescheduling abilities of the Dependence
Graph, since we don’t change the Flow Graph of the program,

• going back from data dependences labelled “Update” to actual loca-
tions in the program is difficult.

Actually, all we need is a data flow analysis, that would propagate the states
of all variables through the Flow Graph of the program. This analysis would
be far cheaper than what we have implemented. Also, backtracking should
be limited further.

Let’s now look at the performances of the SPMD programs. Our ap-
plication examples are two-dimensional and three-dimensional flow solvers,
written in Fortran 77, named Exp2D (13 routines, 1500 code lines), Imp2D
(18 routines, 1800 code lines), and NSC3DM (34 routines, 4800 code lines).
They solve the compressible Navier-Stokes equations on unstructured trian-
gular meshes. Time advancing is explicit for Exp2D, and implicit for Imp2D
and NSC3DM, therefore requiring the resolution of a large sparse linear sys-
tem at each time step. This is done with Jacobi relaxations. The partitioned
meshes have one layer of duplicated triangles (resp. tetrahedra) in 2D (resp.
3D). This choice is justified by the comparison of various overlapping patterns
given in [18]. Each application comes with its test case:

• Imp2D computes the external laminar viscous flow around a NACA0012

airfoil (Mach number: 0.85, Reynolds number: 2000). The 2D mesh
contains 48792 nodes, 96896 triangles and 145688 edges.

• NSC3DM computes the external flow around an ONERA M6 wing (Mach
number: 0.84, angle of incidence: 3.06◦). The 3D mesh contains 15460
nodes, 80424 tetrahedra and 99891 edges.

Although this is more the result of the SMPD tactic itself, rather than a result
of our method to insert communications, we show some performance results
of the SPMD programs obtained. More can be found in [18]. In the following
tables, Np is the number of processes for the parallel execution; “Elapsed” is
the average total elapsed execution time and “CPU” the total CPU time; the
parallel speedup S(Np) is calculated on the elapsed times. Simulations are
performed with 64 bit arithmetic computations, on the following computing
platforms:
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• (cf table 3.1) a SGI Origin 2000 (located at the Centre Charles Her-
mite in Nancy), equipped with Mips R10000/195 Mhz processors with
4 Mb of cache memory. The SGI implementation of MPI was used.

Imp2D on NACA0012 airfoil NSC3DM on ONERA M6 wing
Np Elapsed CPU S(Np) Elapsed CPU S(Np)

1 2793 s 2773 s 1.0 1318 s 1305 s 1.0
4 815 s 809 s 3.5 390 s 387 s 3.4
8 314 s 310 s 8.9 198 s 196 s 6.7
16 147 s 145 s 19.0

Table 3.1: Performances on a SGI Origin 2000 system

• (cf table 3.2) a cluster of 12 Pentium Pro P6/200 Mhz, with a 100
Mbit/s FastEthernet switch. The code was compiled by the G77 GNU
compiler with maximal optimization options. Communications used
MPICH (version 1.1).

Imp2D on NACA0012 airfoil NSC3DM on ONERA M6 wing
Np Elapsed CPU S(Np) Elapsed CPU S(Np)

1 6883 s 6854 s 1.0 7488 s 7429 s 1.0
4 2289 s 2182 s 3.0 2583 s 2382 s 2.9
8 1440 s 1218 s 4.8 1409 s 1254 s 5.3

Table 3.2: Performances on a cluster of 12 Pentium Pro

The results show a good parallel speedup, especially on table 3.1. The
decreasing sizes of the sub-meshes resulting from the 8 and 16 sub-meshes de-
composition explain the super-linear speed-up observed on the SGI Origin

2000: on this platform the R10000 processor possesses a 4 Mb cache mem-
ory, a rather large value that contributes to high computational rates. On
table 3.2 the speedups are still good, but show the impact of higher commu-
nication costs prevailing on the cluster architecture.
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3.5.4 A glimpse at the User Interface

SPMD parallelization must be interactive. The user must tell which are
the arrays that are distributed on the mesh entities, as well as the selected
overlapping pattern. So we devised a specialized interface to tell:

• the program fragment to parallelise,

• the Overlap Automaton corresponding to the current geometry of the
mesh and of the overlap,

• an assignment from each variable name and each loop, to the set of its
possible states. This set specifies that each of these objects (variables
and loops) is aligned once and for all on one category of mesh elements
(nodes, edges, triangles, ...), and is partitioned accordingly.

Since we have the Dependence Graph already at hand at this stage, telling
the alignment of each variable and loop is not too tedious. There exist rules
to deduce these alignments from others already given. For example, given
a loop aligned on, say, triangles, we know that all arrays accessed directly
with the loop index are also aligned on triangles. On our largest application
example (NSC3DM, 34 routines, 4800 code lines) only a dozen of clicks were
required.

Then follows a verification stage, that checks that all loops in the fragment
are really parallelizable. There must be no loop-carried dependences, except
for the reductions corresponding to the scatter phase.

Then comes the search for a mapping, and the resulting SPMD programs
are built. Figure 3.38 shows one solution for a small example program. Notice
the comment lines inserted where communication is required. Also, both
ends of the data dependences labelled “Update” are highlighted, to explain
why this communication is required. Each loop on mesh elements is also
annotated to show whether it must run on the sub-mesh kernel only, or also
on the overlap. Figure 3.39 shows another solution, which is neither better
nor worse than the first solution. The choice is up to the user. Both solutions
set basically the same communications, but the solution on figure 3.39 has
the advantage of grouping the two main communications, thereby saving an
additional communication overhead. On the other hand, the solution on
figure 3.38 delays one communication so that the iteration space of some
loops may be restricted to the kernel nodes, saving some instructions on the
overlap.
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Figure 3.38: One possible generated SPMD program
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Figure 3.39: Another possible generated SPMD program
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Chapter 4

Automatic Differentiation:
Presentation, Techniques, Tools
and Applications

This chapter is devoted to Automatic Differentiation (AD), an innovative
and very interesting static analysis and transformation of programs. Unlike
parallelization, AD does not preserve the semantics of program, but rather
adds new program outputs which are mathematical derivatives of the original
results. We started the reseach presented here around 1998, at inria first in
the sinus project-team, then in the new tropics project-team. This chapter
has two main goals.

• One goal is to emphasize how the classical techniques from compilation
and parallelization transpose to AD, in order to get algorithms that are
better understood and more efficient.

• The other goal is to present some research results specific to AD, about
internal algorithms and also about application.

This distinction between the two goals above is mostly rhetoric, since the
research results are often based on compilation theory, and thus the two
goals are linked strongly.

Since AD is not as well known as parallellization, section 4.1 is necessary
to present its principles. Also, some examples of application are necessary
to justify this complex transformation. This is done in section 4.2, which
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presents two proeminent application fields: inverse problems and gradient-
based optimization. Then, following the same plan as in the previous chapter,
we discuss some advances in AD technology that we brought from compiler
theory and methods. Thus section 4.3 shows that the Flow Graph internal
representation brings a cleaner and more efficient inversion of the flow of
control for the AD reverse mode. Next section 4.4 presents activity anal-
ysis and the new TBR analysis in terms of data-flow equations that help
prove interesting properties. It also shows application of data-flow analyses
to get optimal snapshots and to find AD-specific dead code. Next section 4.5
gathers results based on data-dependence analysis for rescheduling of differ-
entiated instructions and for a study of the data dependence graph of adjoint
programs. Last but not least, section 4.6 presents our tapenade AD tool,
which incorporates and validates our AD research, and which is used on many
real programs, including industrial applications.

4.1 Automatic Differentiation of Programs

Automatic Differentiation (AD) is a technique to evaluate derivatives of a
function f : X ∈ IRm 7→ Y ∈ IRn defined by a computer program P. In
AD, the original program is automatically transformed into a new program
P’ that computes the derivatives analytically. For reference, we recommend
the monography [24], selected articles of a recent conference [11], or the AD
community website at www.autodiff.org.

The goal of AD is to compute derivatives without going back to the under-
lying mathematical equations, considering only the source program P. This
will spare a tedious extra discretization and implementation phase. More-
over, sometimes the mathematical equations are not available. How can we
reach this goal? Naturally, one can do divided differences. For a given set
of program’s inputs X, program P computes a result Y . Given now some
normalized direction dX in the space of the inputs, one can run program P

again on the new set of inputs X + ε.dX, where ε is some very small positive
number. Divided Differences return an approximation of the derivative by
the formula:

P(X + ε.dX)− P(X)

ε
.

The centered divided differences give a better approximation, at the cost of
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an extra run of P by the formula:

P(X + ε.dX)− P(X − ε.dX)

2ε
.

In any case, these are just approximations of the derivatives. Ideally, the
exact derivative is the limit of these formulas when ε tends to zero. But
this makes no sense on a real computer, since very small values of ε lead to
truncation errors, and therefore to erroneous derivatives. This is the main
drawback of divided differences: some tradeoff must be found between trun-
cation errors and approximation errors. Finding the best ε requires numerous
executions of the program, and even then the computed derivatives are just
approximations.

To get rid of approximation errors, AD computes derivatives analyti-
cally. Each time the original program holds some variable v, the differenti-
ated program holds an additional variable with the same shape, that we call
the differential of v. Moreover, for each operation in the original program,
the differentiated program performs additional operations dealing with the
differential variables. For example, suppose that the original program comes
to executing the following instruction on variables a, b, c, and array T:

a = b*T(10) + c (4.1)

Suppose also that variables ḃ, ċ, and array Ṫ are available and contain one
particular sort of differential: the tangent derivatives, i.e. the first-order vari-
ation of b, c, and T for a given variation of the input. Then the differentiated
program must execute additional operations that compute ȧ, using b, c, T

and their differentials ḃ, ċ, and Ṫ. These must somehow amount to:

ȧ = ḃ*T(10) + b*Ṫ(10) + ċ (4.2)

The derivatives are computed analytically, using the well known formulas
on derivation of elementary operations. Approximation errors, which are a
nuisance when using Divided Differences, have just vanished.

At this point, let us mention an elegant manner to implement AD: over-
loading. Overloading is a programming technique, available in several lan-
guages, where one can redefine the semantics of basic functions (such as
arithmetic operations), according to the type of their arguments. For exam-
ple, instruction (4.1) can easily subsume instruction (4.2), if only the type
of variables is changed from REAL to pairs of REAL, and the semantics of +, *,
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etc, are augmented to compute the derivatives into, say, the second compo-
nent of the above pairs of REAL. Even when the language does not support
overloading, there is an elegant workaround [36]: just replace all REAL’s by
COMPLEX numbers, and put their derivative into the imaginary part! It is easy
to check that the arithmetic of COMPLEX numbers can be a good approxima-
tion of overloaded operations on derivatives. The advantage of overloading
is that it requires very little code transformation. Drawbacks are that not
all languages support overloading (or COMPLEX numbers), that overloaded
programs are poorly optimized by the compiler, and more importantly that
overloading is not suitable for the reverse mode of AD (cf section 4.1.3).
Therfore, we rejected overloading for our purpose, and we preferred source
transformation techniques, using technology from compilation and paral-
lelization.

Automatic Differentiation can compute many different sorts of deriva-
tives. At least in theory, it can yield a complete Jacobian matrix, i.e. the
partial derivatives of each output with respect to each input. Higher or-
der differentiation is possible too, e.g. computation of Hessian tensors. In
practice, these mathematical objects are often too large or too expensive to
compute. Therefore, AD can also return smaller objects at a cheaper cost,
e.g directional derivatives, gradients, directional higher-order derivatives, or
Taylor series expansions. Similar techniques apply to domains slightly out-
side of strict differentiation: AD techniques are used to build programs that
compute on intervals or on probabilistic data. We believe the most promis-
ing of these “modes” is the computation of gradients, whereas computation
of first-order directional derivatives (called tangents) is the most straightfor-
ward, and is therefore an interesting basic mode. In the remainder, we shall
focus on these two modes of AD. Before that, the next section will introduce
the general formal framework used to describe AD.

4.1.1 Computer Programs and Mathematical Functions

Remember that we want to compute exact derivatives analytically, based on
a given computer program P which is seen as the principal specification of the
mathematical function f to differentiate. Therefore, we need to introduce a
general framework in which programs can be identified with functions. We
first identify programs with sequences of instructions, identified in turn with
composed functions.

Programs contain control, which is essentially discrete and therefore non-
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differentiable. Consider the set of all possible run-time sequences of instruc-
tions. Of course there are a lot (often an infinity!) of such sequences, and
therefore we never build them explicitly! The control is just how one tells
the running program to switch to one sequence or another. For example this
small C program piece:

if (x <= 1.0)

printf("x too small");

else {
y = 1.0;

while (y <= 10.0) {
y = y*x;

x = x+0.5;

}
}

will execute according to the control as one of the following sequences of
instructions:

printf("x too small");

y = 1.0;

y = 1.0; y = y*x; x = x+0.5;

y = 1.0; y = y*x; x = x+0.5; y = y*x; x = x+0.5;

y = 1.0; y = y*x; x = x+0.5; y = y*x; x = x+0.5; y = y*x; x = x+0.5;

and so on... Each of these sequences is differentiable. The new program
generated by Automatic Differentiation uses the original program’s control
to guarantee it computes the differentials of the actual run-time sequence of
instructions. This is only piecewise differentiation. Thus, this differentiated
program will probably look like:

93



if (x <= 1.0)

printf("x too small");

else {
dy = 0.0;

y = 1.0;

while (y <= 10.0) {
dy = dy*x + y*dx;

y = y*x;

x = x+0.5;

}
}

However it sometimes happens, like in this example, that the control itself
depends on differentiated variables. In that case, a small change of the initial
values may result in a change of the control. Here, a small change of x may
change the number of iterations of the while loop, and the derivative is not
defined any more. Yet the new program generated by Automatic Differen-
tiation will return a result, and using this derivative may lead to errors. In
other words, the original program, with control, is only piecewise differen-
tiable, and “state of the art” AD does not take this into account correctly.
This is an open research problem. In the meantime, we simply assume that
this problem happens rarely enough. Experience on real programs shows
that this is a reasonable assumption. However, this problem is widely known
and it limits the confidence end-users place into AD.

Now that programs are identified with sequences of instructions, these
sequences are identified with composed functions. Precisely, the sequence of
instructions :

I1; I2; ...Ip−1; Ip;

is identified to the function :

f = fp ◦ fp−1 ◦ . . . ◦ f1

Each of these functions is naturally extended to operate on the domain of all
the program variables: variables not overwritten by the instruction are just
transmitted unchanged to the function’s result. We can then use the chain
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rule to write formally the derivative of the program for a given input X :

f ′(X) = (f ′p ◦ fp−1 ◦ fp−2 ◦ . . . ◦ f1(X))
. (f ′p−1 ◦ fp−2 ◦ . . . ◦ f1(X))
. . . .
. (f ′1(X))

= f ′p(Xp−1) . f ′p−1(Xp−2) . . . . . f ′1(X0)

(4.3)

Each f ′k, derivative of function fk, is a Jacobian matrix. For short, we defined
X0 = X and Xk = fk(Xk−1) to be the values of the variables just after exe-
cuting the first k instructions. Computing the derivatives is just computing
and multiplying the elementary Jacobian matrices f ′k(Xk−1).

Let us conclude this section with some bad news: for average size ap-
plications, the Jacobian matrix f ′(X) is often too large! Therefore it is not
reasonable to compute it explicitly: the matrix-matrix products would be too
expensive, and the resulting matrices would be too large to be stored. Ex-
cept in special cases, one must not compute f ′(X). Fortunately, many uses
of derivatives do not need f ′(X), but only a “view” of it, such as f ′(X).Ẋ
for a given Ẋ or f ′t(X).Y for a given Y . These two cases will be discussed
in the next two sections.

4.1.2 The Tangent Mode of Automatic Differentiation

For some applications, what is needed is the so-called sensitivity of a program.
For a given small variation Ẋ in the input space, we want the corresponding
first-order variation of the output, or “sensitivity”. By definition of the
Jacobian matrix, this sensitivity is Ẏ = f ′(X).Ẋ. Historically, this is the
first application of AD, probably because it is the easiest.

Recalling equation (4.3), we get:

Ẏ = f ′p(Xp−1) . f ′p−1(Xp−2) . . . . . f ′1(X0) . Ẋ (4.4)

To compute Ẏ efficiently, one must of course do it from right to left, be-
cause Matrix×Vector products are so much cheaper than Matrix×Matrix
products. This turns out to be easy, because this formula requires X0 first,
and then X1, and so on until Xp−1. In other words, the intermediate values
from the original program P are used as they are computed. Differentiated
instructions, that compute the Jacobian matrices and multiply them, can be
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done along with the initial program. We only need to interleave the original
instructions and the derivative instructions.

In the tangent mode, the differentiated program is just a copy of the given
program, Additional derivative instructions are inserted just before each in-
struction. The control structures of the program are unchanged, i.e. the Call
Graph and Flow Graph have the same shape in P and P’. Figure 4.1 illus-
trates AD in tangent mode. On the left columm is an example subroutine,
that measures a sort of discrepancy between two given arrays T and U. The
right column shows the tangent differentiated subroutine, which computes
tangent derivatives, conventionally shown with a dot above. For example,
the differentiated instruction that precedes instruction e = SQRT(e2), im-
plements the following vector assignment that multiplies the instruction’s
elementary Jacobian by the vector of tangent derivatives:[

ė2

ė

]
=

[
1 0

0.5/
√
e2 0

]
.

[
ė2

ė

]

original: T,U 7→ e tangent mode: T,Ṫ,U,U̇ 7→ e,ė

e2 = 0.0

do i=1,n

e1 = T(i)-U(i)

e2 = e2 + e1*e1

end do

e = SQRT(e2)

ė2 = 0.0

e2 = 0.0

do i=1,n

ė1 = Ṫ(i)-U̇(i)

e1 = T(i)-U(i)

ė2 = ė2 + 2.0*e1*ė1

e2 = e2 + e1*e1

end do

ė = 0.5*ė2/SQRT(e2)

e = SQRT(e2)

Figure 4.1: AD in tangent mode

The tangent mode of AD is rather straightforward. However, it can ben-
efit from some specific optimizations based on static analysis of the pro-
gram. In particular activity analysis (cf section 4.4.1) can vastly simplify the
tangent differentiated program, by statically detecting derivatives that are
always zero.
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4.1.3 The Reverse Mode of Automatic Differentiation

Maybe the most promising application of AD is the computation of gradients
of a program. If there is only one scalar output f(X) = y (n = 1), the
Jacobian f ′(X) has only one row, and it is called the gradient of f at point X.
If n > 1, one can go back to the first case by defining a weighting Y , such that
< f(X).Y > is now a scalar. If the components of f(X) were some kind of
optimization criteria, this amounts to defining a single optimization criterion
< f(X).Y >, whose gradient at point X can be computed. By definition of
the Jacobian matrix, this gradient is X = f ′t(X).Y . This gradient is useful
in optimization problems (cf section 4.2), because it gives a descent direction
in the input space, used to find the optimum.

Recalling equation (4.3), we get:

X = f ′t1 (X0) . f ′t2 (X1) . . . . . f ′tp−1(Xp−2) . f ′tp (Xp−1) . Y (4.5)

Here also, efficient computation of equation (4.5) must be done from right to
left. In this case, one can show that the computation cost of this gradient is
only a small multiple of the computation cost of the original function f by P.
In contrast, the program Ṗ resulting from the tangent mode of AD, which also
costs a small multiple of P’s execution time, returns only a column of the Ja-
cobian Matrix. To obtain the gradient, one must run Ṗ once for each element
of the cartesian basis of the input space. Therefore the cost of computing
the gradient using the tangent mode is proportional to the dimension of the
input space. Similarly, to compute the gradient using Divided Differences
also requires a number of evaluations of P proportional to the dimension of
the input space. For each basis direction ei in the input space, i.e. for each
component of vector X, one must run P at least once for X + ε.ei, and in
fact more than once to find a good enough ε. Thus the reverse mode of AD
provides the gradient at a much cheaper cost.

However, there is a difficulty: the intermediate values Xp−1 are used first,
and then Xp−2, and so on until X0. This is the inverse of their computation
order in program P. A complete execution of P is necessary to get Xp−1,and
only then can the Jacobian×vector products be evaluated. But then Xp−2 is
required, whereas instruction Ip−1 may have overwritten it! There are mainly
two ways to achieve this, called the Recompute-All (RA) and the Store-All
(SA) approaches.

The RA approach recomputes each needed Xk on demand, by restarting
the program on input X0 until instruction Ik. This is the fundamental tactic
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of the AD tool tamc/taf [20]. The cost is extra execution time, grossly pro-
portional to the square of the number of run-time instructions p. Figure 4.2
summarizes this tactic graphically. Left-to-right arrows represent execution
of original instructions Ik, right-to-left arrows represent the execution of the
reverse instructions Ik which implement Xk−1 = f ′tk (Xk−1).Xk. The big black
dot represents the storage of all variables needed to restart execution from
a given point, which is called a snapshot, and the big white dots represent
restoration of these variables from the snapshot.

time

I I I I I

I

I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Figure 4.2: The “Recompute-All” tactic

The SA approach stores each Xk in memory, onto a stack, during a pre-
liminary execution of program P, known as the forward sweep. Then follows
the so-called backward sweep, which computes each f ′tk (Xk−1) for k = p down
to 1, poping the Xk−1 from this stack upon demand. This is the basic tactic
in adifor [6, 8] and tapenade. The cost is memory space, essentially pro-
portional to the number of run-time instructions p. Figure 4.3 summarizes
this tactic graphically. Small black dots represent storage of the Xk on the
stack, before next instruction might overwrite them, and small white dots
represent their popping from the stack when needed. We draw these dots
smaller than on figure 4.2 because it turns out we don’t need to store all Xk,
but only the variables that will be overwritten by Ik+1. Figure 4.4 illustrates
AD in reverse mode, using the SA approach as done by tapenade. Actu-
ally, tapenade generates a simplified code, resulting from static analyses
and improvements described later in this report. For clarity, figure 4.4 does
not benefit from these improvements. The original program is the one of fig-
ure 4.1. Reverse derivatives are conventionally shown with a bar above. The
forward sweep is on the left column, and the backward sweep on the right.
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Figure 4.3: The “Store-All” tactic

Notice that in the backward sweep, the do loop now runs from i=n down
to 1. Considering again instruction e = SQRT(e2), differentiation produces
the following vector assignment that multiplies the instruction’s transposed
elementary Jacobian by the vector of reverse derivatives:[

e2

e

]
=

[
1 0.5/

√
e2

0 0

]
.

[
e2

e

]

This takes two derivative instructions, because e must be reset to zero.

reverse mode: T,U,e 7→ T,U

forward sweep: backward sweep:
e2 = 0.0

do i=1,n

PUSH(e1)

e1 = T(i)-U(i)

PUSH(e2)

e2 = e2 + e1*e1

end do

e = SQRT(e2)

e2 = 0.0

e1 = 0.0

e2 = e2 + 0.5*e/SQRT(e2)

e = 0.0

do i=n,1,-1

POP(e2)

e1 = e1 + 2*e1*e2

POP(e1)

T(i) = T(i) + e1

U(i) = U(i) - e1

e1 = 0.0

end do

e2 = 0.0

Figure 4.4: AD in reverse mode, Store-All tactic

Notice furthermore the calls to PUSH and POP, that store and retrieve the
intermediate values of variables e1 and e2: in practice, not all values need
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be stored before each instruction (cf section 4.4.2). Only the value(s) that
are going to be overwritten need be stored.

The RA and SA approaches appear very different. However, on large
programs P, neither the RA nor the SA approach can work. The SA approach
uses too much memory (almost proportional to the run-time number of
instructions). The RA approach consumes computation time (it will grossly
square the run-time number of instructions). Both ways need to use a special
trade-off technique, known as checkpointing. The idea is to select one or
many pieces of the run-time sequence of instructions, possibly nested. For
each piece p, one can spare some repeated recomputation in the RA case,
some memory in the SA case, at the cost of remembering a snapshot, i.e. a
part of the memory state at the beginning of p. On real programs, language
constraints usually force the pieces to be subroutines, loops, loop bodies, or
fragments of straight-line code.

There has been little work on the evaluation and comparison of these
strategies. With the notable exception of Griewank’s schedule of nested
checkpoints (SA strategy) [23], which was proved optimal for P being a loop
with a fixed number of iterations [25], there is no known optimal check-
pointing strategy for arbitrary programs. Moreover, no theoretical compari-
son between the RA and SA approaches exist, nor a common framework in
which these approaches could be combined. This is an open research prob-
lem, which could yield a huge benefit for AD tools, and help disseminate AD
among possible users.

Let us now compare checkpointing on RA and SA in the ideal case of a
pure straight-line program. We claim that checkpointing makes RA and SA
come closer. Figure 4.5 shows how the RA approach can use checkpointing for
one program piece p (the first part of the program), and then for two levels
of nested pieces. On very large programs, 3 or more nested levels can be
useful. At the second level, the memory space of the snapshot can be reused
for different program pieces. The benefit comes from the checkpointed piece
being executed fewer times. The cost is memory storage of the snapshot,
needed to restart the program just after the checkpointed piece. The benefit
is higher when p is at the beginning of the enclosing program piece. Similarly,
figure 4.6 shows how the SA approach can use the same one-level and two-
levels checkpointing schemes. Again, the snapshot space used for the second
level of checkpointing is reused for two different program pieces. The benefit
comes from the checkpointed piece being executed the first time without any
storage of intermediate values. This divides the maximum size of the stack
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time

Figure 4.5: Checkpointing on the “Recompute-All” tactic
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by 2. The cost is again the memory size of the snapshots, plus this time an
extra execution of the program piece p. This makes the two schemes come
closer as the number of nested ckeckpointing levels grow. On figure 4.5, the

time

p{
time

Figure 4.6: Checkpointing on the “Store-All” tactic

part on a grey background is a smaller scale reproduction of the basic RA
scheme of figure 4.2. Similarly on figure 4.6, the grey box is a smaller scale
reproduction of the basic SA scheme of figure 4.3. Apart from what happens
at the “leaves” (the grey boxes), the figures 4.5 and 4.6 are identical. This
shows that RA and SA with intense checkpointing can differ very little. The
question remains to compare pure SA and pure RA, but it becomes less
crucial as these are applied to smaller pieces of the program. However, we
believe SA is more efficient, especially on small pieces of program, because
the stack can stay in cache memory. We chose the SA approach for our tool
tapenade. But SA could do better with some amount of recomputing!

102



4.2 Motivating Applications of Reverse AD

4.2.1 Inverse Problems and Data Assimilation

We call inverse all problems where unknown values cannot be measured
directly, but instead we know some other measurable values which are con-
sequences of – or depend on – the unknown. Given actual measures of the
measurable values, the inverse problem is how to find the unknown values
which are behind them.

To do this, we assume we have a physical model that we believe represents
the way the unknown values determine the measurable values. When this
model is complex, then the inverse problem is nontrivial. From this physical
model we get a mathematical model, which is in general a set of partial
differential equations. Let us also assume, but this is not absolutely necessary,
that from the mathematical model, through discretization and resolution, we
get a program that computes the measurable values from the unknown values.

Let us formalize the problem. This classical formalization comes from
optimal control theory. We are studying the state W of a given system. In
general, this state is defined for every point in space, and also if time is
involved for every instant in an observation period [0, T ]. Traditionally, the
time coordinate is kept apart from the others (i.e. space). The mathematical
model relates the state W to a number of external parameters, which are the
collection of initial conditions, boundary conditions, model parameters, etc,
i.e. all the values that determine the state. The unknown values γ are just
some of these external parameters. In general this relation is implicit. It is
a set of partial differential equations that we write:

Ψ(γ, W ) = 0 (4.6)

Equation (4.6) takes into account all external parameters, but we are only
concerned here by the dependence on γ. In optimal control theory, we would
call γ our control variable.

Any value of γ thus determines a state W (γ). We can easily extract from
this state the measurable values, and of course there is very little chance that
these values exactly match the values actually measured Wobs. Therefore
we start an optimization cycle to modify the unknown values γ, until the
resulting measurable values match best. We thus define a cost function that
measures the discrepancy on the measurable values in W (γ). In practice, not
all values in W (γ) can be measured in Wobs, but nevertheless we can define
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this cost function J as the sum at each instant of some squared norm of the
discrepancy of each measured value ‖W (γ)−Wobs‖

2.

j(γ) = J(W (γ)) =
1

2

∫ T

t=0
‖W (γ)(t)−Wobs(t)‖

2dt (4.7)

Therefore the inverse problem is to find the value of γ that minimizes j(γ),
which is such that j′(γ) = 0. If we use a gradient descent algorithm to find
γ, then we need at least to find the value of j′(γ) for each γ.

Here are two illustration examples:

• If the system we study is a piece of earth crust, it is difficult to mea-
sure directly the locations of the different layers of rock. However,
these locations condition shock wave propagation, and eventually con-
dition the measurable delay after which an initial shock is received at
a distant place. So γ is the location of layers of rock, Ψ models wave
propagation inside the rock, W is the position of the waves at each in-
stant, from which we deduce the theoretical reception delays at points
of measurement. J is the discrepancy we must minimize to find the
best estimation of rock layers location. The same method applies to
find an unknown drag coefficient of the bottom of a river, given the
model Ψ that captures the shape of the river bed, and measured values
of the river’s surface shape and input flow.

• In meteorology, the system studied is the evolution of the atmosphere.
The data assimilation problem looks for the best estimation of the
initial state from which the simulation will start. This initial state W0

at t = 0 is largely unknown. This is our γ. All we have is measurements
at various places for various times in [0, T ]. We also know that this
initial state and all later states in [0, T ] must obey the atmospheric
equations Ψ(γ, W ) = 0. The inverse problem that looks for the initial
state γ = W0 that generates the sequence of states at each time in
[0, T ] which is closest to the observed values, using a gradient descent,
is called variational data assimilation.

To find j′(γ), the mathematical approach first applies the chain rule to
equation (4.7), yielding:

j′(γ) =
∂J(W (γ))

∂γ
=

∂J

∂W

∂W

∂γ
(4.8)
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The derivative of W with respect to γ come from the state implicit equa-
tion (4.6), which we differentiate with respect to γ to get:

∂Ψ

∂γ
+

∂Ψ

∂W

∂W

∂γ
= 0 (4.9)

Assuming this can be solved for ∂W
∂γ

, we can then replace it into equation (4.8)
to get:

j′(γ) = − ∂J

∂W

∂Ψ

∂W

−1∂Ψ

∂γ
(4.10)

Now is the time to consider complexity of resolution. Equation (4.10)
involves one system resolution and then one product. First notice that

∂Ψ

∂W

is definitely too large to be computed explicitly, and therefore its inverse can-
not be computed and stored either. Nowadays both Ψ and W are discretized
with millions of dimensions. So our choices are either to run an iterative
resolution for

∂Ψ

∂W

−1∂Ψ

∂γ
(4.11)

and then multiply the result by ∂J
∂W

, or else to run an iterative resolution for

∂J

∂W

∂Ψ

∂W

−1

(4.12)

and then multiply the result by ∂Ψ
∂γ

. We notice that ∂Ψ
∂γ

has many columns,
following the dimension of γ, which can be several thousands. Therefore
computation of (4.11) requires as many resolutions of the linear system

∂Ψ

∂W
x =

∂Ψ

∂γ

Conversely, j is a scalar, ∂J
∂W

is a row vector, and it takes only one resolution
to compute (4.11), solving

Π∗
∂Ψ

∂W
=

∂J

∂W
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for Π, which is called the adjoint state. This second approach is more efficient.
To summarize, this preferred adjoint method first solves

∂Ψ

∂W

∗
.Π =

∂J

∂W

∗

for the adjoint state Π, then just computes

j′(γ) = −Π∗
∂Ψ

∂γ

Suppose now that we already have a resolution program, i.e. a procedure
PΨ which, given γ, returns Wγ. We also have a procedure Pj which, given
a W , evaluates the cost function, i.e. the discrepancy between W and the
observed Wobs. Then we can avoid all the programming step involved by the
above mathematical method, using AD. Automatic Differentiation in reverse
mode of the program that computes

j = Pj(PΨ(γ))

directly gives the gradient of j, i.e. the desired j′(γ). This is indeed very
close to the mathematical resolution with the adjoint state: the reverse mode
actually computes a discretized adjoint on the program. One difference is
that the adjoint mechanism is applied to the whole program Pj ◦PΨ, including
the resolution algorithm, whereas the resolution algorithm for Π above may
be different from the resolution algorithm for W .

So to get j′(γ), we can either write the adjoint equations, then discretize
them and solve them, or else we can use the reverse mode of AD on the
program that computes j from γ. The first method is more difficult, because
it involves a new implementation. The second method ideally doesn’t require
additional programming.

There is a difficulty though. The resolution for j′(γ) by AD uses reverse
differentiation of PΨ. PΨ takes γ and returns W , computed iteratively. PΨ

takes W and returns γ, computed iteratively with the same number of iter-
ations. The question is “will this second iteration converge?”. Jean-Charles
Gilbert has shown [21] that under some complex but widely satisfied con-
straints, if an iterative resolution converges to a result, then its AD derivative
converges to the derivative of the result. So we are confident that PΨ eventu-
ally converges to the desired γ. But we are not sure it will converge at same
speed! In other words, it is not sure that an efficient algorithm to compute
W (γ) and then j(γ) yields an efficient resolution algorithm to compute j′(γ).
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The next section illustrates an hybrid approach that uses the AD reverse
derivatives for the non-iterative part of the resolution, and then solves the
adjoint system by hand with an ad-hoc resolution algorithm. This may be
an answer to the difficulty above.

4.2.2 Optimization in Aerodynamics

This application uses AD to optimize the shape of a supersonic aircraft, in
order to minimize the sonic boom felt on the ground. The problem, shown
on figure 4.7, is modelized numerically as the following chain of operations,
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p

Tail Wave

Bow Wave
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Sonic Boom Downwards Emission
Control Box (near field)

Figure 4.7: The sonic boom: shock wave patterns on the near and far fields.

that go from the parameters γ that define the geometry of the plane to a
measure of the sonic boom on the ground, the cost function j(γ).

Control Euler Pressure Cost
points ⇒ Geometry ⇒ flow ⇒ shock ⇒ function

γ Ω(γ) W (γ) ∇p(W ) j(γ)

The intermediate steps are: the complete geometry Ω(γ) of the plane, the
Euler flow W (γ) around this geometry, and the pressure gradients ∇p(W )
under the plane. The cost function j(γ) actually combines the integral of
the squared pressure gradients with the discrepancy from prescribed lift and
drag coefficients.
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We want to minimize j(γ), using a gradient method, by iterative modifi-
cations of the shape parameters γ. This gradient descent is driven by j′(γ),
which we must compute.

Since the chain from γ to j(γ) is actually a program, we can apply AD
in the reverse mode to the complete program to get j′(γ). However this
is impractical due to the size of the program. Remember that the reverse
mode, with the Store-All strategy, has a memory cost proportional to the
execution time of the program. There are also questions about convergence:
the original program solves the flow W (γ) iteratively. It is not sure whether
it makes sense to differentiate this complete iterative process.

We proposed in [35] an hybrid approach, where we only apply AD to
selected parts of the original program, then use the differentiated pieces in
a new, hand-coded solver, yielding the adjoint of the discretized flow equa-
tions and finally the gradient. To this end, we go back to the mathematical
equations. Basically, we consider a minimization problem under a particular
additional constraint: the flow equation Ψ(γ, W (γ)) = 0, which expresses
the dependence of the flow field W (γ) on the shape γ. We thus want to
find the γ0 that minimizes the cost functional j(γ) = J(γ, W (γ)), under the
constraint Ψ(γ, W (γ)) = 0. Here, this constraint is the compressible Euler
equations, solved in a domain Ωγ parametrized by γ. This minimization
problem is solved using Lagrange multipliers. The problem’s Lagrangian is

L(W, γ, Π) = J(γ, W ) + 〈Ψ(γ, W ), Π〉, (4.13)

where Π is the adjoint state, which is a generalized Lagrange multiplier, and
〈 , 〉 is a suitable scalar product. Then the gradient j′(γ) is found by solving

Ψ(γ, W (γ)) = 0

∇W J(γ, W (γ)) − (∇W Ψ(γ, W (γ)))∗ Π(γ) = 0

j′(γ) = ∇γJ(γ, W (γ)) − (∇γΨ(γ, W (γ)))∗ Π(γ). (4.14)

The first line gives W (γ). The second line is the so-called adjoint flow equa-
tion, and gives the adjoint state Π(γ). The last line gives the gradient j′(γ)
using Π(γ) and W (γ). This gradient will be used to update iteratively the
former γ.

We then remark that, if we isolate the subprogram Psi of the flow solver
program P that computes Ψ(γ, W (γ)), the reverse mode of AD can build au-
tomatically a new subprogram PsiW . This new subprogram, given any vec-
tor Π, returns the product (∇W Ψ(γ, W (γ)))∗ Π. Differentiation with respect

108



to γ instead of W gives another subprogram Psiγ that for any Π returns
(∇γΨ(γ, W (γ)))∗ Π. Similarly, if we isolate the subprogram J that com-
putes the cost function J(γ, W (γ)), the reverse mode of AD automatically
builds subprograms JW and Jγ that respectively compute∇W J(γ, W (γ)) and
∇γJ(γ, W (γ)).

With these subroutines generated, what remains to be done by hand to get
j′(γ) is the solver that solves the adjoint flow equation for Π. Notice that AD
does not give us the matrix (∇W Ψ(γ, W (γ)))∗ explicitly. Anyway this (2nd-
order) Jacobian matrix, although sparse, is too large for efficient storage and
use. Therefore, we build a matrix-free linear solver. Fortunately, we just need
to modify the algorithm developed for the flow solver P. P uses a simplified
(1st-order) Jacobian for preconditioning the pseudo-Newton time advancing.
This matrix is stored. We just transpose this simplified Jacobian and reuse
its Gauss-Seidel solver to build a preconditioned fixed-point iteration, that
solves the adjoint flow equation. This method is discussed in detail for a 2D
application in [12]. We validated the resulting gradient by direct comparison
with divided differences of the cost function. The relative error is about 10−6.

The overall optimization process is made of two nested loops. The outer
loop evaluates the gradient, using an adjoint state as described above, then
calls the inner loop which does a 1D search to get the steepest descent pa-
rameter, and finally updates the control parameters

Figure 4.8: Supersonic Business Jet: Gradient of the Cost Functional on the
skin
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We applied this optimization program on the shape of a Supersonic Busi-
ness Jet, currently under development at Dassault Aviation. The mesh con-
sists of 173526 nodes and 981822 tetrahedra (for half of the aircraft). The
inflow Mach number is 1.8 and the angle of attack is 3◦. We target opti-
mization of the wings of the aircraft only. Even then, the flow, the adjoint
state, and the gradient j′(γ) are computed taking into account the complete
aircraft geometry. Figure 4.8 shows the gradient of our “sonic boom” cost
functional j on the skin on the complete aircraft. Darker colors indicate
places where modifying the shape strongly improves the sonic boom.

original geometry optimized geometry

Figure 4.9: Supersonic Business Jet: Pressure distribution in a plane below
the aircraft

Figure 4.9 shows the evolution of the pressure on the near field, after 8
optimization cycles. We observe that the shock produced by the outboard
part of the wings is dampened. However, within the Mach cone, close to
the fuselage, the pressure peak has slightly increased after the optimization
process. This increase is tolerable, compared to the reduction obtained on the
end of the wings. Paper [49] describes further how this shape optimization
improves the actual sonic boom on the ground.
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4.3 Using the Flow Graph for flow inversion

in reverse AD

In section 4.1.3 we saw that the backward sweep of the differentiated program
must sweep through instructions in the reverse order. For a real program,
with control, the control flow of the backward sweep must be the inverse of
the control flow of the original program, or equivalently of the forward sweep.
In this section, we advocate using the Flow Graph to achieve this.

When program P is well structured, as recommended by good program-
ming practice, the Flow Graph is embedded in the syntax tree, and flow
inversion can be done on the syntax tree. But things are not so simple
on real programs. Instructions such as cycle, exit, exception raising, let
alone the dreaded goto, introduce control which is not embedded in the syn-
tax tree. Only the Flow Graph can represent explicitly this sort of control
flow.

Figure 4.10 shows on top the Flow Graph of a piece of the forward sweep,
and below the Flow Graph of the corresponding piece of the backward sweep.
This shows the simple flow reversal strategy of Odyssée 1.6, a predecessor
of tapenade. Conditionals were reversed by duplicating the test from the
forward sweep, and only DO loops could be reversed, with a loop index going in
the reverse order. As one can see, Odyssée could only handle well structured
programs. On figure 4.10, the second arrow that reaches block B5 comes from
a goto, and it is impossible to generate the expected behavior at the end of
block B5 on the backward sweep. Even worse, test t1 is now done between
block B4 and blocks B2 and B3. This is not compatible with the order of the
forward sweep, where t1 is executed between block B1 and blocks B2 and B3.
If t1 uses a variable v which is overwritten and then used in B2, then in the
backward sweep, t1 needs the former value v and B2 needs the latter value,
which is not compatible with the stack first-in/first-out mechanism.

Figure 4.11 shows an attempt at reversing arbitrary Flow Graphs. This
is the strategy of Odyssée 1.7. Basically, the forward sweep remembers
the list of all Basic Blocks executed, and then the backward sweep executes
the corresponding backward sweeps of each Basic Block. This is correct but
extremely awkward, because all the control structure is flattened, and the
compiler gives a poorly optimized code. This was a first attempt at using
the Flow Graph.

We think that Flow Graph reversal must return a structured Flow Graph,
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B1
t1

B2 B3

B4

B5

B5

B4
t1

B2 B3

B1

?

Figure 4.10: Naive control reversal on the syntax tree (Odyssée 1.6)
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B1
t1

B2 B3

B4

B5

PUSH(1)

PUSH(2) PUSH(3)

PUSH(4)

PUSH(5)

while (n=POP)

switch(n)

B1
t1

B2 B3 B4 B5

Figure 4.11: General Flow Graph flattening and inversion (Odyssée 1.7)
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with as many structured instructions as the forward sweep. The places where
the flow of control splits in the backward sweep are the places where the flow
of control merges in the forward sweep. This tells us where to add the
instructions that store the flow decisions in the forward sweep: just before
flow merges. This preserves the stack order of values stored for reverse AD.
This is shown on figure 4.12. The structured test remains a structured test,

B1
t1

B2
PUSH(0)

B3
PUSH(1)

B4
PUSH(0)

B5

PUSH(1)

B5
test(POP)

B4
test(POP)

B2 B3

B1

Figure 4.12: Control reversal on the Flow Graph (tapenade)

whereas the test at the end of B5 may very well result in a goto. Figure 4.13
shows the strategy to reverse a loop: in the backward sweep is also a loop,
and only the necessary control values are pushed on the stack.
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B1

nf = f

do i=f,t,3

B2
PUSH(nf)
PUSH(i-3)

ni = POP
nf = POP

do i=ni,nf,-3

B2
B1

Figure 4.13: control reversal of a DO loop (tapenade)

4.4 Static Data Flow Analyses for a better

AD

There is an already very large collection of Data Flow analyses developped
for compilers (standard, optimizing, or parallelizing). However, AD exhibits
specific behaviors that require new data flow analyses. In this section, we de-
scribe these new analyses and show their interest. The emphasis will be put
on how these analyses can be formalized cleanly and implemented efficiently
on programs internally kept as Flow Graphs, using so-called “data flow equa-
tions”. In section 4.4.1, we discuss “activity” analysis, which is central to
all modes of AD. In section 4.4.2, we give special attention to an analysis
for the reverse mode, called “TBR”. In section 4.4.3, we define an extension
of the classical Read-Written analysis to optimize the size of “snapshots”.
In section 4.4.4, we present extensions to dead code detection, that can also
improve AD-generated code.
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4.4.1 Activity Analysis

In theory (cf section 4.1.1), AD must compute for each instruction the partial
derivative of the instruction’s output with respect to its inputs. For example
in tangent mode, for any instruction such as x(i)=a*b(i+j), the derivative
instruction will a priori involve the derivatives ȧ, ḃ, ẋ of a, b, x.

In practice, not all derivatives need be computed, because some of them
can be statically proven always null, or never used. In AD tools, the end-user
who requests differentiation of program P can specify which of the results of
P must be differentiated, and with respect to which of the inputs of P. These
variables are called respectively the dependent outputs and the independent
inputs. Informally, an occurrence inside P of a variable that does not “de-
pend” on any independent has certainly a zero derivative. Conversely, an
occurrence of a variable on which no dependent “depends” has certainly a
derivative which is useless to get the desired results. More formally, we shall
say that the variable vi assigned by an instruction “depends in a differen-
tiable way” on the variable vj used in this instruction, and we write vj ≺ vi,
iff the partial derivative of vi with respect to vj is defined. In other words,
this partial derivative cannot be statically proven always null. Considering
for example instruction x(i)=a*b(i+j), the left-hand side x(i) depends on
a and b(i+j), but not on i nor j. We define ≺∗ as the closure of relation ≺:

≺∗= ∪∞k=1 ≺k

where ≺k is the composition of k times ≺. Given the set xI of independent
input variables, and the set yD of dependent output variables, both sets
provided by the end-user, the variables for which the derivative must be
computed (“active” variables) are the v that are both “varied”, i.e.

∃x ∈ xI : x ≺∗ v

and “useful”, i.e.
∃y ∈ yD : v ≺∗ y

All other variables are called “passive”. For them, there is no derivative
variable: no value is computed for this derivative variable, and if its value
is used somewhere, it is replaced by zero and simplified. Therefore activity
analysis does two things:

• Forwards from the beginning of the program, it must propagate the set
of all variables that possibly depend on some independent input.
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• Backwards from the end of the program, it must propagate the set of
all variables on which some dependent output possibly depends.

Those are two static interprocedural data flow analyses. To master combina-
torial explosion, we synthesize (i.e., bottom-up) the most expensive part of the
analysis, which is the relation ≺∗ for each subroutine, during a preliminary
phase called the Differentiable Dependency Analysis.

Differentiable Dependency Analysis

For each subroutine bottom-up on the Call Graph, we compute all pairs of
variables (vb.va), vb just before the subroutine and va just after the subroutine,
such that vb ≺∗ va.. We call this set Dep. It can be implemented very
efficiently as a matrix of Booleans, but we shall stick to sets for this formal
description. We are going to give the data flow equations that compute Dep
at each level of the program representation.

This dependency information for subroutines requires that we compute
similar information at lower levels in the program representation, i.e. for each
control structure, Basic Block, and for each instruction. If the program is
recursive, there are cycles in the Call Graph, and therefore this computation
needs a fix point at the Call Graph level.

For an individual instruction, there are two main cases: assignments and
subroutine calls. We will examine subroutine calls when we deal with the
interprocedural aspect. Let us see assignments first. After an assignment,
the assigned variable depends on all variables that occur in differentiable
position in the right-hand side. This set (call it DP) is given by the following
constructive definition:

exp: e1 op e2 ϕ(e1) e1[i] v c
DP(exp): DP(e1) ∪ DP(e2) DP(e1) DP(e1) {v} ∅

Above, op ∈ {+,−, ∗, . . .}, ϕ ∈ {sin, exp, tan, . . .}, e1[i] is an array reference,
v is a single variable, and c a constant. All variables other than the assigned
variable remain unchanged. They depend just on themselves. Thus for an
assignment I : “v=exp”

Dep(I) = {(d.v),∀d ∈ DP(exp)} ∪ {(x.x),∀x 6= v}.

When dealing with arrays, we must overestimate Dep as follows: if the left-
hand side v is an array reference, then some parts of the array may retain
their old values, and therefore we must add dependence (v.v) to Dep(I).
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For a basic block, and more generally for any sequence of structured
program pieces pi, we define the sequential composition ⊗ of the Dep sets as
follows:

Dep(p1; p2) = Dep(p1)⊗ Dep(p2)
= {(vb.va) : ∃vx : (vb.vx) ∈ Dep(p1) ∧ (vx.va) ∈ Dep(p2)}

For a subroutine S, Dep(S) is built from the Dep of each basic block
in its flow graph, using data flow equations. For each basic block B, we
introduce InDep(B) (resp. OutDep(B)), the dependencies from the entry
block of S to the beginning (resp. end) of B. The data flow equations given
in figure 4.14 relate the InDep and the OutDep of adjacent basic blocks.
These equations form a system that can be solved iteratively. We can prove

...

B

...

InDep(B) =
⋃

P predecessor of B

OutDep(P )

OutDep(B) = InDep(B)⊗ Dep(B)

Figure 4.14: General data flow equations for differentiable dependency anal-
ysis

that these iterations eventually terminate: the InDep and OutDep of each
basic block are initialized to ∅, except for the InDep of the entry block,
which is initialized to the identity “Id” (every variable depends on itself
only). During iteration, the successive values of each basic block’s InDep
and OutDep are growing, inside a finite domain with a maximum element
(every variable depends on every variable). Therefore iteration terminates,
and after resolution the OutDep of the exit block of S is exactly the desired
Dep(S).

In the case of structured flow graphs, the data flow equations can be
specialized into structured data flow equations, shown on figure 4.15. They
compute the Dep sets explicitly, recursively bottom up on the structured flow
graph, rather than iteratively on the unstructured flow graph. Structured
data flow equations are less general, but more efficient. In particular, there
is no more iterative solving, except inside the equation for loops, to compute
the closure of Dep(B1), seen as a relation.

Subroutine calls are handled at the call graph level. For an individual
instruction I which is “call S(...)”, Dep(I) is basically Dep(S) (with a
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B →
B1

B2

Dep(B) = Dep(B1)⊗ Dep(B2)

B → B1 B2 Dep(B) = Dep(B1) ∪ Dep(B2)

B → B1 Dep(B) = (Dep(B1))
∗

Figure 4.15: Structured data flow equations for the differentiable dependency
analysis

technical step of translating the variable names, as the name space of S differs
from that of the calling subroutine). Therefore, the Dep set of each subrou-
tine can be computed as soon as the Dep sets of all subroutines possibly
called inside it have been computed. Consequently, when the call graph is
acyclic, the Dep sets of each subroutine are computed by a bottom-up sweep.
Otherwise they must be computed iteratively. We shall not describe here this
iterative computation, which poses no fundamental problem anyway.

Varied and Useful variables

After the Dep sets are synthesized, activity analysis goes on propagating two
data flow sets through the program:

• The varied variables are variables v such that ∃x ∈ xI, x ≺∗ v. InVary(p)
(resp. OutVary(p)) denotes the set of varied variables just before (resp.
after) a given program piece p. For the whole program P, by definition,
InVary(P) = xI, which is then propagated forwards on the program
flow.
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• The useful variables are variables v such that ∃y ∈ yD, v ≺∗ y.
InUseful(p) (resp. OutUseful(p)) denotes the set of useful variables just
before (resp. after) a given program piece p. For the whole program P,
by definition, OutUseful(P) = yD, which is then propagated backwards
on the program flow.

A variable is active when it is varied and useful. Both analyses run top
down on the call graph. Solutions must be obtained iteratively if the call
graph contains cycles. For an acyclic call graph, subroutines are analyzed
in an order obtained by topological sorting. This approach ensures that all
calls to subroutine S are analyzed before looking at S itself.

For a subroutine S, both analyses run similarly on the flow graph. The
data flow equations are shown on figure 4.16 for unstructured flow graphs
and on figure 4.17 for some sample structured flow graphs. The InVary set
of the entry block of S is initialized to InVary(S), which is the union of the
varied variables before S, on all calling contexts. Similarly, the OutUseful
set of the exit block of S is initialized to OutUseful(S), which is the union of
the useful variables after S, on all calling contexts. For these equations, we
extended the operator ⊗ on sets V of variables as follows:

V ⊗ Dep(B) = {va : ∃vb ∈ V : (vb.va) ∈ Dep(B)}
Dep(B)⊗ V = {vb : ∃va ∈ V : (vb.va) ∈ Dep(B)}

...

B

...

InVary(B) =
⋃

P predecessor of B

OutVary(P )

OutVary(B) = InVary(B)⊗ Dep(B)

OutUseful(B) =
⋃

S successor of B

InUseful(S)

InUseful(B) = Dep(B)⊗OutUseful(B)

Figure 4.16: General data flow equations for activity analysis

Finally, at the instruction level, the following rules propagate the varied
variables forwards and the useful variables backwards, across any instruction
I:

OutVary(I) = InVary(I) ⊗ Dep(I)
InUseful(I) = Dep(I) ⊗ OutUseful(I) In addi-

tion to the above rules, for a subroutine call I : “call S(...)”, the following
rules accumulate the activity information for the present calling context into
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B → B1 B2

InVary(B1)=InVary(B2)=InVary(B)
OutVary(B) = OutVary(B1) ∪OutVary(B2)
OutUseful(B1)=OutUseful(B2)=OutUseful(B)
InUseful(B) = InUseful(B1) ∪ InUseful(B2)

B → B1

InVary(B1) = InVary(B)⊗ (Id ∪Dep(B))
OutVary(B) = OutVary(B1)
OutUseful(B1) = (Id ∪Dep(B))⊗OutUseful(B)
InUseful(B) = InUseful(B1)

Figure 4.17: Examples of structured data flow equations for activity analysis

InVary(S) and OutUseful(S), their respective unions for all calling contexts.
These sets will be used upon initialization when analyzing S itself.

InVary(S) = InVary(S) ∪ InVary(I)
OutUseful(S) = OutUseful(S) ∪ OutUseful(I)

4.4.2 TBR Analysis

In section 4.1.3, we saw that the main drawback of the reverse mode of
AD is the memory consumption to store intermediate values before they are
overwritten during the forward sweep. Although checkpointing is a general
answer to this problem, it is advisable to restrict this storage to intermediate
values that are really needed by the backward sweep. Consider for example
an assignment x = a+2*b. The partial derivatives of the sum do not use the
values of a nor b. Therefore, as far as this instruction is concerned, there
is no need to store the values of a nor b in case they get overwritten in the
forward sweep. This is the purpose of the TBR analysis [19, 39, 33], which
analyses the program to find which variables are To Be Recorded, and which
are not.

The left column of figure 4.18 shows an example original code, which is the
body of a subroutine that uses values from an array x to compute new values
of x. The right column of figure 4.18 shows the corresponding backward
sweep, which implements equation (4.5). The middle column displays the
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forward sweep. Now consider variable a. Each instruction that uses a has a

Original Code Forward Sweep Backward Sweep
i=0;j=10;a=3.14159

while (check(j)) {
if (max(i,j)>7) {

x(i)=j+sin(x(i))

} else {

x(j)=j*cos(x(j))+a

}

i=i+1

j=j-1; a=a/2

}

i=0;j=10;a=3.14159

COUNT=0

while (check(j)) {
if (max(i,j)>7) {
PUSH(x(i))

x(i)=j+sin(x(i))

PUSH(true)

} else {
PUSH(x(j))

x(j)=j*cos(x(j))+a

PUSH(false)

}
PUSH(i)

i=i+1

PUSH(j)

j=j-1; a=a/2

COUNT=COUNT+1

}
PUSH(COUNT)

POP(COUNT)

while (COUNT>0) {
COUNT=COUNT-1

POP(j)

POP(i)

POP(test)

if (test) {
POP(x(i))

x(i)=

cos(x(i))*x(i)

} else {
POP(x(j))

x(j)=

-j*sin(x(j))*x(j)

}

}

Figure 4.18: Original code, forward sweep, backward sweep

local Jacobian that does not require a. Therefore, it is not necessary to store
a before it is overwritten by instruction a = a/2, and TBR analysis decided
not to insert the corresponding PUSH/POP instructions. On the other hand,
x, i, and j are recorded beacuse they are used in the backward sweep.

We are going to formalize TBR analysis on the Flow Graph, like we
did before for activity analysis. Thus, TBR analysis follows the flow of the
original code, propagating the set of variables whose current value is required
in the backward sweep, and flags assignments that overwrite such a variable,
so that its value will be recorded. As before, we identify a bottom-up analysis
in order to control combinatorial explosion.
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Bottom-Up TBR Analysis

For each structured piece p of the program, we synthesize a summary of the
effect of p on TBR propagation. Concretely, this effect is composed of two
parts:

• The killed variables, those variables present at the beginning of p that
are certainly completely overwritten inside p. We denote this set Kill(p).

• The adjoint-used variables, those variables present at the end of p which
will be used in the adjoint of p. We denote this set AdjU(p).

We are going to give the data flow equations that define these two sets at
each level of the program representation.

For an individual instruction I, let us again focus on assignments. Sub-
routine calls will be treated later, when we look at interprocedural TBR
analysis. As defined in section 4.4.1, the AdjU set of an assignment is empty
if the assigned variable is not active after I. Otherwise, a variable is used
in the adjoint of an assignment a = φ(B) if it appears in ∂φ

∂bi
(B) or, in other

words, if it appears in an expression e of φ(B) that is an argument of a non-
linear operation such as sin(e) or e*x whose result is active. Furthermore,
variables in the indices of the bi and a are also used whenever the latter
are array references. This leads us to the operational rules below, expressed
recursively on the structure of the syntax tree:

Kill(T[exp]=b) := ∅
Kill(x=b) := {x}

AdjU(a=exp) := if exp active then (AdjU(a)∪AdjU(exp))\Kill(a=exp) else ∅
(and flag a to be recorded if it belongs to AdjU(exp))

AdjU(sin(a)) := VARS(a)
AdjU(a*b) := (if a active then VARS(b)∪ AdjU(a) else ∅) ∪

(if b active then VARS(a)∪ AdjU(b) else ∅)
AdjU(a+b) := AdjU(a) ∪ AdjU(b)
AdjU(T[exp]) := AdjU(T) ∪ VARS(exp)
AdjU(variable) := ∅
AdjU(constant) := ∅

In the above, an expression is active when its value, considered as a
temporary variable, is active. VARS(x) is the set of all variables occurring
in expression x. The rules for the killed variables perform overestimation for
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arrays: if array region analysis is not performed, an assignment to one array
cell does not kill the array.

Consider now the AdjU rule for an assignment, remember that the variable
killed by the left-hand side represent different mathematical variables before
and after this left-hand side. Therefore the variable after the assignment is
brand new, not yet used by any adjoint instruction, and therefore actually
erased from the AdjU set. The same reasoning applies inside a basic block,
or for any sequence of structured program pieces (cf top of figure 4.20): Kill
and AdjU sets are jointly defined by composition of the Kill and AdjU of
these pieces. Variables in the Kill set are removed from the AdjU after the
operation that actually overwrites them.

For a subroutine S, AdjU(S) and Kill(S) are built jointly and iteratively
on the flow graph. For each basic block B, we introduce InAdjU(B) (resp.
OutAdjU(B)) and InKill(B) (resp. OutKill(B)), the required and killed vari-
ables from the entry block of S to the beginning (resp. end) of B. The data
flow equations are given in figure 4.19. They essentially state that a variable
is required after basic block B if it is required on at least one path leading
to B and is not killed in B, or else if it is required inside B. For every basic

...

B

...

InAdjU(B) =
⋃

P predecessor of B

OutAdjU(P )

InKill(B) =
⋂

P predecessor of B

OutKill(P )

OutAdjU(B) = (InAdjU(B) \Kill(B)) ∪ AdjU(B)

OutKill(B) = InKill(B) ∪Kill(B)

Figure 4.19: General data flow equations for bottom-up TBR analysis

block B, InAdjU(B), OutAdjU(B), InKill(B), and OutKill(B) are initialized
to ∅. Termination of the iterative resolution is granted by the fact that the
computed sets are growing with respect to set inclusion and that they are
bounded by the finite set of all variables present at this place in the program.
After resolution, OutAdjU and OutKill of the exit block of S are exactly the
desired AdjU(S) and Kill(S). In the case of structured flow graphs, the data
flow equations can be specialized as shown in figure 4.20. No iteration is
required.

At the call graph level, the AdjU and Kill sets of a call to a subroutine
S are equal to AdjU(S) and Kill(S). This implies one bottom-up sweep for
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B →
B1

B2

AdjU(B) = (AdjU(B1) \Kill(B2)) ∪ AdjU(B2)

Kill(B) = Kill(B2) ∪Kill(B1)

B → B1 B2

AdjU(B) = AdjU(B1) ∪ AdjU(B2)

Kill(B) = Kill(B1) ∩Kill(B2)

B → B1

AdjU(B) = AdjU(B1)

Kill(B) = Kill(B1)

Figure 4.20: Structured data flow equations for bottom-up TBR analysis

acyclic call graphs.

Top-Down TBR Analysis

After the AdjU and Kill sets are synthesized, the second step of TBR analy-
sis computes and propagates the required variables, i.e. those whose present
value is possibly used by the adjoint of some previous instruction. InReq(p)
(resp. OutReq(p)) denotes the set of the required variables just before (resp.
after) a given program piece p. Each time an individual instruction over-
writes a required variable (i.e. a variable present in the InReq set), we flag
the overwritten variable as “to be recorded”, and a PUSH/POP pair will be
inserted. For the whole program P, InReq(P) is initialized to ∅, and is then
propagated forwards on the program flow. Subroutines are swept top down
on the call graph, in an order obtained by topological sorting. This ensures
that a called subroutine is analyzed after all of its calling sites have been
analyzed.

For a subroutine S, the data flow equations are shown in figure 4.21.
Figure 4.22 shows specialized data flow equations for some sample structured
flow graphs. The InReq set of the entry block of S is initialized to InReq(S),
which is the union of the required variables before the call to S, on all calling
contexts.
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...

B

...

InReq(B) =
⋃

P predecessor of B

OutReq(P )

OutReq(B) = (InReq(B) \Kill(B)) ∪ AdjU(B)

Figure 4.21: General data flow equations for top-down TBR analysis

B → B1 B2

InReq(B1) = InReq(B2) = InReq(B)

OutReq(B) = OutReq(B1) ∪OutReq(B2)

B → B1

InReq(B1) = InReq(B) ∪ AdjU(B1)

OutReq(B) = (InReq(B) \Kill(B1)) ∪ AdjU(B1)

Figure 4.22: Examples of structured data flow equations for top-down TBR
analysis
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Observe that, unlike for dependencies (figure 4.15), the structured data
flow equations for the loop are not iterative and therefore can be solved at
low cost with no fixpoint. This result was demonstrated in [19, 39]. Here
we reformulate the proof in the present formalism. The general data flow
equations from figure 4.21, specialized to the structured loop of figure 4.22,
are

InReq(B1) = InReq(B) ∪OutReq(B1);
OutReq(B1) = (InReq(B1) \Kill(B1)) ∪ AdjU(B1).

Substituting OutReq(B1) into the first equation gives the fixpoint definition

InReq(B1) = InReq(B) ∪ (InReq(B1) \Kill(B1)) ∪ AdjU(B1),

whose solution is the first data flow equation for structured loops:

InReq(B1) = InReq(B) ∪ AdjU(B1). 2

Similarly, OutReq(B) is equal to OutReq(B1) and

OutReq(B) = ((InReq(B) ∪ AdjU(B1)) \Kill(B1)) ∪ AdjU(B1),

which can be simplified to get the second data flow equation for structured
loops:

OutReq(B) = (InReq(B) \Kill(B1)) ∪ AdjU(B1). 2

Finally, at the instruction level, the following rule propagates the “re-
quired” information forwards across any instruction I:

OutReq(I) = (InReq(I) \Kill(I)) ∪ AdjU(I)

and variables overwritten by I must be flagged as “to be recorded” if they
belong to InReq(I). In addition, for a subroutine call I : “call S(...)”,
the following rule accumulates the required information for the present call-
ing context into InReq(S). Top-down sweep on the call graph ensures that
InReq(S) will eventually contain the union for all calling contexts when S
itself is analyzed.

InReq(S) = InReq(S) ∪ InReq(I)

4.4.3 Optimal Snapshots

The above TBR analysis allows a reverse AD tool to reduce the size of the
stack grossly by a constant factor: the proportion of active variables that are
used only “linearly” in the program. This can be a gain of 10 to 20 percent.
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But for large applications, we need more than just a constant factor. We
definitely need nested checkpointing, which in theory can reduce the stack
size logarithmically. For example in [23], Griewank shows that an optimal
checkpointing for a loop of fixed length n, has a cost of only O(log(n)) in
maximal stack size, and only O(log(n)) in maximal extra execution time.

We have similar complexity bounds in the more general case of a program
made of a Call Tree with n subroutines, as shown on the left of figure 4.23.
We choose to turn every subroutine or function call into a checkpointing
piece “p”, as defined in section 4.1.3 figure 4.6. This checkpointing scheme,
known as the “split mode”, is very easy to implement. The right part of
figure 4.23 shows the Call Tree of the reverse differentiated program. When
a forward sweep calls a subroutine X, it takes a snapshot to be able to run X

again later, then calls the non-differentiated X. Later, during the backward
sweep, it calls X again, but this time its forward sweep, immediately followed
by X’s backward sweep. One can check easily that the maximum stack size,

Top
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D E F

Top Top
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D E

B C

F

C C

F F F

B B A A

D E E E D D

X : original form of subroutine X
X : forward sweep of differentiated X

X : reverse sweep of differentiated X

: take snapshot

: use snapshot

Figure 4.23: Recursive checkpointing scheme on a Call Tree

due to recording of intermediate values and to snapshots, is proportional
to the depth of the Call Tree. Similarly, the maximal number of duplicate
executions of a subroutine is equal to its depth in the Call Tree. Finally, for
well enough balanced Call Trees, this depth is proportional to the logarithm
of the number n of subroutines, i.e. of the size of the program.

Our concern here is to keep the size of the snapshots low. A naive im-
plementation would store the values of each and every variable around. This
is definitely unacceptable for real applications. What is the smallest size of
the snapshot? Strictly speaking, for a given checkpointing piece p, the goal
is to run p later. With the notations of the classical Read-Written analysis,
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this requires that all variables in the “Read” set of p, In(p), be preserved.
In these Read and Written sets, we consider only the original variables, and
not their differentiated counterparts. Now how could one of these variables
be altered? This can only happen if it is overwritten between the beginning
of p and the beginning of p. Observing that p itself is included in the above
checkpointing level Above(p) (it can be the Top level of the program), we
call Aft(p) the piece of the original program from the exit of p to the end of
Above(p). The piece of the reverse differentiated program which is executed
between the beginning of p and the beginning of p is therefore:

p;Aft(p).

Therefore, the variables that must be stored in the snapshot for p are:

Snapshot(p) = Read(p) ∩Written(p;Aft(p))

An easy-to-implement aproximation of Snapshot(p) is:

Snapshot(p) ⊂ Read(p) ∩Written(Above(p))

This approximation is generally implemented in AD tools. Notice however
that this is only an approximation. The standard Read-Written analysis
often returns the Read and Written sets only from the beginning of a sub-
routine to its exit. However, it can be extended to compute from any point
in a subroutine to the subroutine’s exit. For example inside tapenade,
this was done recently by Mauricio Araya. This allows us to use the better
approximation:

Snapshot(p) ⊂ Read(p) ∩Written(p;Aft(p))

Still this is not an exact approximation because, for all p:

Read(p) ⊂ Read(p) and Written(p) ⊂ Written(p)

The proof for these two relations is straightforward. It comes from the fact
that, even when p has results that are used after it, these results are not used
after p, because we are in the backward sweep. On figure 4.23 for example,
even if B has outputs that are later useful in C, these outputs are useless after
B because we will never reach C any more. Therefore some instructions of p
are in fact dead code, and should be removed. This reduces both the Read
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and Written sets. This is the topic of the next section 4.4.4. Moreover, p
has its own internal PUSH/POP mechanism to restore values. This reduces the
Written set because it restores variables to their state at the entry of p. For
example:

Written[PUSH(v); v=1/v; POP(v); v=-v/(v*v);] = ∅ ⊂ Written[v = 1/v;]

A final remark is that checkpoints are usually many, nested or in sequence,
and they can take profit of one another. Consider a program made of three
successive phases p1; p2; p3. Suppose p1 and p2 are checkpointed. Then

Snapshot(p1) = Read(p1) ∩Written(p1; p2; p3)
Snapshot(p2) = Read(p2) ∩Written(p2; p3)

Suppose that a variable v is such that

v ∈ Read(p1) v /∈ Read(p2) v /∈ Written(p2) v ∈ Written(p3)

Then v is in the two snapshots, which is not necessary because it is the same
value which is stored twice. v should be stored only in Snapshot(p2), and
retrieved twice. This becomes a difficult combinatorial problem between all
snapshots present in a given differentiated program. This is still an open
problem. Since large programs are bound to use a lot of snapshots, this
question is gaining importance.

4.4.4 Dead Adjoint Code

Dead code elimination is a classical static transformation of programs, present
in most compilers. This is a standard analysis applicable to all programs.
However, programs differentiated in the reverse mode have specific properties
that could be taken into account to obtain a better dead code elimination.
In this section, we propose a specialized dead code analysis for reverse dif-
ferentiated programs.

• The original outputs the main subroutine or function P are not outputs
of the reverse differentiated P. The only outputs of P we care about
are the differentiated variables. This is also true for each checkpointing
piece p, as can be checked on figure 4.23, beacuse the outputs of p

are never used after p. Notice furthermore that the mere mechanism
of reverse differentiation implies restoring previous values, therefore
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probably destroying the original outputs. The consequence for dead
code is that an instruction that only contributes to an output, and
does not contribute to the computation of a derivative, is dead code.

• When simplifying the reverse differentiated programs, one often en-
counters a PUSH followed by the corresponding POP. Similar situations
arise with the “recompute-all” approach. This PUSH/POP pair is clearly
dead code.

Let us illustrate the power of this specialized dead code elimination on
an example taken from a real code. Figure 4.24 shows a small real routine
(slightly shortened) taken from a Navier-Stokes flow solver. It contains a
typical gather-scatter loop, which can account for many computations at run-
time, and therefore many derivatives, because the number of mesh segments
NSG2-NSG1 may be large. We apply Reverse AD on a part of the program that
includes subroutine FLW2D1COL above. We apply the “Store-All” approach,
with the classical checkpointing scheme: one checkpoint for each subroutine
call, as illustrated on figure 4.23. In this case, FLW2D1COL will eventually be
differentiated, and figure 4.25 shows the resulting subroutine FLW2D1COL. We
assume that the call to subroutine CHECK does not create any loop-carried
dependence, so that each iteration is actually independent. Anticipating
on section 4.5.2, subroutine FLW2D1COL uses the special reverse mode for
loops with Independent Iterations: Each iteration in the forward sweep is
immediately followed by its corresponding backward sweep. Thus the forward
sweep loop is merged with the backward sweep loop, resulting in a single loop.
In subroutine FLW2D1COL, Dead Adjoint Code detection would eliminate the
lines on grey background. For example, the call to subroutine CHECK is dead
code, because nothing depends on ots outputs. Therefore, there are two pairs
of consecutive PUSH/POP that can be erased. Similarly, assignments to rh3,
dplim, rh2 are dead code because they are not used by live code, neither in
the forward nor in the backward sweep. Notice however that assignment to
pm is not dead, because pm is used in the backward sweep. Last but not least,
the resulting simplified FLW2D1COL does not overwrite rh3 nor rh2 any more.
Let us compare the Read and Written sets of FLW2D1COL and FLW2D1COL. On
the original subroutine, we have:

Read(FLW2D1COL) = {nsg1, nsg2, nubo, t3, pres, vnocl, g3, g4, rh3, rh4, sq}
Written(FLW2D1COL) = {rh3, rh4, sq}

However, on the simplified FLW2D1COL, we have:

131



subroutine FLW2D1COL(nsg1,nsg2,nubo,t3,pres,vnocl,
+ g3,g4,rh3,rh4,ns,nseg,sq)

integer nsg1,nsg2,ns,nseg,nubo(2,nseg),is1,is2
real*8 t3(ns),g3(ns),g4(ns),rh3(ns),rh4(ns),pres(ns)
real*8 vnocl(2,nseg),qsor,qsex,pm,dplim,sq

do 30 iseg=nsg1,nsg2
is1 = nubo(1,iseg)
is2 = nubo(2,iseg)
qsor = t3(is1)*vnocl(2,iseg)
qsex = t3(is2)*vnocl(2,iseg)
dplim = qsor*g4(is1)+qsex*g4(is2)
rh4(is1) = rh4(is1) + dplim
rh4(is2) = rh4(is2) - dplim
pm = pres(is1)+pres(is2)
dplim = qsor*g3(is1)+qsex*g3(is2)+pm*vnocl(2,iseg)
rh3(is1) = rh3(is1) + dplim
rh3(is2) = rh3(is2) - dplim
call CHECK(pm,sq)

30 continue
end

Figure 4.24: An example gather-scatter loop from a real code
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subroutine FLW2D1COL(nsg1,nsg2 nubo,t3,t3,pres,pres,vnocl,
+ vnocl,g3,g3,g4,g4,rh3,rh3,rh4,rh4,ns,nseg,sq,sq)

< omitted declarations >
do iseg=nsg1,nsg2

is1 = nubo(1,iseg)
is2 = nubo(2,iseg)
qsor = t3(is1)*vnocl(2,iseg)
qsex = t3(is2)*vnocl(2,iseg)
dplim = qsor*g4(is1) + qsex*g4(is2)
rh4(is1) = rh4(is1) + dplim
rh4(is2) = rh4(is2) - dplim
pm = pres(is1) + pres(is2)
dplim = qsor*g3(is1)+qsex*g3(is2)+pm*vnocl(2,iseg)
rh3(is1) = rh3(is1) + dplim
rh3(is2) = rh3(is2) - dplim
call PUSH(sq)
call PUSH(pm)
call CHECK(pm, sq)

< forward sweep ends, backward sweep begins >
call POP(pm)
call POP(sq)
call CHECK(pm, pm, sq, sq)
dplim = rh3(is1) - rh3(is2)
qsor = g3(is1)*dplim
g3(is1) = g3(is1) + qsor*dplim
qsex = g3(is2)*dplim
g3(is2) = g3(is2) + qsex*dplim
pm = pm + vnocl(2,iseg)*dplim
vnocl(2,iseg) = vnocl(2,iseg) + pm*dplim
pres(is1) = pres(is1) + pm
pres(is2) = pres(is2) + pm
dplim = rh4(is1) - rh4(is2)
qsor = qsor + g4(is1)*dplim
g4(is1) = g4(is1) + qsor*dplim
qsex = qsex + g4(is2)*dplim
g4(is2) = g4(is2) + qsex*dplim
t3(is2) = t3(is2) + vnocl(2,iseg)*qsex
vnocl(2,iseg) = vnocl(2,iseg)+t3(is2)*qsex+t3(is1)*qsor
t3(is1) = t3(is1) + vnocl(2,iseg)*qsor

enddo
end

Figure 4.25: Reverse differentiation of subroutine FLW2D1COL from figure 4.24133



Read(FLW2D1COL) = {nsg1, nsg2, nubo, t3, pres, vnocl, g3, g4}∪
({sq} ∩ Read(CHECK))

Written(FLW2D1COL) = {sq} ∩Written(CHECK)

We saw in section 4.4.3 that these smaller Read and Written sets allow for
smaller snapshots before the calls to FLW2D1COL and FLW2D1COL.

4.5 Using the Dependence Graph in AD

In this section, we focus on the use of the Dependence Graph, a tool from
the domain of parallelization, applied to Automatic Differentiation. On one
hand, the Dependence Graph is a conceptual tool, that describes exactly the
possible rescheduling of instructions. On the other hand, it is also a practical
tool actually built during parallelization or AD, that allows for very precise
transformations of programs. However a Dependence Graph is expensive, is
computation time as well as memory space, and few applications actually
build it completely on large programs. For example in section 4.5.1, the De-
pendence Graph is used to move differentiated instructions around, inside a
given Basic Block. It is thus built only for this Basic Block. In section 4.5.2,
we use the Dependence Graph more as a conceptual tool, studying the rela-
tionship between the Dependence graph of a program one one hand, of the
adjoint program on the other hand. Computation and memory cost of the
Dependence Graph are not important here. In section 4.5.3, we highlight
the relationship, and more importantly the differences, between the Depen-
dence Graph and the Computational Graph, which is used frequently by AD
researchers. Confusion between these graphs lead to misunderstanding, and
should be avoided.

4.5.1 Merging Differentiated Instructions

We present two instruction-level improvements of differentiated programs,
which are more clearly implemented on the basis of the local Dependence
Graph of each Basic Block. The first improvement concerns the reverse mode,
the second improvement concerns the so-called “vector” or multi-directional
mode.
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Non-incremental adjoint instructions

Equation (4.5) of section 4.1.3 defines what must be computed by the adjoint
instructions (backward sweep) of a reverse differentiated program. Straight-
forward evaluation of equation (4.5) is built with successive steps (multi-
instructions Ik) that compute:

Xk−1 = J(Ik)
t(Xk−1).Xk for k = p down to 1

where J(Ik)
t is the transposed of the Jacobian of instruction Ik. It is easy

to see that these Ik contain a large number of incrementation instructions.
Consider an instruction I which, like an assignment, uses several variables but
overwrites only one. If the assigned variable is put first, the local Jacobian
of I has the following shape:

J(I) =



• • • · · · •
1

1
. . .

1

 (4.15)

where dots “•” represent entries that may be non null, “1” represent entries
that are exactly one, and the other entries are always null. Calling vn the
variables involved in I (v1 assigned), and vn their adjoint variables, the multi-
instruction I must compute:

v1

v2

v3
...
vq

 := J(I)t ×



v1

v2

v3
...
vq

 =



•
• 1
• 1
...

. . .

• 1

 ×



v1

v2

v3
...
vq

 (4.16)

In a computer program, this Matrix×Vector product must be evaluated from
the last row up, because v1 must not be overwritten before it is used by
the other Row×Vector products. Each row, except for the topmost row,
generates an instruction of the shape:

vn := vn + exp∗v1

which is an incrementation (exp does not contain vn).
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Thus the following pattern ofter occurs in the backwards sweep: an ad-
joint variable vn is set to some value (often 0.0), and then repeatedly incre-
mented without being used, then it is used and possibly reset, etc... If the
original “set” instruction and the following “increment” instructions can be
moved around to form a sequence, then they can be merged into one single
instruction. This results in the so-called non-incremental style (cf [24, Sec-
tion 3.3]), by opposition with the original program’s incremental style. The
resulting program is more efficient, avoiding many storages and retrievals of
vn. Of course an optimizing compiler can partly do this, but we can do it
better using knowledge on the structure of the backward sweep.

The right tool to decide how instructions can be moved around is the
Dependence Graph. Differentiation on a subroutine’s Flow Graph actually
produces a new Flow Graph. Each of the Basic Blocks of the backward sweep
can be easily analyzed to get its local Dependence Graph, which is acyclic
since it is local to the Block. In these blocks only appear overwrites of adjoint
variables vn, and retrievals (POP’s) of original variables. The Dependence
Graph is thus easily built. The granularity we choose for the Dependence
Graph is of course one node per instruction: we don’t aim at reordering
expressions in instructions. On the dependence Graph, we look for an ex-
ecution order (i.e. a topological sorting) which maximizes the number of
“set;increment*” sequences. Finding the optimal order is probably NP-hard,
but a simple greedy heuristic gives excellent results.

Illustration of this can be found on the example of section 4.4.4. Many ad-
joint instruction in the differentiated program FLW2D1COL have been merged.
For example, instruction

dplim = rh3(is1) - rh3(is2)

results from the fusion of the three adjoint instructions
dplim = 0.0
dplim = dplim - rh3(is2)
dplim = dplim + rh3(is1)

Backwards sweeps transformed in this manner often look more like hand-
written adjoints.

Loop fusion in “vector” Automatic Differentiation

In standard AD, we compute in tangent mode Ẏ = f ′(X).Ẋ for a given Ẋ
and in reverse mode X = f ′(X)t.Y for a given Y . Many applications require
this for several vectors Ẋ or Y , at the same time, for the same “point” X in
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the input space. One example is to get the whole Jacobian f ′(X), column
by column: for the same X, one runs the differentiated tangent program n
times, with Ẋ spanning all the canonical basis of IRn. One can use fewer
runs when the sparsity pattern of f ′(X) is known.

In any case, this amounts to several runs of the tangent (resp. adjoint)
program, for the same X. If X is the same, all instructions from the original
program run identically, on the same inputs, yielding the same results. This
is a waste of time. The so-called “vector” or “multi-directional” mode of
AD builds a program which embeds each derivative instruction into a small
loop, that repeats it for each of the original Ẋ (resp. Y ). Figure 4.26
illustrates this “vector” mode on the same program as figure 4.1. Notice

original: T,U 7→ e vector tangent mode: T,Ṫ
nd
,U,U̇

nd 7→ e,ėnd

e2 = 0.0

do i=1,n

e1 = T(i)-U(i)

e2 = e2 + e1*e1

end do

e = SQRT(e2)

do j=1,nd

ė2(j) = 0.0

end do

e2 = 0.0

do i=1,n

do j=1,nd

ė1(j) = Ṫ(j,i)-U̇(j,i)

end do

e1 = T(i)-U(i)

do j=1,nd

ė2(j) = ė2(j) + 2.0*e1*ė1(j)

end do

e2 = e2 + e1*e1

end do

do j=1,nd

ė(j) = 0.5*ė2(j)/SQRT(e2)

end do

e = SQRT(e2)

Figure 4.26: AD in vector tangent mode

the loops appearing around the derivative instructions. All differentiated
variables become arrays, since they are now dimensioned after the number
nd of directions of simultaneous differentiation.
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It is very tempting to try instructions reordering here: all these loops
around a single derivative instruction incur a large loop overhead. Here too,
the tool is the Dependence Graph, build locally on each differentiated Basic
Block. The goal is to find the topological sorting of the Block’s Dependence
Graph that maximizes sequences of derivative loops, so that these loops can
be fused. Loop fusion is allowed here, because all these loops have data-
independent iterations, and they share the same iteration space j=1,nd. For
example on figure 4.26, the first two instructions of the central loop can be
switched, because it violates no data dependence (no use of ė1 in the second
instruction, and no use of e1 in the first instruction. After loop fusion, we
get this more efficient main loop body:

e1 = T(i)-U(i)
do j=1,nd

ė1(j) = Ṫ(j,i)-U̇(j,i)
ė2(j) = ė2(j) + 2.0*e1*ė1(j)

end do
e2 = e2 + e1*e1

4.5.2 The Adjoint Dependence Graph

In this section, we use the Dependence Graph more like a conceptual tool to
demonstrate properties of adjoint differentiated programs. The fundamental
property that we demonstrate is an isomorphism between the Dependence
Graph of a (piece of a) program and the Dependence Graph of the backward
sweep of its reverse differentiation. This was presented in report [30]. We
then examine some consequences of this property for actual AD tools. In
particular, we show a specific optimized reverse differentiation for parallel
loops, published in [32]. We also discuss some issues related to preserving the
parallel properties of the original code for its reverse differentiated version.

Adjoint Dependence Graph Isomorphism

We consider a program piece p. We call G the dependence graph of p, built
with one node per atomic instruction Ik (e.g. assignment) of p. The backward

sweep of the reverse differentiation on p, that we shall write
←
p , also has a

dependence graph
←
G . We define the nodes of

←
G to be the adjoint Ik of the

nodes Ik of G. Notice that these nodes Ik are no longer single assignments
like the Ik: as we saw in section 4.5.1, it may take several assignments to
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implement the vector assignment of equation (4.16). However, both Ik and
Ik are valid is the following sense: they don’t overwrite a variable and then
use it. Only values that exist before this node are used by this node. In
this respect, they can be considered as a simple assignment rather than a
complex program. We will show that if Ik is valid, then Ik is lid too. The

Ik and Ik are the nodes of dependence graph G and
←
G . This means we will

never consider splitting or rearranging their contents.
Let us formalize further data dependences, which are the arrows of the

dependence graphs. In the sequel, we consider that the nodes of the de-
pendence graphs are valid original or adjoint instructions I. Like we saw in
section 3.3.1, data dependences come from accesses to variables. Each data
dependences is caused by one or many variables. A variable v causes a data
dependence between two nodes I1 and I2 if I1 can be executed before I2 (no-
tation: I1 ≺ I2), and if I1 and I2 both perform a read or a write of v, at least
one of them performing a write. If I1 and I2 both only read v, v causes no
dependence because, as far as v is concerned, I1 and I2 can be executed in
any order without changing the result.

Similarly, we introduce the following refinement to data dependences: If
I1 and I2 both only increment v, v causes no dependence between I1 and
I2. In other words, two increments of v, with no access v between them,
can be done in any order without changing the result. This deserves some
discussion: this is true only if increments are atomic. If this is not the case,
two increment operations done in parallel may create a race condition. In
the following, we assume increments are atomic. This can be achieved at low
level, using semaphores, or at high level, using reduction declarations. Also,
atomicity is granted when the program is run sequentially.

To give a formal definition of data dependences, that takes profit of in-
crement operations, we define the effect of any valid instruction I on any
variable v, E(I, v), by the following exclusive four cases:

• E(I, v) = jn (no access) when variable v does not occur at all inside I.

• E(I, v) = jr (only read) when v is only read and not overwritten in I.

• E(I, v) = ji (pure increment) when v is read only once. Its value is
incremented, and is reassigned to v. There are no other occurrences of
v in I.

• E(I, v) = jw (general write) otherwise.
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Given two valid instructions I1 and I2, with I1 ≺ I2, there is a dependence
from I1 to I2 caused by variable v if and only if D(E(I1, v), E(I1, v)) is true,
where relation D is defined by the table of figure 4.27. One can easily check

jw jr ji jnjw true true truejr true trueji true truejn
Figure 4.27: Definition of data dependence, based on the effect of instructions
on a given variable

that two successive increments, or two successive reads, separated only by
instructions that don’t access the variable, cause no dependence. However,
as one can expect, if there an intermediate instruction that accesses the vari-
able, then there are dependences going from the first to the intermediate
instruction, and then from the intermediate instruction to the second in-
struction, and no reordering is allowed. In this context, let us demonstrate
our first lemma:

Lemma 1 (validity of adjoint instructions) If the set of successive
instructions I is valid, then the its adjoint set of instructions I is valid too.

Proof:
We must show that I contains no variable which is overwritten and then
used, inside the same execution of I. Consider the list vk, k ∈ [1..q] of all
variables occurring in p. We can suppose with no loss of generality that the
vk are reordered so that the first variable written during an execution of I
is v1, the next one v2, and so on, and the variables that are only read or not
used come at the end. Since I is valid, no variable is written and then used,
inside the same execution of I. Therefore the value assigned to some variable
vk (if any) does not depend on the vi, i < k. The Jacobian matrix of I is
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thus upper triangular:

J(I) =



• • • · · · •
• • · · · •
• · · · •

. . .
...
•

 (4.17)

Dots “•” represent non-zero entries in the matrix. By definition of the re-
verse mode of AD (cf section 4.1.3), the adjoint instruction I implements the
following vector assignment (cf equation (4.5)):

v1

v2

v3
...
vq

 := J(I)t ×



v1

v2

v3
...
vq

 =



•
• •
• • •
...

...
...

. . .

• • • · · · •

 ×



v1

v2

v3
...
vq

 (4.18)

By a simple change of coordinates, reversing the order of the adjoint variables
vk, equation (4.18) uses an upper triangular matrix again.

vq
...
v3

v2

v1

 :=



• · · · • • •
. . .

...
...

...
• • •
• •
•

 ×



vq
...
v3

v2

v1

 (4.19)

Therefore if the Row×Vector products are done from the top row down, no
variable is used after it is overwritten, and I is valid. 2

Now we relate the effect E(I, v) of an instruction I on a variable v, with
the effect E(I, v) of the adjoint instruction I on the adjoint variable v.

Lemma 2 (effect of adjoint instructions) the effect on v of the adjoint
I of a given data dependence node I is related to the effect of I on v in the
following manner:

• E(I, v) = jn =⇒ E(I, v) = jn
• E(I, v) = jr =⇒ E(I, v) ∈ { ji , jn }
• E(I, v) = ji =⇒ E(I, v) ∈ { jr , jn }
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• E(I, v) = jw =⇒ E(I, v) ∈ { jw , jr , ji , jn }
Proof:
Consider any variable vk. Since I is valid, the effect of I on vk is defined, and
belongs to { jw , jr , ji , jn }. Let us focus on the k-th row and column of the
Jacobian matrix J(I) of equation (4.17). If E(I, vk) = jn , then these row and
column are all 0, except the diagonal element, which is 1. If E(I, vk) = jr ,
then the k-th row is all 0, with 1 on the diagonal. If E(I, vk) = ji , then the
k-th column is all 0, with 1 on the diagonal. And if E(I, vk) = jw , the k-th
row and column can be anything. We summarize this as:

E(I, vk) : jn ji jr jw
J(I) :


. . . 0

1 0
. . .




. . . 0
1 •

. . .




. . . •
1 0

. . .




. . . •
• •

. . .


where the • elements can very well be 0 or 1, as will be shown below on some
degenerate cases. By definition, I implements equation (4.19). We observe
that the matrix in equation (4.19) (call it J(I)), is the symmetric of J(I)
with respect to the second diagonal. We have thus:

E(I, vk) : jn ji jr jw
J(I) :


. . . 0

1 0
. . .




. . . •
1 0

. . .




. . . 0
1 •

. . .




. . . •
• •

. . .


which implies the following:

• when E(I, vk) = jn , I simply does not use nor modify vk. Therefore
vk does not occur in I and E(I, vk) = jn .

• when E(I, vk) = jr , I does not read vk, except in one instruction which
adds some value into vk. In the special case where the • values are all
0, vk is just unmodified. Therefore E(I, vk) ∈ { ji , jn }.

• when E(I, vk) = ji , I may read vk several times, to compute values
assigned to other adjoint variables, and then vk itself is just unmodified.
In the special case where the • values are all 0, vk is not used at all.
Therefore E(I, vk) ∈ { jr , jn }.
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• when E(I, vk) = jw , I may read vk several times, and then overwrite
it with some value, and then not use it any more. Therefore E(I, vk)
may be jw . However, since any of the • elements may be 0, and the
diagonal • may be 1, E(I, vk) may degenerate to jr , ji , or even jn .
Therefore E(I, vk) ∈ { jw , jr , ji , jn }. 2

Here are two examples of degenerate cases. Suppose I is instruction
y:=floor(x), where floor returns the integer part of a real number. The
derivative of floor, when defined, is

∂floor(x)

∂x
= 0

Instruction I is valid, and E(I, x) = jr . With respect to vector (y, x), J(I)

is equal to

(
0 0
0 1

)
. Therefore I implements

(
x

y

)
:=

(
1 0
0 0

)
×
(

x

y

)
,

thus I contains only instruction y:=0, and E(I, x) = jn .
As a second example, suppose I contains the two successive instructions

y:=2*x; x:=x+floor(x). Node I is valid, and E(I, x) = jw . On vector

(y, x), J(I) is

(
0 2
0 1

)
, and I implements

(
x

y

)
:=

(
1 2
0 0

)
×
(

x

y

)
, thus

I contains instruction x:=x +2*y followed by y:=0, and E(I, x) = ji .
From lemma (2), we are now able to go from the effect of adjoint instruc-

tions back to the effect of the original instructions.

Lemma 3 (effect of original instructions) The effect of an instruction
I on a variable v can be deduced from the effect of its adjoint I on v in the
following manner:

• E(I, v) = jn =⇒ E(I, v) ∈ { jw , jr , ji , jn }
• E(I, v) = jr =⇒ E(I, v) ∈ { jw , ji }
• E(I, v) = ji =⇒ E(I, v) ∈ { jw , jr }
• E(I, v) = jw =⇒ E(I, v) = jw

Proof:
Since I and I are valid, their effect on variables v and v is defined, and must
be one of jw , jr , ji , or jn . Therefore, it suffices to explore all possible cases
in lemma (2). 2
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We now use our refined notion of data dependence. We insist this sup-
poses that incrementation operations ( ji ) are atomic. With this hypothesis,
which can be enforced in various ways, we prove that the dependence graph
of the adjoint program is isomorphic to a subgraph of the original depen-
dence graph. This will allow us to transpose many properties of the original
program to its adjoint.

Proposition 1 (adjoint data dependences) If
←
G has an arrow from node

Ia to node Ib, then G has an arrow from node Ib to node Ia. Moreover, if the
arrow from Ia to Ib is caused by a variable w, then the arrow from Ib to Ia

is caused by a variable v such that w = v.

Proof:
Consider an arrow in

←
G , going from node Ia to node Ib. By definition of data

dependence, this implies that Ia ≺ Ib, which in turn implies by construction
of the adjoint program that Ib ≺ Ia. By definition, the data dependence is
motivated by (at least) one variable w and means that for any such variable
w, the effects of Ia and Ib on w are such that D(E(Ia, w), E(Ib, w)) is true,
where D is defined by the table of figure 4.27. This implies that variable
w is assigned, somewhere in Ia, Ib, or both. Since the adjoint nodes Ij

only assign adjoint variables, w is necessarily the adjoint v of some variable
v in P . Considering each case where D(E(Ia, v), E(Ib, v)), we check that
D(E(Ib, v), E(Ia, v)). For example, suppose E(Ia, v) = jw and E(Ib, v) = ji .
By lemma (2), we get E(Ia, v) ∈ { ji , jw} and E(Ib, v) ∈ { jr , jw}, and in the
four resulting cases, we can check that D(E(Ib, v), E(Ia, v)). Together with
Ib ≺ Ia, this shows that there is an arrow in G, motivated by v, that goes
from Ib to Ia. 2

To illustrate this proposition, consider subroutine FLW2D1COL from fig-
ure 4.24 in section 4.4.4. Figure 4.28 show its dependence graph G. Fig-

ure 4.29 shows the dependence graph
←
G of the backward sweep of its reverse

differentiated version. To make comparison easier on the figures, differenti-
ated nodes occupy the same location as their original nodes. We observe

that every data dependence in
←
G is caused by an adjoint variable v, such

that v causes a data dependence between the corresponding nodes in G in
the reverse direction. The distances of the data dependences are preserved.
However, the “kind” of dependence (flow, anti, output) is not preserved.
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is1 = nubo(1,iseg) is2 = nubo(2,iseg)

qsor = t3(is1)*vnocl(2,iseg)

qsex = t3(is2)*vnocl(2,iseg)

dplim = qsor*g4(is1)
+ qsex*g4(is2)

rh4(is1) = rh4(is1)+dplim

rh4(is2) = rh4(is2)-dplim

pm = pres(is1)+pres(is2)

dplim = qsor*g3(is1)
+ qsex*g3(is2)
+ pm*vnocl(2,iseg)

rh3(is1) = rh3(is1)+dplim

rh3(is2) = rh3(is2)-dplim

call CHECK(pm,sq)

is1

is1

is1 is1

is2

is2 is2

qsor

qsex
qsexqsor

pm

pm

pm

dplim

dplim

dplim

dplim

Figure 4.28: Dependence Graph G of subroutine FLW2D1COL
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vnocl(2,iseg)=vnocl(2,iseg)
+ t3(is1)*qsor

t3(is1)=t3(is1)+vnocl(2,iseg)
* qsor

qsor = 0.0
vnocl(2,iseg)=vnocl(2,iseg)

+ t3(is2)*qsex
t3(is2)=t3(is2)+vnocl(2,iseg)

* qsex
qsex = 0.0

qsor=qsor+g4(is1)*dplim
qsex=qsex+g4(is2)*dplim
g4(is1)=g4(is1)+qsor*dplim
g4(is2)=g4(is2)+qsex*dplim
dplim = 0.0

dplim = dplim + rh4(is1)

dplim = dplim - rh4(is2)

pres(is1)=pres(is1)+pm
pres(is2)=pres(is2)+pm
pm = 0.0

qsor=qsor+g3(is1)*dplim
qsex=qsex+g3(is2)*dplim
g3(is1)=g3(is1)+qsor*dplim
g3(is2)=g3(is2)+qsex*dplim
pm=pm+vnocl(2,iseg)*dplim
vnocl(2,iseg)=vnocl(2,iseg)

+ pm*dplim
dplim = 0.0

dplim = dplim + rh3(is1)

dplim = dplim - rh3(is2)

call CHECK(
pm, pm, sq, sq)

qsor

qsex
qsexqsor

pm

pm

dplim

dplim

dplim

dplim

Figure 4.29: Dependence Graph
←
G of the backward sweep of FLW2D1COL
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Consequences for Parallel and Vectorial programs

A consequence of proposition (1) is that parallel properties of a loop can be
transposed to its adjoint loop. If we take the strict definition that parallel
loops are loops with no loop-carried data dependence, i.e. no data depen-
dence inside the loop with a non-zero distance, then proposition (1) ensures
that the adjoint loop has no loop-carried dependence either.

If we look at subroutine FLW2D1COL again, it contains a loop which is not
strictly speaking parallel, because there are loop-carried dependences on fig-
ure 4.28 (dependances with distance vector (1)). However, the loop-carried
dependences are anti and output dependences, known as “artificial”, that can
be removed by expansion or localization of the variables that cause them (cf
section 3.4.2). If we localize is1, is2, qsor, qsex, pm, and dplim, then artif-
ical data dependences disappear, and the loop is parallel. The adjoint loop is
therefore parallel. Notice that this implies qsor, qsex, pm, and dplim are lo-
calized too. Remember that the incrementation operations must be atomic.
With these hypotheses, one can see that the adjoint subroutine FLW2D1COL

is now composed of two successive parallel loops, on the same iteration do-
main. We can apply loop fusion (cf section 3.4.4), and we end up with the
FLW2D1COL subroutine shown on figure 4.24. In other words, when a parallel
loop is immediately followed by its adjoint loop, and this can be arranged
for systematically, then the parallel loops and the adjoint differentiation op-
erators commute, as summarized on figure 4.30. This transformation brings

Standard: Improved:

do // i= 1,N

body(i)
end

do i= N,1

body(i)
end

⇐⇒ do i= 1,N

body(i)

body(i)
end

Figure 4.30: Equivalent transformation of a reverse parallel Loop

a huge benefit, even on sequential programs. The reason is that, for each
iteration of the loop, the PUSH are immediately followed by their POP inside
the same loop iteration. Therefore the stack size does not grow as much as
before loop fusion.
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Notice furthermore that there are no PUSH/POP calls left in subroutine
FLW2D1COL after ajoint dead code elimination. Therefore the loop is def-
initely parallel. Things are not so simple if some PUSH/POP calls remain,
because these share a stack. Parallelization requires localizing the stack too.
Equivalently, one could get rid of PUSH/POP calls in the loop using a bunch
of local temporary variables.

Proposition (1) also helps preserve vectorial properties. Consider a vec-
torial instruction, such as

A(1:n) := B(0:n-1)*B(2:n+1) + c

There are no loop-carried dependences in the loop implicitly represented here,
and therefore no loop-carried dependences in the adjoint loop. As far as de-
pendences are concerned, the adjoint is itself vectorial. Notice that the read
of c is spread among the “iterations”, and this results in a SUM reduction in
the adjoint program:

B(0:n-1) := B(0:n-1) + B(2:n+1)*A(1:n)
B(2:n+1) := B(2:n+1) + B(0:n-1)*A(1:n)
c := c + SUM(A(1:n))
A(1:n) := 0

On the other hand, the adjoint of instruction:
A(1:n) := A(0:n-1)*A(2:n+1)

would not be immediately vectorial, because of the loop-carried data-depen-
dence in the implicit loop, from the reads to the writes of A.

Application of proposition (1) to parallel programs that use message-
passing appears promising too. Experiments are reported in [17]. One un-
solved question is how to inverse the control flow and the data flow when the
communications are not synchronous. A corollary of proposition (1) shows
that the adjoint of a SEND instruction is a RECEIVE, and vice-versa. If the
receiver of a value has no means to say where this value comes from, and at
which instant, it might be difficult to send the adjoint value backwards in
the adjoint program. This is still an open problem, and this proposition is a
first step at formalizing it.

4.5.3 Computation Graph and Dependence Graph

We hope we have established the fact that the Dependence Graph is essential
for AD, both for theoretical studies and for AD tools algorithms. There is
another similar graph, though, which also plays an important role in AD: the
computation graph [24, Chapter 8]. It may be useful to compare these two
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graphs and discuss their differences.
A Computation Graph represents the chain of elementary computations

that lead from the inputs to the results. See figure 4.31 for an illustration ex-
ample. For a simple expression, the computation graph is roughly the syntax

DO i=1,n

IF (B(i).gt.0.0) THEN

r = A(i)*B(i) + y

X(i) = 3*r - B(i)*X(i-3)

y = SIN(X(i)*r)

ENDIF

ENDDO

O

O

(1)

(1)

(1)

(1)

(1)

(3)

y A(i) B(i) B(i) X(i-3)

*

+

r = r
3

*

*

-
X(i) =

X(i)

r

*

SIN

y =

y A(i) B(i) X(i-3)

*

+ *
3

*

-

*

SIN

r y X(i)

Source program Dependence Graph Computation Graph

Figure 4.31: Comparison of Computation and Dependence Graphs

tree of the expression. For a sequence of instructions, the computation graph
captures the fact that an intermediate result, e.g. r, may be reused in several
following instructions, by setting arrows from the expression whose result is r
to each read of the variable that holds r. Therefore the computation graph is
no longer a tree but a Directed Acyclic Graph, but in a sense it still views the
sequence of instructions as one expression that allows intermediate results to
be used more than once. The principal characteristic is that variables are
abstracted away: except for top and bottom rows, nodes represent values and
not variables. The top row shows variables that hold the input values, the
bottom row shows variables that receive the result values. To go back from
the computation graph to a sequence of executable instructions requires to
re-introduce variables, very much like the register allocation problem in com-
piler theory. Computation graphs are not defined for programs with control,
only for sequences of instructions. For example on figure 4.31, the compu-
tation graph only represents the “then” part of the loop body, whereas the
dependence graph has cycling arrows that capture loop-carried dependences.
There are some attempts to extend computation graphs in this direction, but
the lack of explicit representation of variables makes it difficult to represent
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data dependences. Now we can stress the two main differences that we feel
between the Computation Graph and the Dependence Graph:

Computation Graph is more mathematical, Dependence Graph
is more operational: For a basic block of instructions, the Computation
Graph looks like the Dependence Graph, except that variables are not repre-
sented any more. Consequently the Computation Graph does not represent
the execution order, which is strongly related to the true, anti, and output
dependences in the Dependence Graph. There is no anti nor output depen-
dences in a Computation Graph, and each node is in fact a single-assignment
variable, i.e. a mathematical value.

Computation Graph is more static, Dependence Graph is more
dynamic: The Computation Graph is not well defined for loops and arbi-
trary control, whereas dealing with loops is essential for Dependence Graphs
in order to parallelize them. To our knowledge, the notion of distance in the
iteration space is not defined between the two ends of a Computation Graph
arrow.

When AD is concerned, another sort of computation graph is often used.
Unfortunately, it is often also called “Computation Graph”, which is a pity.
Let us call it Jacobian Computation Graph. It represents the chain of ele-
mentary operations that compute the partial derivatives of all results with
respect to all inputs. It shares similarity with ordinary computation graphs,
but it is specialized for Jacobian coefficients: each edge is labelled with the
partial derivative of the downwards node with respect to the upwards node,
and ordinary nodes have no label any more. The Jacobian Computation
Graph of the inside instructions of figure 4.31 is shown on the left of fig-
ure 4.32. The Jacobian Computation Graph is a framework to compute the
Jacobian of the results with respect to the inputs. The chain rule tells us that
the partial derivative of one result with respect to one input is the sum, for
all paths linking input and result, of the product of all the partial derivatives
which label the edges along the path. Computing the Jacobian amounts to
building an equivalent bipartite graph between inputs and results, by pro-
gressively eliminating the intermediate nodes and recomputing the labels on
the new edges by multiplication of the labels on the previous edges. The
right of figure 4.32 shows the equivalent final bipartite graph. The rule of
the game is to find the best elimination order of intermediate nodes, which
reaches the bipartite graph with a minimal number of multiplications. Actu-
ally, node elimination is just a special case of the so-called edge elimination
and face elimination [40], and only the latter is able to represent the optimal
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1
B(i)

A(i) X(i-3)
B(i)

1

3

1
-1

X(i)
r

1

1
COS(X(i)*r)

1

y A(i) B(i) X(i-3)

r y X(i)

COS(X(i)*r) *
(X(i)*A(i) + r*(3*A(i) - X(i-3)))

y A(i) B(i) X(i-3)

r y X(i)

Jacobian Computation Graph Bipartite Jacobian Graph

Figure 4.32: Jacobian Computation Graph of the program from figure 4.31

elimination sequence. But finding this optimal is conjectured to be NP-hard,
and researchers explore a number of heuristics to get as close as possible to
this optimum.

The Jacobian Computation Graph is even more different from the Depen-
dence Graph. It is not directed any more. It represents arithmetic operations
that are only sums and products. It is used only to find the best elimination
order, i.e. the sequence of operations that compute the Jacobian with a mini-
mal cost. It is not used to change the order between the original instructions.
To our knowledge, there is still no Jacobian Computation Graph defined for
entiere programs with control.

4.6 Application: The TAPENADE AD Tool

This section describes the Automatic Differentiation tool tapenade [34],
which is developped by our research team. To this date, the people who
contributed most to this very large implementation task are Valérie Pascual,
Rose-Marie Greborio, Frédéric Olier, Jean-Philippe Sautarel, Marc-Aurèle
Ngoxuan, Jean-Charles Rihaoui, Benjamin Dauvergne, Christophe Massol,
and myself. tapenade progressively implements the results of our research
about models and static analyses for AD. Development of tapenade started
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Automatic Differentiation Tool

Name: tapenade version 2.0

Date of birth: January 2002

Ancestors: Odyssée 1.7

Address: www.inria.fr/tropics/tapenade.html

Specialties: AD Reverse, Tangent, Vector Tangent, Restructuration
Reverse mode Strategy: Store-All, Checkpointing on calls
Applicable on: fortran95, fortran77, and older
Implementation Languages: 90% java, 10% c
Availablility: Java classes for Linux and Solaris, or Web server

Internal features: Type Checking, Read-Written Analysis,
Forward and Backward Activity, Dead Adjoint Code, TBR

Figure 4.33: tapenade’s ID card

152



in 1999. It is the successor of Odyssée, a former AD tool developped by
inria and université de Nice from 1992 to 1998. tapenade and Odyssée
share some fundamental concepts. However, the whole internal program rep-
resentation was redesigned, as well as static analyses to improve differentia-
tion time and result. In particular, tapenade and Odyssée share no part of
their source code, and even the implementation language changed from caml
to java. tapenade is distributed by inria. At present, we are aware of
regular industrial use of tapenade at Dassault Aviation, CEA Cadarache,
Rolls-Royce (UK), BAe (UK), Alenia (Italy). Academic colleagues use it on
a regular basis at INRA (French agronomy research center), Oxford (UK),
Queen’s University Belfast (UK), Argonne National Lab (USA). tapenade
is still under permanent development, and figure 4.33 gives a synthetic view
of its present state.

Section 4.6.1 summarizes the objectives of tapenade, and presents the
architecture that we devised to meet these objectives. Section 4.6.2 presents
the underlying Automatic Differentiation models, that are helpful to really
understand why tapenade created the program it created. The perfor-
mances of the tool are shown in section 4.6.3, for differentiation time as well
as for the quality of the differentiated programs. Section 4.6.4 gives a feeling
of the user interface, and section 4.6.5 conclude with developments to come.

4.6.1 Objectives and Architecture

tapenade has the following two principal objectives:

• To serve as an implementation platform to experiment with new modes
of AD or to validate new AD algorithms and analyses. Ideally, this
experimantation could also take place outside of our research team.

• To provide external end-users, academic or industrial, with state-of-
the-art AD of real programs, with no restriction on the style or on the
size of the application to differentiate.

From the partita experience (section 3.4), we gathered some guidelines:

• Tools that work on programs must have an internal representation
which is convenient for analysis more than for mere edition. There-
fore, instead of syntax trees, we prefer Call Graphs of Flow Graphs, as
described in section 2.2.
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• The internal representation must concentrate on the semantics of the
program and eliminate or normalize what is less essential. In particu-
lar, the internal representation should be independent of the particular
programming language used by the program.

• The internal representation must facilitate data flow analysis. Internal
representation of variables is essential, and must be chosen very care-
fully. In particular, it must once and for all solve the tedious array
region management due to constructs such as the fortran COMMON

and EQUIVALENCE.

• Many program analyses are indeed independent of Automatic Differ-
entiation, and are identical to those needed by parallelizers. These
analyses must form a fundamental layer, clearly separated from the
AD specific part which is built above it.

• It is not necessary that a tool be restricted to mini-languages. Expe-
rience shows that real programs use all possibilities of their implemen-
tation language. If we want a usable tool, we must take care of every
construct or possibility offered by the langage. Indeed, this is far less
boring than one could fear!

Figure 4.34 summarizes the architecture of tapenade, built after these
guidelines. To enforce a clear separation from the language of the programs,

trees  (IL) trees  (IL)

XXX parser

C parser (C)

Fortran95 parser (C)

Fortran77 parser (C)
Signatures of externals

XXX printer

C printer

Fortran95 printer (Java)

Fortran77 printer (Java)

other tool

Imperative Language Analyzer (Java)

Differentiation Engine (Java)

User Interface (Java / XHTML)

API

Figure 4.34: Overall Architecture of tapenade

we devised an Intermediate Language (il), which should eventually contain
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all the syntactic constructs of imperative languages. il has no concrete syn-
tax, i.e. no textual form. It is an abstract syntax, that strives to represent by
the same construct equivalent concrete constructs from different languages.
il currently covers all fortran77, fortran95, and c. Object-oriented
constructs are progressively being added. The front-end for a given lan-
guage, and the corresponding back-end, are put outside of tapenade, and
communicate with it by a simple tree transfer protocol.

Real programs often use external libraries, or more generally “black-box”
routines. The architecture must cope for that, because static analyses greatly
benefit from compact, summarized information on these black-box routines.
The end-user can provide tapenade with these signatures of black-box rou-
tines, in a separate file whose syntax is described in section 4.6.4.

The Imperative Language Analyzer performs general purpose analyses,
independent from AD. Figure 4.35 shows these analyses with their relative
dependencies. All of them run on Flow Graphs, according to their formal
description as data flow equations (cf section 4.4). The result of these gen-
eral analyses are of course used later by the AD level (cf figure 4.36), which
performs Differentiable Dependency Analysis followed by Activity Analysis
(section 4.4.1) and, specifically for the reverse mode, TBR Analysis (sec-
tion 4.4.2) and Dead Adjoint Code detection (section 4.4.4). At the time
when we write this report, the Pointer analysis as well as the Dead Adjoint
Code detection are only prototypes, not functional in the distributed tool.

tapenade consists in a set of Java classes, and can be called directly
as a command with arguments, or through a xhtml graphical user inter-
face. Consequently, it was relatively easy to build a web server that runs
tapenade on any file uploaded by a distant user.

4.6.2 Differentiation Model

In this section, we plan to describe precisely the actual differentiation model
of tapenade. The goal is to gain a deeper understanding and familiarity
with programs produced by tapenade. For this reason, contrary to the pre-
vious program “listings”, we shall use the actual fortran syntax produced
by tapenade in the following pieces of code. In particular, symbol names
will not be ẋ or x any more.
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Figure 4.35: Ordering of generic static data flow analyses in tapenade
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Figure 4.36: Ordering of AD static data flow analyses in tapenade

Symbol names

First consider symbol names. If a variable v is of differentiable type, and is
currently active (see activity 4.4.1), this derivative is stored in a new variable
of same type that tapenade names after v as follows: vd (“v dot”) in tangent
mode, and vb (“v bar”) in reverse mode. Derivative names for procedures
and COMMONS are built appending “ D” in tangent mode and “ B” in reverse
mode. Figure 4.37 summarizes that. tapenade checks for possible conflicts

original program tapenade tangent tapenade reverse
SUBROUTINE T1(a)
REAL a(10)
COMPLEX b(5)
REAL*8 c,d
COMMON /cc/ b,c

SUBROUTINE T1_D(a,ad)
REAL a(10),ad(10)
COMPLEX b(5),bd(5)
REAL*8 c,cd,d,dd
COMMON /cc_d/ bd,cd
COMMON /cc/ b,c

SUBROUTINE T1_B(a,ab)
REAL a(10),ab(10)
COMPLEX b(5),bb(5)
REAL*8 c,cb,d,db
COMMON /cc_b/ bb,cb
COMMON /cc/ b,c

Figure 4.37: Differentiation of symbol names in tapenade
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with names already used in the program, in which case it appends 0, then
1, etc after the derivative name until conflicts disappear. Suffixes can be
changed via command line options.

Simple instructions

Now consider an assignment Ik. In tangent mode (equation (4.4)), derivative
instruction İk implements Ẋk = f ′k(Xk−1).Ẋk−1, with initial Ẋ0 = Ẋ. In
reverse mode (equation (4.5)), derivative instruction(s) Ik implement Y k−1 =
f ′∗k (Xk−1).Y k, with initial Y p = Y . Just like the original program overwrites
variables, the differentiated program overwrites the differentiated variables,
writing values Ẋk over previous values Ẋk−1 in tangent mode, or writing
values Y k−1 over previous values Y k in the reverse mode. For example, if Ik

is a(i)=x*b(j) + COS(a(i)),

İk implements

 ȧ(i)

ḃ(j)

ẋ

 =

 -SIN(a(i)) x b(j)

0 1 0
0 0 1

 ×

 ȧ(i)

ḃ(j)

ẋ

 ,

Ik implements

 a(i)

b(j)

x

 =

 -SIN(a(i)) 0 0
x 1 0

b(j) 0 1

 ×

 a(i)

b(j)

x

 ,

and therefore tapenade produces the derivative instructions shown on fig-
ure 4.38. Other simple instructions may have side-effects that affect deriva-

tapenade tangent tapenade reverse
ad(i) = xd*b(j)

+ x*bd(j)
- ad(i)*SIN(a(i))

xb = xb + b(j)*ab(i)
bb(j) = bb(j) + x*ab(i)
ab(i) = -SIN(a(i))*ab(i)

Figure 4.38: Differentiation of a single assignment in tapenade

tives. For example a READ I-O into a variable v forces the derivative of v to
be reset to zero. tapenade automatically inserts these reset instructions.
However, the end-user should check that this is the behavior wanted.
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Activity of variables

tapenade lets the end-user specify that only some output variables (the
“dependent”) must be differentiated with respect to only some input variables
(the “independent”). We say that variable y depends on x when the derivative
of y with respect to x is not trivially null. A variable is said “active” if it
depends on some independent and some dependent depends on it. Only the
derivatives of the active variables need be computed. If variable v depends
on no independent, then vd is certainly null and the value of vb does not
matter. Conversely, if no dependent depends on v, then the value of vd

does not matter, and vb is certainly null. tapenade automatically detects
active variables and simplifies the differentiated program accordingly. In the

original program tapenade tangent tapenade reverse
x = 1.0
z = x*y
t = y**2
IF (t .GT. 100) ...

x = 1.0
zd = x*yd
z = x*y
t = y**2
IF (t .GT. 100) ...

x = 1.0
z = x*y
t = y**2
IF (t .GT. 100) ...
...
yb = yb + x*zb

Figure 4.39: Utilization of activity in tapenade

example of figure 4.39, x does not depend any more on the independent,
and t has no influence on any dependent. Therefore, tapenade knows that
xd and tb are null: they can be simplified and never computed. We shall
say that these derivatives are implicit-null. Symmetrically, td and xb are
non-null but useless, and therefore need not be evaluated. Nevertheless,
there are two special cases where tapenade explicitly resets implicit-null
variables: (1) when the control flow merges and the other incoming flow has
an explicit non-null derivative for this variable, and (2) when the end of the
differentiated program is reached and the derivative is an output. Notice also
that some of the user-given independent and dependent variables may turn
out to be inactive. If so, tapenade removes them automatically. This can
be checked on the differentiation comments that are put at the beginning of
the differentiated program.
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Control structure

Figure 4.40 illustrates how tapenade builds the control structure of the
differentiated procedures. In tangent mode, equation (4.4) allows derivative
instructions İk to run along with the original Ik, indeed just before Ik because
Ik may overwrite a part of Xk−1 that is used by f ′k(Xk−1) in İk. The control
structures are unchanged. In reverse mode, tapenade applies the Store All
strategy (cf section 4.1.3), resulting in a forward sweep followed by a backward
sweep. The forward sweep runs the original procedure, storing into a stack
the variables potentially required by the derivatives. In addition, the forward
sweep stores into the same stack the control information, used by the back-
ward sweep to reproduce between the Ik the reverse of the original control
flow. The stack is used classically through several PUSH and POP subroutines,
which are adapted to the type of the value. Its internal representation of
programs as Flow Graphs allows tapenade to use structured programming
in the backward sweep like in the forward sweep, using very little memory
space to store the control, and with no restriction on the original control
(GOTO’s, alternate procedures or I-O returns,. . . ). The principle is: the right
time to store the control is when the original control flow merges, and what
must be stored then is where the control actually came from.

Procedure calls

tapenade treats procedure calls differently from simple instructions, be-
cause a procedure call indeed represents a bunch of instructions, possibly
with control. Therefore the differentiated instructions cannot be put be-
fore the original call, but rather inside, yielding a differentiated procedure,
with additional arguments for the derivatives. The example on figure 4.41
illustrates this. In tangent mode, a call to SUB just gives a call to the differ-
entiated SUB D. In reverse mode, tapenade checkpoints the procedure call:
the forward sweep calls the original SUB and the backward sweep calls the
differentiated SUB B, that gathers its own forward and backward sweeps. One
principle of tapenade is procedure generalization, as opposed to specializa-
tion. Even if a procedure is called many times, with arguments sometimes
active, sometimes not, only one differentiated procedure is built, i.e. for the
most general activity of arguments. Thus, specific calls are sometimes given
dummy derivatives, either to feed them with a null derivative input, or to
receive a useless derivative result. Suppose SUB is called elsewhere with an
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original program tapenade reverse:
forward sweep

SUBROUTINE S1(a, n, x)
...
DO i=2,n,7

IF (a(i).GT.1.0) THEN
a(i) = LOG(a(i)) + a(i-1)
IF (a(i).LT.0.0) a(i)=2*a(i)

END IF
ENDDO
END

DO i=2,n,7
IF (a(i).GT.1.0) THEN

CALL PUSHREAL4(a(i))
a(i) = LOG(a(i)) + a(i-1)
IF (a(i).LT.0.0) THEN

CALL PUSHREAL4(a(i))
a(i) = 2*a(i)
CALL PUSHINTEGER4(3)

ELSE
CALL PUSHINTEGER4(2)

END IF
ELSE

CALL PUSHINTEGER4(1)
END IF

ENDDO
CALL PUSHINTEGER4(i - 7)

tapenade tangent tapenade reverse:
backward sweep

SUBROUTINE S1_D(a, ad, n, x)
...
DO i=2,n,7

IF (a(i).GT.1.0) THEN
ad(i) = ad(i)/a(i) + ad(i-1)
a(i) = LOG(a(i)) + a(i-1)
IF (a(i).LT.0.0) THEN
ad(i) = 2*ad(i)
a(i) = 2*a(i)

END IF
END IF

ENDDO
END

CALL POPINTEGER4(adTo)
DO i=adTo,2,-7

CALL POPINTEGER4(branch)
IF (branch .GE. 2) THEN

IF (branch .GE. 3) THEN
CALL POPREAL4(a(i))
ab(i) = 2*ab(i)

END IF
CALL POPREAL4(a(i))
ab(i-1) = ab(i-1) + ab(i)
ab(i) = ab(i)/a(i)

END IF
ENDDO

Figure 4.40: Differentiation of control flow in tapenade
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original program tapenade reverse:
forward sweep

x = x**3
CALL SUB(a, x, 1.5, z)
x = x*y

CALL PUSHREAL4(x)
x = x**3
CALL PUSHREAL4(x)
CALL SUB(a, x, 1.5, z)
x = x*y

tapenade tangent tapenade reverse:
backward sweep

xd = 3*x**2*xd
x = x**3
CALL SUB_D(a, ad, x, xd,

1.5, 0.0, z)
xd = y*xd
x = x*y

xb = y*xb
CALL POPREAL4(x)
CALL SUB_B(a, ab, x, xb,

1.5, arg2b, z)
CALL POPREAL4(x)
xb = 3*x**2*xb

Figure 4.41: Differentiation of a procedure call in tapenade

active 3rd argument, whereas the 4th argument is never active. This explains
the “0.0” argument in tangent, and the “arg2b” in reverse.

In the reverse mode, checkpointing requires taking a snapshot. tapenade
runs a preliminary Read-Written analysis to find a minimal snapshot, made
of variables that are both used by the procedure and overwritten before the
differentiated procedure is called. On the example of figure 4.41, the Read-
Written analysis could prove that this is only the case for x.

Since there are no pointers in fortran77, it is common practice to pass
an individual element of an array to a subroutine, and then use it in the
subroutine as a new array. In other words, the array element is considered as
a pointer to the sub-array starting from this element. This is probably on the
borderline with respect to the standard, but happens so often that tapenade
has a specific behavior for this. Of course a message is printed, but moreover
the type of the formal argument (an array), is “told” to the actual argument
(an array element). This results in the entire sub-array being saved by the
snapshot. There is an example of this behavior on figure 4.44, where not only
t(k) is stored, but rather the seven array elements from t(k) to t(k+7).

Sometimes a variable must be stored at part of the snapshot, and also be-
cause it is needed by derivatives of previous instructions. Instead of PUSH’ing
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the value twice, tapenade uses a special LOOK function, that reads the value
from the stack without removing it, so that it can be POP’ed later.

TBR Analysis and Adjoint Instructions Merging

The reverse mode uses two specific improvements built in tapenade. We
saw that intermediate values need to be stored before overwritten, only when
they will be used by the differentiated instructions. A specific program static
analysis does this in tapenade. On the example of figure 4.42, tapenade
could prove that neither x nor y were needed by the differentiated instruc-
tions, and therefore did not store them on the stack. Also, many reverse
differentiated instructions increment a differentiated variable. An internal
data-dependency analysis allows tapenade to safely gather initializations
and increments of the same differentiated variable, to make the code shorter.
The result is closer to what one would write when programming an adjoint
code by hand. This is the case for assignments to ab in figure 4.42.

original program tapenade reverse: tapenade reverse:
naive bckward sweep improved bckward sweep

x = x + EXP(a)
y = x + a**2
a = 3*z

CALL POPREAL4(a)
zb = zb + 3*ab
ab = 0.0
CALL POPREAL4(y)
ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0
CALL POPREAL4(x)
ab = ab + EXP(a)*xb

CALL POPREAL4(a)
zb = zb + 3*ab
xb = xb + yb
ab = 2*a*yb + EXP(a)*xb
yb = 0.0

Figure 4.42: Improved reverse differentiation in tapenade

The multi-directional AD model

The multi-directional AD mode, described in section 4.5.1, is similar to the
tangent (resp. reverse) mode, except that derivatives are computed simul-
taneously for several vectors Ẋ (resp. Y ). We shall call these vectors the
differentiation “directions”. Multi-directional modes are sometimed called
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“vector” modes. Multi-directional modes therefore compute many deriva-
tives, while running the original instructions only once.

The model, illustrated on figure 4.43, is therefore to put every deriva-
tive instruction into a loop. This loop has one iteration for each differen-
tiation direction Ẋ or Y . Data-Dependency analysis is used to fuse these
loops whenenver possible, to reduce loop overhead. One consequence is that
derivative variables become arrays, by adding an extra dimension which is
the number of initial differentiation directions. This extra dimension should
be deepest in the type structure, as can be seen for the POINT type, to let
the program easily take one component of the structure along with all its
derivatives. The multi-directional AD model makes the classical distinction
between static size of arrays and the size actually used. Therefore, differenti-
ated variables have a fixed static size in the “directions” dimension. This size
should be given as a constant by the end-user in the DIFFSIZES.inc include
file. However at run-time, the differentiated program may be given fewer dif-
ferentiation directions. This run-time number of dimensions is an extra inte-
ger argument to the differentiated routine, a priori called nbdirs. Presently
in tapenade, only the tangent mode can be done in multi-directional mode.

4.6.3 Performances and Limitations

tapenade has reached a state were it can be used routinely by academic
and industrial users. We gave references to existing users at the beginning
of this section. However there are still limitations, and probably there will
always be.

Let’s first discuss the speed of the differentiation itself. This is a secondary
problem in theory because differentiation is done once, like compilation. Nev-
ertheless in reality differentiation time matters when the application evolves
rapidly. On a 1 GHz computer, differentiation takes about 5 seconds for 1000
lines of source, not counting comments. The most time consuming part of
tapenade is the dependency analysis 4.4.1, which is quadratic with respect
to the number of variables. On a rather extreme example, with about 2,000
variable names, this made differentiation time go up to 20 minutes.

The most crucial point is the speed of the differentiated program. An
independent study [16] shows that tapenade creates the best tangent code,
and is second to taf only for the adjoint code. Even if we think that tape-
nade is indeed better than what this study shows, this is not the point here.
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original program tapenade multi-directional tangent:
SUBROUTINE DECLS1(t1, n,

m, t4, t5)
TYPE POINT

REAL x
REAL y

END TYPE
PARAMETER (n1=500)
POINT t4(n1)
REAL*8 t1(n),a
REAL t5(2000)
...
t1(10) = a*t5(10)
t1(5) = t4(5)%x + t4(5)%y
t4(2)%x = 3*t4(3)%y
CALL F(t4(1)%y)
...

SUBROUTINE DECLS1_DV(t1, t1d, n, m,
t4, t4d, t5, t5d, nbdirs)

INCLUDE ’DIFFSIZES.inc’
TYPE POINT_DV

REAL x(NBDirsMax)
REAL y(NBDirsMax)

END TYPE
TYPE POINT

REAL x
REAL y

END TYPE
PARAMETER (n1=500)
POINT_DV t4d(n1)
POINT t4(n1)
REAL*8 t1(n), t1d(NBDirsMax, n)
REAL*8 a,ad(NBDirsMax)
REAL t5(2000), t5d(NBDirsMax, 2000)
...
DO nd=1,nbdirs

t1d(nd, 10)=a*t5d(nd, 10)+ad(nd)*t5(10)
t1d(nd, 5) = t4d(5)%x(nd)+t4d(5)%y(nd)
t4d(2)%x(nd) = 3*t4d(3)%y(nd)

ENDDO
t1(10) = a*t5(10)
t1(5) = t4(5)%x + t4(5)%y
t4(2)%x = 3*t4(3)%y
CALL F_DV(t4(1)%y, t4d(1)%y, nbdirs)
...

Figure 4.43: tapenade multi-directional model
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Here are times taken from our biggest industrial example applications.

Original Tangent Adjoint Adjoint
Code name (&type) time: time: time: stack size:

ALYA (CFD) 0.03 s 0.06 s 0.20 s 11.4 Mb
THYC (Thermodynamics) 2.63 s 5.57 s 11.94 s 37.9 Mb

LIDAR (Optics) 5.21 s 5.68 s 10.74 s 17.3 Mb
STICS (Agronomy) 0.16 s 0.35 s 42.64 s 478.5 Mb

On the average, tangent AD code is approximately 3 times slower than
the original code, and adjoint AD is approximately 7 times slower. On the
STICS code, the adjoint code is very slow due to useless storage of a very
large number of variables. Nearly 96% of the time is spent in stack traffic
(PUSH and POP). This can be solved by additional code analyses, described
in sections 4.4.3 and 4.4.4, which are currently under development.

The current limitations that pose the biggest problems on real codes are

• Programs that store active variables into files or integer arrays are not
differentiated correctly because tapenade does not keep the deriva-
tives along with the values.

• There is no pointer analysis nor differentiation of dynamic memory
allocation procedures. This should come with adaptation to c

• Programs that emulate pointers by passing an array element to a sub-
routine that expects a whole array may be differentiated wrong. Note
that this does not conform with standards.

• Declarations are regenerated in a different order from the original file.
In particular “include” files are expanded. This makes the resulting
declarations somewhat hard to read.

• Sometimes tapenade needs to introduce new intermediate arrays,
whose size is dynamic. This is forbidden in standard fortran and
therefore some help is required from the end-user.

4.6.4 A glimpse at the User Interface

tapenade can be installed on the local computer and run from the com-
mand line or from a Makefile, just like a compiler. Here is a typical call:
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#> tapenade -reverse -head func -vars "x z" file1.f file2.f

Alternatively, the tapenade web server
http://tapenade.inria.fr:8080/tapenade/index.jsp

requires no installation and of course always runs the latest version. It can
be triggered in a few clicks from most web browsers. All tapenade docu-
mentation, with tutorial and an ever-growing reference manual, is available
at:

http://www-sop.inria.fr/tropics/tapenade.html

User input to tapenade consists in command-line options, directives
in the original code, as well as configuration files. Consider for instance
black-box procedures, i.e. procedures eventually called by the code to be
differentiated, whose source is hidden (e.g. libraries). If nothing is known
about a black-box procedure, the interprocedural analyses of tapenade will
make conservative assumptions, and the code produced will be less efficient.
tapenade lets the user specify, in a configuration file, summarized infor-
mation about black-box procedures about parameters read and written and
their relative derivatives. Here is an example. Consider a call to a black-box
function G:

r = G(a,T(k),r2)

Suppose the end-user knows that G only uses its 1st and 2nd arguments and
some global variable x, and overwrites its 1st and 3rd argument. Suppose
also, to make things a little bit more complex, that G, although called with a
scalar 2nd argument T(k), actually expects a 2nd argument of dimension 7.
This is a widespread practice in Fortran77, to emulate pointers. The end-user
can specify this in the configuration file as follows. The specification file first
enumerates the formal arguments expected by G, including globals, which we
call the shape of G. Then, following this shape, the following information may
be given: argument type, argument read or not, argument written or not,
or dependency matrix, which is the sparsity pattern of the Jacobian matrix.
All this is written in the following form:

function G: external :

shape: (param 1, param 2, param 3, result, common /globals/x)

type: (real, real(1:7), real, real, real)

R: (1 1 0 0 1)

W: (1 0 1 1 0)

deps:( 0 0 0 0 1
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0 1 0 0 0

1 0 0 0 1

1 1 0 0 0

0 0 0 0 1)

Using this configuration file, the forward sweep takes a snapshot of the In
arguments of G: x, a, and the 7 elements of array T from rank k. This
requires that k be taken in the snapshot too. During the backward sweep,
the snapshot is used to restore the necessary values, before the call to the
differentiated routine G B. This results in the code shown on figure 4.44.

original program tapenade tangent tapenade reverse
...
a = a + 3*t(2)
r = G(a,t(k),r2)
...

...
a = a + 3*t(2)
CALL PUSHREAL8(x)
CALL PUSHREAL8ARRAY

(t(k),7)
CALL PUSHREAL8(a)
CALL PUSHINTEGER4(k)
r = G(a,t(k),r2)
...

...
CALL POPINTEGER4(k)
CALL POPREAL8(a)
CALL POPREAL8ARRAY

(t(k),7)
CALL POPREAL8(x)
CALL G_B(a,ab,t(k),

tb(k),r2,r2b,rb)
rb = 0.0
r2b = 0.0
tb(2) = tb(2) + 3*ab
...

Figure 4.44: Improved tapenade output using Black-Box routine signature

A graphical user interface, shown on figure 4.45, helps examine tape-
nade output, exhibiting correspondence between original and differentiated
code. This user interface consists of html files, and is therefore accessible
from the web server as well as from a local installation. In its bottom frame,
the interface also lists error and warning messages found by tapenade, with
location in the source. Source-code location is implemented with html links,
which is very easy but slightly limited. Nevertheless, a click on a source line
code generally makes the differentiated line appear in front, and vice-versa.
A click of a node of a call graph makes the corresponding subroutine ap-
pear. A click on an error symbol makes the error text appear on the bottom
frame, and conversely a click on an error text in the bottom frame scrolls
the program to where the error occurs. One last word about error messages:
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Figure 4.45: html interface for tapenade output

there are many types of messages, such as type conflicts, wrong number of
arguments or dimensions, aliasing or variables used before initialized. Al-
though the temptation is strong, these messages should not be ignored right
away. Especially when AD is concerned, these messages may indicate that
the program runs into one limitation of the AD technology. Generally speak-
ing, compilers often permit to go against the standard with no visible harm.
However, this often introduces errors into the program differentiated in re-
verse mode. This is particularly true for two such messages:

• Aliasing: one can get the following message
(DF02) Potential aliasing in calling function F,

between arguments ...

Suppose a subroutine F has many arguments (i.e. formal parameters
or commons or globals...). Aliasing happens at a given call of F when
two different arguments receive the same actual argument, or at least
two actual arguments that overlap in memory, and at least one of these
two arguments is overwritten by F. Notice that such aliasing results in
code that does not conform to the Fortran standard [38, Section 5.7.2].
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Tapenade, like most static analysis tools, analyses each subroutine in
its own local context, i.e. assumes that each formal parameter is a
different memory location. This assumption leads to a differentiated
program that will fail if there is aliasing. For example:

SUBROUTINE F(a, b)
...
a = 3*b

would be differentiated in the reverse mode as:

SUBROUTINE F_B(a, ab, b, bb)
...
a = 3*b
...
bb = bb + 3*ab
ab = 0.0

This works fine as long as the actual a and b are different variables.
But if a = b = x, F does x = 3*x, and what you want for F B is xb

= 3*xb. This is not what the above F B will do. Similar problems
arise in most program transformations, such as parallelization, partial
evaluation, etc. tapenade is able to detect this situation. Notice
however that this is an undecidable analysis, and therefore tapenade
may detect a case of aliasing when there is none in reality. However,
when the end-user confirms that the aliasing is true, this must be fixed.
Generally, this is done by introducing a temporary variable, so that
memory locations of the parameters do not overlap.

• Casting: one can get the following messages
(AD01) Actual argument ... of F is active

while formal argument is non-differentiable

(AD02) Actual output ... of F is useful

while formal result is non-differentiable

(AD03) Active variable ... written by I-O to file ...

(AD04) Useful variable ... read by I-O from file ...
Some programs save REAL variables r1 into arrays of, say, INTEGER’s,
or maybe just bytes. Later, they read the values from where they
were saved, and put them back into REAL variables r2. We call this
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casting REAL’s into and from another type. This is poor programming
practice in general. We also consider writing into a file and reading
back from this file as an extended sort of casting. The problem is that
tapenade does not hold derivatives for INTEGER’s. Therefore the chain
of activity is broken between r1 and r2, and the computed derivatives
will be wrong. When tapenade detects this situation, one must do
without this casting. Otherwise, if this is impossible, there is a special
option in tapenade to actually attach derivatives to these strange
“INTEGREAL’s”.

4.6.5 Further developments

Our goal is to promote the use of tapenade in the scientific computing
community, and more importantly the use of the reverse mode of AD for
optimization [12, 22, 35] and inverse problems [37]. Discussion with end-
users drives our research very strongly.

We are currently extending tapenade in several directions. A new ver-
sion that fully accepts fortran95 is coming soon, and c in next on the
list. Also, we are still unsure of the best program representation for object
languages. Program static analyses will be developed further, particularly
pointer analysis. There is also work to be done in the definition of directives
used by tapenade to drive AD efficiently. Our research work, focused on
the reverse mode, progressively suggests improvements into the tool. For
example the dead adjoint code analysis still needs development to reach the
results shown in section 4.4.4
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Chapter 5

Conclusion

This report presents a summary of research done in the field of Software
Engineering tools for Computer Science applications. Starting from research
in automatic parallelization of programs, our goal is to transpose these par-
allelization techniques into the younger field of Automatic Differentiation,
which is now our main research direction. We think we could bring new
algorithmic ideas into AD, and there is still room for new research.

We shall conclude on the next open questions we envision for AD. As a
relatively new technique, AD is still not an obvious choice for many specialists
of scientific computing. Its development depends on the quality of both usage
and computation of derivatives. Therefore, AD is still struggling on two main
fronts:

• The numerical science front: now that AD provides analytic derivatives,
convince numerical scientists to use those, exhibiting efficient way to
use AD derivatives in scientific programs?

• The computer science front: What are the most efficient models to
compute derivatives, for instance avoiding redundant computations of
derivative expressions, or finding optimal tradeoffs between storage and
recomputation for the reverse mode.

We didn’t say much on the numerical science front, except in the AD
illustration sections 4.2.1 and 4.2.2. One frontier of numerical science is the
present jump from simulation to optimization of systems. This is by no means
easy, but extremely important. It is actually so important that users are
prepared to invest a lot of effort and computation time for it: just consider
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the current interest for “evolutionary” or “genetic” black-box approaches,
which simply replace mathematical optimization by an extremely expensive
clever exhaustive search. We believe gradient-based optimization is still an
essential ingredient of any optimization method in scientific computation, and
this is a frontier for AD, especially when iterative solving is used. Whereas
AD differentiation of non-iterative pieces of code can follow mechanically
the original control flow, researchers actively look for innovative models for
AD of iterative loops. These models will probably combine purely automatic
differentiation with application specific resolution tactics. Also, more efficient
optimization schemes require not only the gradient of the cost function, but
also its higher – mostly second – derivatives. Some AD tools provide some
support for higher derivatives, but a unified framework is still missing.

Our main interest is the computer science front, in which we distinguish
before algorithmic research and software tool development.

One challenge is to design a formalism that can capture both the Store-All
and the Recompute-All strategies (cf section 4.1.3) for the reverse mode. This
formalism should also capture strategies based on transformation to single-
assignment code and allow detection of redundant derivative sub-expressions.
With such a framework, we hope we can find optimal compromises returning
adjoints of straight-line codes that are as good as some one would write by
hand. Derivative sub-expressions are well captured by the computation graph
(cf section 4.5.3), whereas the dependence graph is suited for manipulations
of variables and instructions reordering. The new formalism should be a
synthesis of these graphs.

Another challenge is to make checkpointing more flexible. Checkpointing
is absolutely unavoidable on large codes, for example for optimization of
unsteady processes. Checkpointing arbitrary pieces of code, designated by
the end-user, is highly desirable. Also, successive checkpoints can share a
part of their stored variables, and tradeoffs must be solved for this. There
exist other flavors of checkpointing (“reverse checkpoints”) that we didn’t
investigate yet, that would deserve deeper studies.

The problem of differentiation of parallel programs that use asynchronous
message-passing is still open. We still don’t know how to reverse the control
flow of an asynchronous execution.

Automatic Differentiation of programs around discontinuities is still an
open problem. There is a theoretical description in [24, Chapter 11], and
some run-time tests can be inserted by adifor. We are studying a special
differentiation mode that would evaluate the size of the neighborhood of the
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current input values in which no discontinuities occur.
About tool development, we know that tapenade can be largely im-

proved, although it now surpasses the functions of its predecessor Odyssée.
tapenade still misses treatment of user directives for AD, and a decent
analysis of pointers and dynamic memory. These problems will be even more
important when c is an input language. Pointers are still a challenge for
most AD tools, as well as differentiation of c. Nevertheless, the biggest chal-
lenge for AD tools is definitely differentiation of object-oriented languages
(e.g. c++), which are speading more and more in Scientific Computing.
Obviously, static knowledge of the control flow is weaker in object-oriented
programs, and most AD models must be adapted to this new situation.
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differentiation for optimum design: from adjoint state assembly to gra-
dient computation. Optimization Methods and Software, 18(5):615–627,
2003.

[13] P. Cousot. Abstract interpretation. ACM Computing Surveys,
28(1):324–328, 1996.

[14] B. Creusillet. Analyses de régions de tableaux et applications. PhD
thesis, Ecole des mines de Paris, 1996.

[15] B. Creusillet and F. Irigoin. Interprocedural array region analyses. In-
ternational Journal of Parallel Programming, 24(6):513–546, 1996.

[16] P. Cusdin and J.-D. Mueller. Improving the performance of code gen-
erated by automatic differentiation. Technical Report QUB-SAE-03-04,
Queen’s University Belfast, 2003.

[17] P. Dutto, C. Faure, and Fidanova S. Automatic differentiation and
parallelism. In Proceedings of Enumath 99, Finland, 1999.

[18] C. Farhat and S. Lanteri. Simulation of compressible viscous flows on
a variety of mpps : computational algorithms for unstructured dynamic
meshes and performance results. Computer Methods in Applied Mechan-
ics and Engineering, 119:35–60, 1994.

[19] C. Faure and U. Naumann. Minimizing the tape size. In in [11], 2001.

[20] R. Giering. Tangent linear and adjoint model compiler, users manual.
Technical report, 1997. http://www.autodiff.com/tamc.

[21] J.C. Gilbert. Automatic differentiation and iterative processes. Opti-
mization Methods and Software, 1:13–21, 1992.

176



[22] M.-B. Giles. Adjoint methods for aeronautical design. In Proceedings of
the ECCOMAS CFD Conference, 2001.

[23] A. Griewank. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods
and Software, 1:35–54, 1992.

[24] A. Griewank. Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation. SIAM, Frontiers in Applied Mathematics,
2000.

[25] J. Grimm, L. Pottier, and N. Rostaing-Schmidt. Optimal time and
minimum space-time product for reversing a certain class of programs.
In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Com-
putational Differentiation: Techniques, Applications and Tools, pages
95–106. SIAM, 1996. rapport de Recherche INRIA 2794.
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[33] L. Hascoët, U. Naumann, and V. Pascual. Tbr analysis in reverse mode
automatic differentiation. Future Generation Computer Systems – Spe-
cial Issue on Automatic Differentiation, 2004. to appear.
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