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Abstract

We present a method for automatic SPMD parallelisation of applications, when
the data is partitioned along processors with overlapping, redundant values. The
problem is to insert just enough communication calls to ensure coherence of the
redundant values. Our method uses a representation of the topology of the data and
of the duplicated values, that we call the Owverlap Automaton. We present a tool
that implements this method, and its application to two-dimensional and three-
dimensional Navier-Stokes flow solvers. Performance results are given.
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analysis. program transformation.

1 Introduction

Partitioning data and computation is a classical approach to parallelisation. In
this approach, each processor is in charge of one part of the computation do-
main, and data is sent to, and received from other processors when necessary,
by means of calls to standard communication libraries.

Generally, an overlap mechanism is utilised: some data is replicated on two
or more processors, and is updated when it becomes out of date. Communi-
cations may then be deferred, and gathered into a single communication call.
The same program is run on each processor, and it is very close to the sequen-
tial program. Only calls to communication routines are inserted at carefully
selected places, and these calls use data files that define which values must
travel to which processor (“communication lists”). This is commonly called the

“Single Program Multiple Data” model (SPMD).

Therefore, parallelisation by partitioning needs to know what communications
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must be performed, and when. This decision depends on the program itself,
and also on the distribution of the replicated variables (“overlapping pattern”).
For example for mesh-based programs, this SPMD parallelisation process is
summarised on figure 1.
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Mesh Sub-meshes +
partitioner Communication lists
Parallel
execution
O retion
insertion
Original program

Fig. 1. SPMD parallelisation process

Overlapping pattern

Inserting communication calls is usually tedious and error-prone, and it must
be done each time the program is modified. Errors due to poorly placed com-
munications are very hard to fix. Instead of making the program crash, they
lead to false results or degrade the convergence rate. Also, a good understand-
ing of the program’s algorithm is required, which is hard to gain on a “legacy”
application. In this paper, we present a method for automatic placement of
these communications into the SPMD program. This method is based on the
program’s data-flow graph on one hand, and on the other hand on the particu-
lar overlapping pattern, whose effect is represented by a finite state automaton
(“overlap automaton”). This automaton summarises the allowed evolutions of
the state of each duplicated variables (“up to date” or “out of date”), along the
data-flow paths.

The SPMD model amounts to distributing the loops by partitioning their
iteration domain, and distributing the arrays that are used by these loops
accordingly. The method presented here is specialised to a (wide enough)
class of programs, where distributed arrays are relying on a limited number
of data structures, and are accessed during distributed loops, through so-
called “indirection arrays’, which are constant. This is in particular the case
for computations on unstructured meshes, using “gather-scatter” loops, that
will be used for illustrating examples throughout this paper and for the final
application to real 2D and 3D flow solvers.

The rest of the paper is organised as follows: after a survey of SPMD paral-
lelisation methods and tools for communication insertion (section 2), we shall
describe our method for inserting communications in section 3. Then in section
4, we shall discuss complexity questions for the resulting algorithm. Finally,
section 5 will present the tool that we built to demonstrate our method, and
its application to two numerical flow solvers.



2 Methods and Tools for SPMD parallelisation

To begin with, a classical alternative to SPMD parallelisation is the HPF ap-
proach (Brezany et al. [3], Saltz et al. [12], Koppler [8]), which is more general
but less efficient. In HPF, communications are not explicit. This is left to
the compiler, following user-given alignment directives. The drawback is that
one cannot easily impose a preferred organisation of data and communication.
HPF is still heavily dependent on structured data, with affine array indexes,
and gives poor results otherwise. The INDIRECT directive partly copes for that,
but this approach often requires a heavy transformation [3], with an additional
indirection level.

The SPMD approach (e.g. O’Boyle et al. [11], Farhat and Lanteri [4]), uses a
sequential language, plus explicit communications (e.g. MPI). Portability of
MPI is just as good as HPF. The user has more responsibilities, and freedom.
This freedom may be dangerous in general: methods and tools are necessary
to avoid this risk. This approach gives excellent results in specific cases, such
as mesh-based computations. Moreover, this can be combined with finer-grain
parallelisation: each copy of the SPMD program can be itself parallelised [6].

Whatever approach is chosen, it is more efficient to pre-compile communica-
tions. Even in the HPF context, it is necessary to use a strategy to “direct” the
compiler towards a solution with lower communication cost. There are many
interesting results (O’Boyle et al. [11]), when the data is accessed regularly.
For irregular data such as meshes, see McManus [9], or Koppler [8]. In our
context, this implies to place communications calls into the program.

One classical way is the “inspector-executor” model [7]. This is a runtime-
compilation method, that dynamically determines the array cells that need
be communicated across processors. See for example the Saltz et al. PARTI
primitives [13], or the Vienna school VFCS system.

Others (Koppler [8], Ujaldon et al. [15]) propose a user-given description of
the relationship between the application data. This spares the inspector phase,
like also in the DIME [16] or ARCHIMEDES |[2] environments. But these
tools are specialised to a specific application. Koppler’s method is devised for
mesh-based computations, using an object-oriented specification of a so-called
entity relationship diagram, but the target language is HPF'. Lastly, numerical
libraries like PETSc [1] or Aztec [14], internally use SPMD parallelism with
an overlap. But again, this is specialized for e.g. sparse linear systems, and
there is no way to specify another arrangement of data and overlap.

Thus, we found very few work on the question of placement of communications
for SPMD parallelisation, addressing various overlapping strategies in a unified
manner. The method described here, first presented in [5], has this goal.



3 Automatic placement of communications

We are going to formalise the intuitive reasoning that one usually follows: for
a number of reasons, the data that flows through the program becomes more
or less out of date on the replicated variables. At some later stage, this data is
used in such a way that the replicated variables must be up to date. Therefore
a communication must be inserted in between to update them. The general
reason behind that is that partitioned arrays are accessed using indirection
arrays. This happens classically in mesh-based computations, which is the
illustration we shall use in the sequel.

Consider for example the piece of code sketched on figure 2, which is taken
from a mesh-based flow solver. It composes of two gather-scatter loops, with a

Foral | i (split loop on mesh triangles)

va( VERTEX2(i ))
End

Foral |
di tf
sqrdl = sqrdlff + ff diff

End \
diff

For al I i (splitloop on

(split Ioop on m&sh nodes)

VERTEX3(i ))

Fig. 2. A piece of code from a flow solver

reduction loop between them. The arrows show the data-flow graph. On sub-
mesh borders, replicated mesh nodes do not have all their neighbor triangles,
and thus the first loop will assign wrong values of NEW for them. Since the third
loop needs correct values on the overlap, a communication must be inserted
between the first and third loop.

The above is a consequence of the mesh and overlap topologies. Our method is
to formalise the effect of this topology with a user-given finite state automaton,
that we call “Querlap Automaton”. This automaton defines the wvalid states,
i.e. states of distributed arrays where replicated values are either up to date,
or can be updated by a communication call. When an array is up to date, it
contains the same values as for the sequential program. The automaton also
defines the wvalid transitions, that take a value in a valid state and use it to



generate another value still in a valid state.

For example, consider a 2D triangular mesh as shown on figure 3, with an

Proc. A

Proc. A Proc. B

Fig. 3. Partitioning with one layer of overlapping triangles

overlapping pattern of one layer of duplicated triangles. A gather-scatter loop
on triangles, such as the first loop of figure 2, may gather values from neighbor
nodes, but this requires that replicated values on node a' (resp. ') of figure
3 be up to date, i.e. identical to node a (resp. b). On the other hand, if the
resulting value val2 — which, as a localised scalar, is equivalent to an array on
triangles — is scattered to neighbor nodes, this results in out of date values on
overlapping nodes a’ or ¥', because these nodes cannot see all of their neighbor
triangles. The Overlap Automaton formalises these evolutions from one state
to another. Each state specifies two things:

(1) Along which data structures is the flowing data partitioned? This can be
on nodes (Nod), edges (Edg), triangles (Tri), or tetrahedra (Thd). The
flowing data can also be scalar (Sca), meaning that it holds a global value
for the whole (sub-)mesh. Note that this property is fixed for any given
array or loop, e.g. an array on triangles will always hold values aligned
on triangles.

(2) Are the overlap elements up to date? We denote this by the subscript of
the state name: “0” means everything is up to date, whereas “1” means
the layer of duplicate elements is out of date. By extension, Scay denotes
a global value coherent on all sub-meshes, while Sca; denotes partial
reduction values on sub-meshes, requiring a global communication.

The transitions between these states come from analyses like the one above.
For example again, for a gather-scatter loop on triangles and duplicated tri-
angles (state Trip), the required states for gathered values and the resulting
states for scattered values are shown on the left of figure 4. The right part of
figure 4 shows the analogous transitions for a loop in state Nod;, i.e. which
runs on nodes except replicated ones. For example, if the middle loop in figure
2 is in that state, these transitions specify that node-based array NEW may



Fig. 4. State of the flowing data across loops on triangles and nodes

be up to date or not, and that the result of the reduction sqrdiff is a local
sum (state Sca;), that eventually needs a reduction communication call, to
become a global sum.

Similar graphs exist for loops on each mesh entities. We also create the “Up-
date” transitions, that represent the updates of the duplicate variables by
appropriate communication calls. Merging these elementary graphs gives the
Overlap Automaton. Figure 5 shows the Overlap Automata for our chosen
overlapping pattern of figure 3, and for the 3D case, with a one tetrahedron
wide overlap.

Fig. 5. Overlap Automata for 2D and 3D meshes with overlap

The Overlap Automaton is specific to each data organisation and its overlap-
ping pattern. It is independent from the particular program, data, or partition.
In principle, it must be provided by the user. However, in the very frequent
case of 2D triangular meshes and 3D tetrahedron meshes, these automata are
predefined for the most frequent overlapping patterns (cf figure 5).

Suppose now that we find a mapping M, from the data-flow nodes to the



Overlap Automaton states, and a mapping M, from the data-flow arrows to
the Overlap Automaton transitions, such that:

(1) For every data-flow node N of the program’s input, M,(N) equals its
given initial state.

(2) For every data-flow node N of the program’s output, M, (N) equals its
required result state.

(3) For every data-flow arrow A in the program,

origin(M,(A)) = M, (origin(A))
destination(M,(A)) = M, (destination(A))
This mapping defines a SPMD program in the following manner:

(1) Each data-dependence mapped to a transition labelled "Update", gen-
erates a communication between its origin and its destination.

(2) Each loop mapped to a state with subscript 1, must not be run on du-
plicated mesh elements.

We can show that this SPMD program gives the same results as the sequential
program. This is because each possible execution of the program corresponds
to one sweep on the data-flow graph (possibly with cycles), and therefore can
itself be mapped to the Overlap Automaton. As a consequence, all values
remain in a wvalid state throughout all the program’s execution, and therefore
contain the same data as in the sequential execution.

4 Analysis of the algorithm

The above method leads to an algorithm that sweeps through the data-flow
graph, and maps each loop and each variable occurrence to an Overlap Au-
tomaton state. The state assigned to a distributed loop is indeed the state for
each array indexed by the loop index, and of each localised scalar in the loop.
The data-flow graph is generally cyclic, mapping choices are many, and some
choices may lead to contradictions. Therefore this sweep must implement a
backtracking mechanism. Backtracking occurs when a data-flow arrow can be
mapped to no transition, or when a data-flow node or arrow is encountered
twice, requiring mapping to two different states or transitions.

This mapping algorithm is similar to the so-called Simulation in the calculus
of processes [10]. This is known to be exponential with respect to the size
of the analysed program. If we call n the number of data-flow nodes, and A
the maximum number of alternatives for mapping a data-flow arrow, i.e. the



maximum number of transitions from a given state, the complexity of the
algorithm is bounded by O(A™).

However, there exist classical heuristics to remain very far from this upper
bound. The general idea is to define recursively nested data-flow sub-graphs,
and to run the analysis on each sub-graph independently. Then the sub-graph
is considered as a “black box” node at the enclosing sub-graph level. Nat-
ural sub-graphs to be considered are loops and subroutines. In principle, each
sub-graph must be swept to find all possible mappings. Then each of these
mappings will be considered at the enclosing level. There is a big speedup if
only the “best” mappings are stored and retrieved. This might miss some solu-
tions in very rare cases, but experience shows there is no problem in practice.
Here are two heuristics we propose:

e Pushing communications upwards: some of the mappings found for a
subroutine turn out to insert a communication call just at the beginning
or at the end of the subroutine. These solutions are always overridden by
another solution, without the initial or final communications. This amounts
to moving the communication up, into the calling routine, where they make
more sense to the user anyway.

e Partial order on mappings: it is not always possible to decide one map-
ping better than another. This is because one mapping can trade more du-
plicate computation for fewer communications. But there can be a partial
order between mappings. Any mapping may be evaluated with two figures.
One represents the amount of redundant computations, that depends on the
number of loops whose state is labelled 0. The other represents the amount
of communication, that depends on the number of “Update” transitions.
This last figure also uses a communication “overhead”, used to promote
grouped communications. This gives a partial order on the solutions, and
we retain only the best solutions.

5 Application and performances

We had to build a specific tool, called Gaspard, to validate our method on 2D
and 3D mesh-based applications in FORTRAN. The user is asked to specify,
with a specialised interface:

e the program segment to parallelise,

e the Overlap Automaton corresponding to the current geometry of the mesh
and of the overlap,

e an assignment from each variable name and loop to the set of its possible
states. This set specifies that each of these objects (variables and loops) is
aligned once and for all on one category of mesh elements (nodes, edges,



triangles, ...), and is partitioned accordingly.

Gaspard returns the set of all possible mappings, i.e. all possible SPMD pro-
grams, with communications calls inserted at the correct places.

Our application examples are two-dimensional and three-dimensional flow
solvers, written in Fortran 77, named Ezp2D (13 routines, 1500 code lines),
Imp2D (18 routines, 1800 code lines), and NSC3DM (34 routines, 4800 code
lines). They solve the compressible Navier-Stokes equations on unstructured
triangular meshes. Time advancing is explicit for Ezp2D, and implicit for
Imp2D and NSC3DM, therefore requiring the resolution of a large sparse linear
system at each time step. This is done with Jacobi relaxations.

The partitioned meshes have one layer of duplicated elements (cf figure 3),
and therefore we select the Overlap Automata of figure 5. This choice is jus-
tified by the comparison of various overlapping patterns given in [4]. Running
Gaspard on Exp2D and Imp2D takes some 10 minutes on a Sun Ultra-1/170.
Application to NSC3DM takes roughly one hour. This time includes CPU time
as well as interaction with the user. We believe that someone unfamiliar with
these solvers would need much longer to parallelise the programs by hand.

Each application comes with its test case:

e Imp2D computes the external laminar viscous flow around a NACA0012 airfoil
(Mach number: 0.85, Reynolds number: 2000). The 2D mesh contains 48792
nodes, 96896 triangles and 145688 edges.

e NSC3DM computes the external flow around an ONERA M6 wing (Mach num-
ber: 0.84, angle of incidence: 3.06°). The 3D mesh contains 15460 nodes,
80424 tetrahedra and 99891 edges.

Although this is more the result of the SMPD tactic itself, rather than a result
of our method to insert communications, we show some performance results
of the SPMD programs obtained. More can be found in [4]. In the following
tables, N, is the number of processes for the parallel execution; “Elapsed” is
the average total elapsed execution time and “CPU” the total CPU time; the
parallel speedup S(N,) is calculated on the elapsed times. Simulations are
performed with 64 bit arithmetic computations, on the following computing
platforms:

e (cf table 1) a SGI Origin 2000 (located at the Centre Charles Hermite
in Nancy), equipped with Mips R10000/195 Mhz processors with 4 Mb of
cache memory. The SGI implementation of MPI was used.

e (cf table 2) a cluster of 12 Pentium Pro P6/200 Mhz, with a 100 Mbit/s
FastEthernet switch. The code was compiled by the G77 GNU compiler with
maximal optimization options. Communications used MPICH (version 1.1).



Table 1
Performances on a SGI Origin 2000 system

Imp2D on NACAOO012 airfoil | NSCSDM on ONERA M6 wing
N, || Elapsed | CPU | S(N,) | Elapsed | CPU S(N,)
1 2793 s | 2773 s 1.0 1318 s | 1305 s 1.0
4 815 s 809 s 3.5 390 s 387 s 3.4
8 314 s 310 s 8.9 198 s 196 s 6.7
16 147 s 145 s 19.0
Table 2
Performances on a cluster of 12 Pentium Pro
Imp2D on NACA0012 airfoil | NSC3DM on ONERA M6 wing
N, || Elapsed | CPU | S(N,) | Elapsed | CPU S(Np)
1 6883 s | 6854 s 1.0 7488 s | 7429 s 1.0
4 2289 s | 21825 3.0 2583 s | 2382 s 2.9
8 1440 s | 1218 s 4.8 1409 s | 1254 s 5.3

The results show a good parallel speedup, especially on table 1. The decreasing
sizes of the sub-meshes resulting from the 8 and 16 sub-meshes decomposition
explain the super-linear speed-up observed on the SGI Origin 2000: on this
platform the R10000 processor possesses a 4 Mb cache memory, a rather large
value that contributes to high computational rates. On table 2 the speedups
are still good, but show the impact of higher communication costs prevailing
on the cluster architecture.

6 Conclusion

We proposed a method to mechanise an important step of SPMD parallelisa-
tion, namely the placement of communications. From this method, we derived
a specialised tool for programs on unstructured meshes, partitioned with an
overlap, The tool was tested on fluid mechanics applications.

Performances show that this specialised SPMD strategy actually gives good
speedups on real applications. Currently, the tool is able to find a provably
correct placement of communication calls, faster than by hand.

A slightly modified version of our method could also be used in “checking”
mode. This means verifying an existing placement of communications inside
an SPMD application.
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The present method and tool, although probably not general, must be applica-
ble to other data structures than meshes. As long as one can define states of
coherence of these data on their overlap, one can specify an Quverlap Automa-
ton that says how the program can use these distributed data. This Owverlap
Automaton only reflects the data geometry, and is independent from the par-
ticular program, data, or partition.
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