
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.2000;12:1177–1191

Tools for OpenMP application
development: the POST project

L. Adhianto1, F. Bodin2, B. Chapman3,1,∗, L. Hascoet4

A. Kneer5, D. Lancaster1, I. Wolton1 and M. Wirtz5

1Electronics & Computer Science, University of Southampton, U.K.
2IRISA, University of Rennes, Rennes, France
3Computer Science, University of Houston, U.S.A.
4Simulog SA, Sophia Antipolis, France
5Battelle GmbH, Eschborn, Germany

SUMMARY

OpenMP was recently proposed by a group of vendors as a programming model for shared memory
parallel architectures. The growing popularity of such systems, and the rapid availability of product-
strength compilers for OpenMP, seem to guarantee a broad take-up of this paradigm if appropriate tools
for application development can be provided. POST is an EU-funded project that is developing a product,
based on FORESYS from Simulog, which aims to reduce the human effort involved in the creation of
OpenMP code. Additional research within the project focuses on alternative techniques to support OpenMP
application development that target a broad variety of users. Functionality ranges from fully automatic
strategies for novice users, the provision of parallelization hints, and step-by-step strategies for porting code,
to a range of transformations and source code analyses that may be used by experts, including the ability
to create application-specific transformations. The work is accompanied by the development of OpenMP
versions of several industrial applications. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: program analysis; restructuring; parallelization; FORTRAN; program transformations; program
development environment; OpenMP; expert system

1. INTRODUCTION

Most major hardware vendors market cost-effective parallel systems in which a modest number of
processors share memory. Such shared memory parallel workstations and PCs (SMPs) are being
increasingly deployed, not only as stand-alone computers, but also in workstation clusters. They are
also used to populate the nodes of distributed memory machines such as IBM’s SP-2, the Compaq/QSW
AlphaServer SC and the QSW QM-1. The SGI Origin 2000 and HP SPP systems provide cache

∗Correspondence to: B. Chapman, Computer Science, University of Houston, 4800 Calhoun Street, Houston, TX 77204-3475,
U.S.A.
Contract/grant sponsor: ESPRIT; contract/grant number: 29920

Received November 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised May 2000

1178 L. ADHIANTO ET AL.

coherency across their SMP nodes and have very low latency. Users of such ccNUMA machines are
encouraged to program the entire system as if it were a large SMP.

OpenMP [26] was developed as a high-level programming model for creating applications that are
able to exploit the processing power of SMPs, and it is also implemented on ccNUMA systems. It
promises to provide ease of development together with good performance on this range of architectures.
Although it is indeed much easier to write OpenMP code than, say, message-passing parallel code, it
is not necessarily a straightforward task to create code that makes good use of cache and exploits a
sufficient amount of parallelism. Some difficult porting problems remain. Interactive tools may not
only help produce a high-quality translation of an existing program to an OpenMP version, but they
also have the potential to significantly reduce the human effort involved in the parallelization process.

Within the EU-funded POST project (Programming with the OpenMP Standard), we are creating
a programming environment to facilitate application development for the range of systems described
above. When completed, the POST environment will be highly interactive and will cooperate with the
user to develop code rather than simply providing a standardized automatic translation. POST helps
the user analyse, and possibly modify, an existing program before adapting it using a conventional
automatic OpenMP code generation strategy; yet it also applies alternative techniques, based in part
upon examples of successful code parallelization, to cooperate with the user in the identification and
selection of a strategy for translating to OpenMP. Within this paper we describe the features available
within the tools, and illustrate our approach with reference to OpenMP loop parallelization, using
code fragments from the application development work within the project. Given that OpenMP is
not currently sufficient for the full range of machines described, we should point out that the POST
environment is also able to deal with combinations of MPI and OpenMP in a code.

This paper is organized as follows. In the next section we give a brief overview of the project
tools and the applications that are being developed as part of the POST project. The application
developers are supporting the tool creation work by providing feedback on their needs and suggesting
functionality, as well as improvements to existing features.

In Section3 we describe each of the components of the toolset, showing how they help solve porting
problems encountered during the project application development. These range from the commercial
reverse-engineering software product FORESYS from Simulog, at the heart of this development, to
research activities that search for improved means of user support. Related work is briefly described in
Section4.

The paper concludes with a summary of related work and future prospects.

2. PROJECT OVERVIEW

The toolset in POST is a highly interactive environment developed to support OpenMP parallelization.
It permits the user to study an existing program, obtain an automatically generated OpenMP code,
manually insert OpenMP directives, or obtain analysis results from all or part of the program within a
single environment.

Expert users may write code replacement ‘transformations’ (these are not necessarily legal code
transformations in the conventional sense) in a special scripting language, and apply these as desired
throughout the program. The insights used to restructure a loop may also be documented and saved, so
that they may be made available to other users. We are creating a database of loop structures found
in application codes, together with a description, as well as code, to record successful adaptation

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1179

strategies. These can then be used to provide hints on possible code adaptations in a custom context-
sensitive Help facility. The successful adaptations also serve as material for an experimental Case
Based Reasoning system which aims to help the user recognize similar loop structures in other codes
and provide assistance in transforming them.

A User Guidance Module is under development that will provide both extended transformation
capabilities as well as guidance and explanation features to support the OpenMP parallelization
process. This is the subject of Section3.3. The Guidance Module is invoked from within FORESYS,
and is based upon the functionality of both FORESYS and TSF. Each of the components of the POST
environment, FORESYS, TSF and the Guidance Module, provides a set of features to parallelize code
under OpenMP; together, they provide options for beginners and advanced users, and parallelization
approaches that are able to handle source code at varying levels of complexity and with different levels
of automation in the adaptation process.

The POST project includes three industrial partners who are parallelizing Fortran 77-based
commercial strength codes using OpenMP. We have relied on these three efforts to provide us with
insight into the requirements of OpenMP code developers, as well as with material to build one of the
toolset’s modules. All of the programs contain significant regions that are not amenable to conventional
automatic parallelization.

Comet from Battelle is a multi-purpose computational fluid dynamics (CFD) solver that models
combustion as well as flows and is well adapted for use with complex boundary geometries. It is
a self-contained package incorporating mathematical models of a wide range of thermo-fluids and
solids phenomena, in both compressible and incompressible flow regimes. The numerical routines are
based on a flexible finite volume approach using unstructured meshes. Preliminary benchmarks for the
OpenMP version indicate good scaling on the size of systems that have been targeted. We use examples
of loops in the Comet code throughout the remainder of this paper to illustrate the components of our
toolkit, their capabilities and their limitations.

The remaining applications are the legacy code TEFSI, which solves thermal problems involving
the interaction between fluids and solids, with code portions that solve both the fluid-dynamic
equations and the solid body heat conduction equation, and the CFD code EUL3D from ICASE, with
applications in the aerospace industry. The former code uses a block-structured mesh and a semi-
implicit Stone solver [1] that presents the key challenge for parallelization. EUL3D [2] uses finite
elements with a Euler solver. It uses adaptive meshing techniques on an unstructured grid. Many
interesting parallelization issues arise in consequence, some of which are also encountered in the Comet
and TEFSI codes.

It is exceptionally difficult to provide tool support for the adaptation of unstructured grid codes, and
the porting methods used are (currently) not automatable. We have studied the strategies applied to
these examples with the goal of being able to offer advice on parallelization that will be encoded in
the POST guidance module. We have identified commonalities in the loop structures and in successful
adaptation strategies applied, and thus expect that insights gained from them will be useful for other
application developers also.

3. THE POST DEVELOPMENT ENVIRONMENT

The POST program development environment is an interactive system which provides an integrated
set of tools to support OpenMP application development. At the heart of the production environment

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

1180 L. ADHIANTO ET AL.

is FORESYS [3], a commercial Fortran source code analysis and restructuring system. FORESYS
is an interactive system that is used for reverse engineering and upgrading of existing software, and
for validation and quality assurance of new code. It is frequently used to convert programs that use
non-standard, or outdated, Fortran syntax into modern Fortran 77 or Fortran 95 code. FORESYS also
has considerable functionality for creating MPI code. It incorporates semantic information about MPI
functions, and performs a variety of syntax checks for MPI codes. It has been coupled with other
parallel program development tools in the ESPRIT project FITS [4].

3.1. Manual and fully automatic generation of OpenMP

FORESYS has been extended in several ways to support the development, verification and maintenance
of OpenMP programs. The starting point may be either sequential or MPI code. In manual mode, the
user has access to the results of FORESYS’ analysis, in particular data dependence analysis, for part
or all of the program. The built-in editor permits the user to update source text in response to the
information shown. The automatic mode adapts the program, or a user-selected region of the program,
without further user interaction.

If manual parallelization is selected, an interactive window is provided with which the user may
insert OpenMP constructs into the source text. FORESYS feedback informs whether or not it has
determined that a loop (level) is fully OpenMP parallelizable, which is the case if there are no cyclic
dependences. It may also report that a loop nest is partly parallel, when an inner loop is fully parallel
but the entire loop nest is not. The user has the option of applying loop fission to isolate parallel
loop regions from those that are not parallel, or use insight into the application to insert parallel
constructs where analysis has not been able to prove independence of iterations. Additional information
on parallel (and partly parallel) loops includes a list of detected reductions, and lists of variables the
analysis has deemed to be private or shared, together with the corresponding keyword. Where private
variables are used after the loop nest, the need for theLASTPRIVATE clause is indicated.

The automatic translation process, if selected, is target machine-specific in that it is guided by a set
of machine parameters that, among other things, provide a rough indication of the overheads incurred
by parallelization, and individual OpenMP constructs. These may help to determine whether there is
any profit in parallelizing a given loop nest.

The diagram in Figure1 shows an excerpt from the Comet code after automatic parallelization by
FORESYS. The cell-based loop highlighted in the text is typical of many such loops in the code, where
individual cells are updated in a loop with no data dependences. For loops of this kind, a straightforward
automatic OpenMP code generation is both appropriate and sufficient.

3.2. Additional support for experts: code replacement based upon patterns

The loop following the cell-based loop in Figure1 presents more of a challenge. It is reproduced in
Figure2. This code is representative of a number of loops in the computationally intensive routines
of the Comet code which are face oriented and conform to a structure often found in irregular
computations. The potential dependences involving the arraywrk prevent automatic parallelization.
Yet with some insight into parallelization, it is possible to rewrite this in parallel form. A knowledgeable
user, who is able to specify the necessary adaptation, may employ another component of the POST
environment, the TSF (Tool Set for Fortran) scripting system, to adapt such loops.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1181

Figure 1. FORESYS OpenMP generated code.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

1182 L. ADHIANTO ET AL.

do j = nstart_face, nend_face
ip1 = lf (1, j)
ip2 = lf (2, j)
wrk (ip1) = wrk (ip1) + af (1, j) * sv (ip2)
wrk (ip2) = wrk (ip2) + af (2, j) * sv (ip1)

end do

Figure 2. Face-oriented loop that is not automatically parallelizable.

TSF is based upon the insight that many of the code modifications performed during parallelization
are highly repetitive in nature. The changes range from simple search and replace operations to complex
program reorganizations, and the insertion of new constructs. Although some of these changes to
the code can be specified in the form of automatable transformations, in many cases the required
modifications are not general-purpose enough for inclusion into standard transformation libraries
or for use in automated approaches to program adaptation. In many other cases, fully automatic
transformation is currently not feasible at all. The TSF program transformation script system [5]
has been developed to enable users to write their own custom transformations for repetitive tasks.
Among the features available to a TSF user are commands to navigate a program’s source code, to
specify loops and statements, and to create, delete and modify program constructs, possibly—but not
necessarily—based upon program analysis results. A number of ‘built-in’ functions provide simple
versions of several standard program transformations, and return information such as the level of a
loop in a loop nest; functions are available to create dialog windows and accept user input.

TSF allows the user to select an existing fragment of code and generate a pattern from it. The
resulting search pattern can then be generalized, either by the user, or by ‘built-in’ abstractor functions.
Fortran identifiers and labels which are matched by variables within the search pattern can be used
in subsequent transformations of the matched code fragment by an associated script. The specific
advantage of the TSF pattern matching features over conventional scripting languages, such as PERL,
is its awareness of Fortran syntax.

A pattern generated to detect face-oriented loops, such as the one in Figure2, is given in Figure3.
Although it is not particularly easy to read, it is easy to create this from the selected code using TSF
utilities. Pattern matching variables may be used to match any constant or variable. If a given pattern
variable is repeated in a pattern, the corresponding matches must be consistent within the matched
code. Matched items can be referenced in the application of the script. We use several pattern variables
from this pattern in the code adaptation script shown further below.

Once such a loop is detected, a custom transformation may be created to modify it. One strategy
for parallelizing the loop shown above is to replace it by an equivalent nested loop, whose outer loop
iterates over neighbours of cells, and whose inner loop iterates over the cells rather than faces. The
inner loop can then be parallelized in a straightforward fashion as shown in Figure4.

This parallelization strategy is too complex for implementation via standard automatic
transformation techniques. Moreover, its realization in the Comet code makes use of a set of data
structures that do not appear in the original loop, although they do already exist in the source code.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1183

(do ?v258 ?label (bounds (name . ?j) (name . ?nstf) (name . ?nenf) ?v259)
(l_stat
(ass (name . ?i1) (vardim (name . ?lf) (l_exp (int_cst . 1) (name . ?j))))
(ass (name . ?i2) (vardim (name . ?lf) (l_exp (int_cst . 2) (name . ?j))))
(ass (vardim (name . ?wrk) (l_exp (name . ?i1))) (add (vardim (name . ?wrk)
(l_exp (name . ?i1))) (mul (vardim (name . ?af) (l_exp (int_cst . 1) (name . ?j)))
(vardim (name . ?sv) (l_exp (name . ?i2))))))
(ass (vardim (name . ?wrk) (l_exp (name . ?i2))) (add (vardim (name . ?wrk)
(l_exp (name . ?i2))) (mul (vardim (name . ?af) (l_exp (int_cst . 2) (name . ?j)))
(vardim (name . ?sv) (l_exp (name . ?i1))))))
(labstat ?label (continue))))

Figure 3. A TSF pattern to search for face-oriented loops.

!$OMP PARALLEL PRIVATE(I)
do i = 1, max_neighbours
!$OMP DO PRIVATE(J,IP1,IP2)

do iom = nstart_cell(i), nend_cell(i)
j = iface(iom)
ip1 = lf (1, j)
ip2 = lf (2, j)
wrk (ip1) = wrk (ip1) + af (1, j) * sv (ip2)
wrk (ip2) = wrk (ip2) + af (2, j) * sv (ip1)

end do
!$OMP END DO
end do
!$OMP PARALLEL

Figure 4. Restructured and parallelized face-oriented loop.

However, it is possible to use a TSF pattern to identify such loops in the program, and to develop
a corresponding script to implement the required restructuring (once the user is satisfied that this is
appropriate).

Figure5 shows the script used to transform the loop into the parallel form shown in Figure4. The
comments (preceded by //) in the script should be sufficient to give a flavour of how the script works.
The first line in the script sets the TSF variablestat to the currently selected code fragment (as
determined by the search pattern in this case). The application of theUndo:Save operation enables
the user to undo the results of the application of the script (via a button in the TSF window) if it does
not produce the desired result. In our example we use the values of the pattern variables?j,?i1,?i2
from the above pattern to obtain the names of the private Fortran variablesj,ip1,ip2 in the OpenMP
PRIVATE clause.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

1184 L. ADHIANTO ET AL.

SCRIPT face_job()
// set variable stat to current selection
stat:=$csel
IF(stat.VARIANT=="do") THEN

// Save previous code for undo operation
tmp:=Undo:Save(stat.PARENT,TRUE,TRUE)
// Change loop bounds
new_bounds:=PARSEEXPR("iom=nstart_cell(i), nend_cell(i)")
stat.BOUND <- new_bounds
// add reordering statement
reorder := PARSESTAT(" j=iface(iom)")
PASTE(1,reorder,stat.BODY)
// Add neighbour loop around copy of modified original loop
inner_loop := COPY(stat)
n_loop := PARSESTAT("

do i=1, max_neighbours
%s
end do",inner_loop)

IF(!n_loop) THEN
ERROR(1, "Creation of n-loop failed")

ENDIF
// Add OpenMP directives
privates := "PRIVATE(" + TOSTRING(?j) + "," + TOSTRING(?i1)
+ "," + TOSTRING(?i2) + ")"
INSERTCOMMENT(n_loop.BODY,"$OMP DO " + privates,"insert","last")
INSERTCOMMENT(n_loop.LAST,"$OMP END DO")
INSERTCOMMENT(n_loop,"$OMP PARALLEL PRIVATE(i)","insert","last")
following := $csel.SKIP
INSERTCOMMENT(following,"$OMP END PARALLEL","insert","first")
stat <- n_loop

ELSE
PRINT "Do loop not selected"

ENDIF
ENDSCRIPT

Figure 5. A TSF script to restructure face-oriented loops.

3.3. More help for non-experts: user guidance module for parallelization

The use of TSF presupposes user insight into the desired adaptation process. Where this is not the
case, alternative means of support may be needed, especially if the performance obtained by an initial
automatic parallelization is unsatisfactory.

POST provides a User Guidance Module, for which a prototype is being created at the University
of Southampton, to help in such situations. This module is intended to combine several approaches
to parallelization within a single user interface (Figure6). It not only aims to provide help for novice
users; its additional analyses and more broadly applicable transformation options can also be utilized
by experts. The Guidance Module is invoked from within FORESYS, after that system has completed

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1185

Figure 6. User guidance module.

its initial analysis of the input program. The module performs a data locality analysis in addition
to FORESYS’ (interprocedural) data flow and data dependence analyses. It is able to report on, and
explain, the results of all of these analyses. The module provides:

(i) step-by-step instructions on how to create a parallel programunder OpenMP, both in atutorial
mode and in an application mode, where a user is expected to complete each step with respect to
the given input program;

(ii) an assisted semi-automatic parallelization modein which the user is provided with a suggested
parallelization strategy, and a set of transformations that may be alternatively selected and
applied;

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

1186 L. ADHIANTO ET AL.

(iii) an extended Help facilitythat provides feedback on the appropriateness of parallelization
strategies, on the usage of transformations, and on why (if appropriate) a transformation cannot
be applied in the given context;

(iv) access to related parallelization problemsstored in the module’s database, together with the
solution to the problem specified in the stored version.

When adapting the program’s loops, the user may request that the tool propose a strategy. Depending
on the nature of the loop nest, this may be a comparatively straightforward adaptation, or the response
may involve a search for similar loop nests within the stored set of parallelization problems. If
the application of a strategy is prevented by some feature of the program, the user may request
additional feedback to explain the problem. A range of user responses to that feedback are possible,
including assertions of (data) independence, direct manual application of transformations or additional
searches for examples of parallelization that may shed insight into the porting problem. A range of
useful loop transformations, that generalize those available in FORESYS, are provided to aid this
adaptation process. The explanation facility associated with them attempts to explain not only how
each transformation is applied, but also why a specific transformation cannot be used in a given context.
This may include some hints on how the user might be able to remedy the situation.

The User Guidance Module attempts to deal with two issues, in particular, that are not well covered
by existing automatic parallelization systems:

(i) the optimization of OpenMP code during parallelization to ensure the efficient use of the memory
hierarchy;

(ii) the parallelization of those loop nests for which automatic parallelization is either inadequate or
not possible without information from the user and/or a preliminary restructuring of the code.

To achieve the first objective, the module exploits the dependency analysis and built-in transformations
already available within FORESYS and TSF (see Sections3.1and3.2) in combination with input from
the user. This information is used to propose a coherent strategy for applying a set of relatively standard
transformations (loop fusion, loop interchange, loop tiling and loop distribution), to restructure and
permute a given loop nest that will promote efficient use of the memory hierarchy within OpenMP
parallel loops. The code may be profiled during the information-gathering process.

The user may request an automated application of the proposed strategy, or may request feedback
and a suggested strategy from the tool. In this latter case, several standard transformations may be
applied manually, or the user may request information on why certain transformations cannot be used.
Analysis results may be displayed.

We began this work by adapting an algorithm proposed by McKinley [6], in which the loops of a
loop nest are analysed to determine which of them potentially provides the best cache reuse. This may
be used to rank loops according to their potential for optimizing cache. An attempt is made to reorder
the loops accordingly: if this is not possible, an approximation to this order is sought. A subsequent
reordering (or strip-mining) may be needed in order to ensure that the outermost loop is parallel.

Unfortunately, this strategy has not been particularly helpful for the POST project codes, most of
whose loops are either straightforward to parallelize or are not amenable to this approach at all. Loop
nests are typically not deep, so that where the algorithm is applicable, the major problem is to determine
an appropriate trade-off between cache optimization in the inner loop and parallelism in the outer loop.

But many key loops are not amenable to automatic parallelization. Even in the block-structured
TEFSI code, we find several crucial loops where the data structures do not permit any useful automatic

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1187

i = ...
do ip = nstartcell, nendcell

wsp = wrk (ip)
do il = 1, numface (ip)

i = i + 1
wsp = wsp + af (2, lfp (i)) * wrk (lf (1, lfp (i)))

end do
wrk (ip) = wsp * di (ip)

end do

Figure 7. Double loop nest where only the inner loop is automatically parallelizable.

parallelization. For each code, some sophisticated insight into how the code is structured, and how it
can be restructured, has been necessary before the parallelization of critical routines could be achieved.
Having derived this insight, it has been possible to devise TSF scripts that will assist with applying the
necessary transformations, where these need to be applied repeatedly to similar loops within the code.

In order to achieve our second objective we wish to use the insight gained from the parallelization of
these particular loop nests, and recognize situations when we can apply the same techniques to other
codes in a more general context. To this end we are experimenting with a Case-Based Reasoning (CBR)
approach [7] to build a database of code examples which can be searched in order to provide advice on
parallelization strategies that are specifically related to the loop nest under consideration.

We reproduce a third loop from the Comet code in Figure7 in order to illustrate this aspect of
the system. The structure of this loop nest is typical for many in unstructured codes. It consists of
an outer loop that iterates over cells in the mesh, and an inner loop that iterates over the neighbours
of each cell. In this application, there are up to six neighbouring cells in the inner loop, but possibly
hundreds of thousands of cells. Most of the exploitable parallelism is therefore to be found in the outer
loop. In the form shown in the figure,wrk is involved in a data dependency that cannot be resolved
at compile time, and the automatic parallelization facility is only able to parallelize the inner loop.
Although correct, transformation of this loop provides little exploitable parallelism and, in fact, the
parallelization overheads led to a slowdown when this strategy was applied to the project code. (Note
that in a CBR system, even such negative cases can be used to warn the user of inadvisable strategies.)

For this loop nest, two alternative approaches were devised to identify cells which could be
calculated independently, using a wavefront reordering and grid-partitioning, respectively. Only the
grid-partitioning approach was found to be scalable.

Note that documentation describing the manual adaptations required to apply each strategy, and
their impact on performance for the example code provided, is considered to be an essential part of
any stored ‘case’, enabling it to serve as a possible model for the adaptation of similar loops in other
applications. These examples are also available under the Help facility.

We can also make use of the insights gained from parallelization of the loop shown previously in
Figure 2. With some further generalization we are able to extend the prototype pattern and script,
shown in Figures3 and5, so that our Guidance module will detect similar loops, and assist with a
corresponding restructuring in other unstructured codes. In the first instance, the help we can give

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

1188 L. ADHIANTO ET AL.

is to provide a description of how this problem was tackled in our example case. It is then up to the
user to identify or implement data structures corresponding tomax neighbours, nstart cell,
nend cell and iface in his or her code. If this can be done, we are then able to provide further
help by prompting the user for the names of the corresponding data structures, which are read by a
TSF script and used to effect the desired restructuring. Having accomplished this first difficult phase
of identifying a potential solution and providing the required data structures, the system can then be
used to seek out similar instances elsewhere in the user code and apply the restructuring with little
further effort from the user. Thus scripts such as the one shown previously in Figure5 can be used as
components of a more ambitious approach to parallelization guidance which we describe next.

3.3.1. Case based reasoning

There have been some experiments in the past which have applied expert system technology, generally
in the form of rule-based systems, to a range of problems in compiling. However, the expert knowledge
associated with parallelization is not well structured and does not lend itself to conventional rule-based
systems. In contrast, the Case-Based Reasoning (CBR) approach [7] aims to solve a given problem by
adapting the solution of a similar one already encountered. Typically the solution process requires the
following steps.

(i) Identification of the problem—In our situation, the user is prompted to select the loop that
they wish to investigate, but alternatively the most time consuming loops can be identified by
profiling.

(ii) Retrieval of similar cases from past experience—the definition of similarity is non-trivial and
often involves more than just superficial similarity. In our example, pattern matching alone is
sufficient. However, we may often wish to use other information. For instance, in the TEFSI
code, it is necessary to look at the dependency vectors of the loop nests to help identify where
loop skewing [8,9] may be useful.

(iii) Solution reuse—In some situations, the transformations used to effect a previous solution can be
reused automatically, in which case the process terminates here. However, there may be reasons,
such as the occurrence of still unresolved dependencies, why the solution cannot be applied
directly. In this case the next two steps are relevant.

(iv) Solution revision—the previous solution has to be adapted to fit the current problem. This may
involve consideration of further cases relevant to the outstanding difficulties.

(v) Solution retention—If a substantially new solution is derived, this should be stored back into the
CBR system as a new case for comparison with future problems.

An experimental framework for CBR has been built on top of TSF by Mevel [10]. We utilize
this framework wherever possible for our own experimental implementation. Although one of the
advantages of a CBR system is that cases can be added and refined in an incremental fashion, the
design and population of a full-scale CBR system is a major undertaking. In the POST project, our
initial objective is to demonstrate that a system can be built on top of FORESYS and TSF which
applies the principles of CBR to the limited cases representing problems encountered during the
parallelization of the project applications. In the first instance, we wish to demonstrate that we can
reapply the cases to previously unknown codes which use similar methods (e.g. other unstructured
codes for our face-oriented loop example). In the longer term, validation is itself a research issue, as

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1189

the process of determining how successful we are at detecting or missing similar cases can be fed back
into refining the notions of similarity in our case studies.

4. RELATED WORK

In order to understand how best to create OpenMP program code, we have drawn upon a variety of
experiments of our own, as well as from a number of other sources [11,12]. We have also looked
at applications using a combination of OpenMP and MPI [13,14] and an approach to parameterizing
hybrid OpenMP/MPI applications for different platforms [15].

In addition to vendor-supplied parallel program development toolsets, such as the SGI automatic
parallelization options [16], there are a range of products from individual vendors to support the
creation of OpenMP code. These include the Kuck and Associates product line [17] for shared memory
parallelization. TheirVisual KAP for OpenMPoperates as a companion preprocessor for the Digital
Visual Fortran compiler. Although it has many user-controlled options, it essentially functions as a
batch tool on the source files. TheFORGEparallelization tools [18] from Applied Parallel Research
enable source code editing and offer control and data flow information, in combination with an HPF
compiler.VAST[19] from Pacific Sierra Research helps a user migrate from Fortran 77 to HPF code
by automatic code cleanup and translation. We are not aware of tools which are capable of supporting
development of programs that combine the OpenMP and MPI paradigms.

Transformations to support the parallelization of loop nests have been studied for many years,
and there is a rich history both of individual transformations [20], and of experiences in their
application. Recent work has aimed at the development of strategies for the coordinated application
of transformations to support both cache optimization and parallelization [21], and we follow existing
efforts where they are applicable to our work. However, most such transformations have operated
on loop nests with affine subscript expressions, and it is only in very recent work that researchers
have attempted to overcome this strong limitation. Given that most of the applications in POST
are unstructured mesh codes, a major focus of our work is to extend existing techniques to enable
parallelization of the loop nests that are typical for them.

Interactive display of analysis results and the provision of user transformations was pioneered in the
ParaScope Editor[22] for improving shared memory programs.CAPTools[23] interacts with the user
on the basis of a program data base, which the user may query and modify, in order to improve the
automatic transformation of a sequential program to an MPI one. One of the authors has previously
developed a prototype system for the interactive analysis and transformation of sequential Fortran
programs in preparation for parallelization [24]. Finally,SUIF Explorer[25] supports parallelization by
identifying the most important loops via profiling. It takes a different approach from POST to help the
user perform this task, for example, applying program slicing to present information on dependence-
causing variables.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have described a portable and extensible programming environment for the
development of parallel Fortran applications under OpenMP. We are creating a set of tools that provide

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

1190 L. ADHIANTO ET AL.

different levels of automation for the task of OpenMP code generation. FORESYS provides automatic
OpenMP parallelization of loop nests using conventional compiler analysis techniques. It also permits
the user to insert directives immediately into the source text, performing syntax checks to help
eliminate user errors. TSF scripts provide a more flexible aid to parallelizing program constructs; TSF
is particularly useful for performing repetitive, possibly application-specific, program modifications
where user insight is required to specify the translation. In addition, within the User Guidance Module,
we are exploring the usefulness of a combination of recent and novel techniques to provide a range
of alternative approaches to program parallelization, including a Case Based Reasoning facility. These
techniques provide varying levels of automation under user control. The system attempts to provide
support even for challenging parallelization problems, such as those posed by unstructured mesh codes.
The availability of a high-level interface (TSF) to the program analysis capabilities of the underlying
system (FORESYS) enables us to create prototype systems of the kind described, within a reasonable
time frame.

Our work has been greatly supported by interaction with a group of application developers, who are
creating real-world OpenMP versions of their application codes. In addition to their feedback on the
functionality and features of our environment, they have provided us with many program examples that
have stimulated our ability to provide support for their transformations.

The development of a program database that will cover a reasonable fraction of existing codes is a
daunting task. It is no less a challenge to current technology to determine a widely applicable strategy
for identifying code fragments ‘similar’ to specific stored cases in an application presented to such a
system. The work performed here can be no more than a modest beginning to such an undertaking.
However, we feel that such a system, even though limited in its scope, may provide useful support
to application developers by providing expert information directly related to parallelization problems
encountered in practice. Despite significant differences in detail, there remain many broad similarities
between application codes and the nature of the porting problems they pose. We hope that this work
may be extended and form a more extensive exploration of this technology in future.

ACKNOWLEDGEMENTS

This work is part-funded by the ESPRIT project 29920, POST (Programming with the OpenMP STandard), whose
name we have borrowed. We thank Jerry Yan at NASA Ames and Tor Sorevik at Parallab, Norway, for discussions
on a number of related topics, including the NAS benchmarks, and for providing benchmark results.

REFERENCES

1. Stone HL. Iterative solution of implicit approximations of multidimensional partial differential equations.SIAM Journal of
Numerical Analysis1968;5(3).

2. Mavriplis DJ. Parallel performance investigations of an unstructured mesh navier-stokes solver.NASA CR-2000-210088,
ICASE, NASA Langley Research Center, 2000.

3. Simulog SA.FORESYS, FORtran Engineering SYStem, Reference Manual V1.5. Simulog, Guyancourt, France, 1996.
4. Chapman B, Bodin F, Hill L, Merlin J, Viland G, Wollenweber F. FITS—A light-weight integrated programming

environment.Proceedings of Europar ’99, Toulouse, 1999. To appear.
5. Bodin F, Mevel Y, Quiniou R. A user level program transformation tool.Proceedings of International Conference on

Supercomputing, 1998.
6. McKinley KS. A compiler optimization algorithm for shared-memory multiprocessors.IEEE Transactions on Parallel and

Distributed Systems1998;9(8).

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

POST PROJECT 1191

7. Kolodner J.Case-Based Reasoning. Morgan Kaufmann, 1993.
8. Wolfe M. Loop skewing: The wavefront method revisited.International Journal of Parallel Programming1986;15(4):279–

294.
9. Wolfe M. Optimising Supercompilers for Supercomputers. Pitman Publishing: London, ISBN 0-262-73082-0, 1989.

10. Mevel Y. Environnement pour le portage de code oriente performance sur machines paralleles et monoprocesseurs.PhD
Thesis, University of Rennes, France, 1999.

11. Blikberg R, Sørevik T. Early experiences with OpenMP on the Origin 2000.Proceedings of European Cray MPP Meeting,
Munich, September 1998. URL www.ii.uib.no/˜ tors/.

12. Faulkner T. Performance implications of process and memory placement using a multi-level parallel programming model
on the Cray Origin 2000. Available at URL www.nas.nasa.gov/˜ faulkner.

13. Bova SW, Breshears CP, Cuicchi C, Demirilek Z, Gabb HA. Dual level parallel analysis of harbor wave response using
MPI and OpenMP.Proceedings of Supercomputing ’98, Orlando, 1998.

14. Frøyland LA, Manne F, Skjei N. 2D seismic modelling on the Cray Origin 2000.Internal Report 1998-02-13, Norsk Hydro
(In Norwegian).

15. Sawdey A. SC-MICOM. Software and documentation available from ftp://ftp-mount.ee.umn.edu/pub/ocean/.
16. Silicon Graphics, Inc.MIPSpro Fortran 77 Programmer’s Guide, 1996.
17. Kuck and Associates. KAP/Pro toolset for OpenMP. See www.kai.com/kpts/.
18. Applied Parallel Research.APR’s FORGE 90 Parallelization Tools for High Performance Fortran. APR, June 1993.
19. Rodden C, Brode B.VAST/Parallel: Automatic Parallelisation for SMP systems. Pacific Sierra Research Corporation, 1998.
20. Zima H, Chapman B.Supercompilers for Parallel and Vector Computers(ACM Press Frontier Series). Addison-Wesley,

1990.
21. Singhai SK, McKinley KS. A parametrized loop fusion algorithm for improving parallelism and cache locality.Computer

Journal1997;40(6):340–355.
22. Balasunderam V, Kennedy K, Kremer U, McKinley K, Subhlok J. The ParaScope editor: An interactive parallel

programming tool.Proceedings of Supercomputing 89, Reno, 1989.
23. Ierotheou CS, Johnson SP, Cross M, Leggett PF. Computer aided parallelisation tools (CAPTools)—Conceptual overview

and performance on the parallelisation of structured mesh codes.Parallel Computing1996;22(2):163–195.
24. Chapman B, Egg M. ANALYST: Tool support for the migration of Fortran applications to parallel systems.Proceedings of

PDPTA’ 97. CSREA Press: Las Vegas, 1997.
25. Liao S-W, Diwan A, Bosh Jr. RB, Ghuloum A, Lam MS. SUIF Explorer: An interactive and interprocedural parallelizer.

Proceedings of 7th ACM Symposium on POPL, 1999; 37–48.
26. OpenMP Consortium.OpenMP Fortran Application Program Interface, Version 1.0, October, 1997.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1177–1191

	1 INTRODUCTION
	2 PROJECT OVERVIEW
	3 THE POST DEVELOPMENT ENVIRONMENT
	3.1 Manual and fully automatic generation of OpenMP
	3.2 Additional support for experts: code replacement based upon patterns
	3.3 More help for non-experts: user guidance module for parallelization
	3.3.1 Case based reasoning

	4 RELATED WORK
	5 CONCLUSIONS AND FUTURE WORK

