
Improving Many-Task Computing in Scientific

Workflows Using P2P Techniques

Jonas Dias
1
, Eduardo Ogasawara

1,2
, Daniel de Oliveira

1
, Esther Pacitti

3
, and Marta Mattoso

1

1
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

2
Federal Center of Technological Education, Rio de Janeiro, Brazil

3
INRIA & LIRMM, Montpellier, France

{jonasdias, ogasawara, danielc, marta}@cos.ufrj.br

pacitti@lirmm.fr

Abstract

Large-scale scientific experiments are usually

supported by scientific workflows that may demand

high performance computing infrastructure. Within a

given experiment, the same workflow may be explored

with different sets of parameters. However, the

parallelization of the workflow instances is hard to be

accomplished mainly due to the heterogeneity of its

activities. Many-Task computing paradigm seems to be

a candidate approach to support workflow activity

parallelism. However, scheduling a huge amount of

workflow activities on large clusters may be

susceptible to resource failures and overloading. In

this paper, we propose Heracles, an approach to apply

consolidated P2P techniques to improve Many-Task

computing of workflow activities on large clusters. We

present a fault tolerance mechanism, a dynamic

resource management and a hierarchical organization

of computing nodes to handle workflow instances

execution properly. We have evaluated Heracles by

executing experimental analysis regarding the benefits

of P2P techniques on the workflow execution time.

1. Introduction

Over the last years the power of clusters has grown,

which enabled the development of large-scale

scientific experiments that are dependent of High

Performance Computing (HPC) environments [1].

These experiments explore many executions of a set of

related and dependent activities. Running these

activities respecting their relations of dependencies and

1 This work is partially sponsored by CNPq and CAPES

978-1-4244-9705-8/10/$26.00 ©2010 IEEE

also controlling data transfers between different

resources require a high level management. Large-

scale experiments are typically executed as scientific

workflows [2], which is an abstraction that represents

the chaining of activities to be executed. These

activities consume input data by executing a computer

program or scripts, in order to produce output data. The

input and output data may be a set of parameters or

files. Additionally, the output of a given activity can be

consumed by following activities representing the

workflow chaining. Scientific workflows are enacted

by engines called Scientific Workflow Management

Systems (SWfMS). Many SWfMS are available [3-5].

During the execution of an experiment, the same

activity from a scientific workflow or even the whole

workflow may be executed several times exploring

different parameter combinations. Many of the

workflow activities also process huge amounts of data.

This intensive computation motivates the

parallelization of a workflow activity execution.

Furthermore, instead of letting scientists to specify

how many processes a given activity should be

parallelized, scientists should just specify a deadline,

i.e the maximum time that an activity (or workflow)

can execute in the cluster. This approach would be

more flexible to scientists and adequate to the utility

computing model [6]. However, it may require

mechanisms for dynamically scheduling computing

resources. High performance computing environments

such as clusters, grids and clouds [7] are candidates to

execute workflows in parallel.

A possible approach is to use MPI [8] to parallelize

workflow activities. However, it may be unviable to

add MPI logic inside complex and legacy code [9].

Parallelizing legacy programs can be very complex and

it may demand a completely new code to be written.

MPI does not support dynamic resource management

either. This is problematic since activities are

submitted as coupled parallel MPI processes. A single

process failure aborts the whole group of activities

[10]. Alternatively, submitting many uncoupled

activities may also lead to a long waiting in queues.

The success of a workflow execution depends on the

successful execution of all running instances of the

workflow activities. Thus, if one activity execution

fails and is not automatically rescheduled, the whole

workflow execution fails. Many activity rescheduling

is very complex to be performed manually.

There is no uniform invasive MPI approach to

parallelize workflow activities, since they belong to a

heterogeneous set of programs, scripts and services

from different sources. Thus, noninvasive parallelisms,

i.e., parallel approaches that do not make changes on

the activity source code, such as parameter sweep or

data parallelism, are more suitable to deal with

workflow parallelization. Moreover, since these

workflows may also generate a great amount of tasks,

the new computational paradigm, known as Many-

Task Computing (MTC) [11] seems to be adequate to

support scientific workflow parallel execution [12].

Although MTC is a new and promising paradigm,

there are still many open, yet important, issues to find

adequate strategies for different types of scheduling

and execution. Current MTC solutions [3,13-15]

explore workflow parallelization, but they are

somehow grid oriented and do not explore some

characteristics of current clusters. For example, what

are the winners approaches to deal with the dynamic

behavior of computing nodes inside huge clusters?

This issue is important since the number of cores per

cluster is growing fast and, even with better machinery,

as the number of electronic components increases,

greater is the chance of a failure [16].

On this scenario, when a node of a cluster fails

during the execution of a workflow activity, the MPI

limitation causes a serious management issue. Sonmez

et al. [17] analyze the performance of traditional

scheduling policies on grids of multiple independent

clusters and find that there is no single workflow

scheduling policy with good performance on their

investigated scenarios. They also noticed that head-

nodes of the clusters usually get overloaded during

workflow executions. That is the reason to believe that

studies regarding scientific workflow execution using

MTC on huge clusters are still necessary.

The huge number of nodes with possibly

heterogeneous hardware and their dynamic behavior on

clusters make us consider this scenario as similar to the

ones found in Peer-to-Peer (P2P) computing.

Consequently, P2P techniques may be useful on

clusters to the management of workflow activities

execution that demands MTC. Pacitti et al. [18] show

that P2P techniques are useful on large-scale grids.

However, there are still not enough studies evaluating

the usage of P2P techniques on huge clusters to

process MTC workflow activities.

This paper proposes Heracles, an approach that uses

P2P techniques to address many-task computing in

scientific workflows on huge clusters such as a

petascale supercomputer. Among its techniques,

Heracles explores fault tolerance mechanisms,

dynamic resource management and hierarchical node

arrangement. Heracles deals with node failures, node

overloading and dynamic node allocation to attend

workflow execution time constraints. These

characteristics are not explored by traditional cluster

job schedulers (such as Torque [24]). This paper

presents an initial evaluation of Heracles working

inside an MTC scheduling scenario. Simulation studies

analyze the impact of failure events on tasks execution

on clusters. We have evaluated scenarios of having

workflow activities producing 512, 1024, 2048 and

4096 tasks. The study results reinforced that Heracles’

automatic rescheduling is an important feature on

parallel workflow activity execution on clusters. Even

with low failure rates, relying on manual rescheduling

causes a great loss in the number of complete activities

over time.

The remainder of this paper is as follows. Section 2

discusses background on P2P computing and workflow

scheduling mechanisms; Section 3 presents Heracles,

explaining its strategies using P2P techniques; Section

4 presents a proof of concept discussing the need to use

Heracles. Section 5 concludes the paper.

2. Issues in Workflow Parallelization

P2P computing provides high scalability by forming

heterogeneous and dynamic networks with

decentralized control. P2P networks are also aware of

churn events [19], since peers autonomy let them join

and leave the network at anytime. Thus, P2P systems

must be fault tolerant and implement dynamic resource

management to provide quality of service.

In previous work [18], the authors discussed how

P2P techniques might be combined to enhance large-

scale grid data management. It was observed that

different combinations of techniques can be envisioned

for different grids. Thus, we believe that huge clusters

may also take advantage of a given combination of P2P

techniques. Additionally, other study [22] about

workflow activities execution on P2P networks

suggests that the hierarchical P2P network [20] is an

indicated approach to schedule and execute workflow

activities in parallel.

Workflow scheduling means that an activity of the

workflow is scheduled to run on external resources

such as clusters or grids. The workflow parallelization

means that the execution of an activity or some

activities of the workflow is done in parallel to speed

up the process. Nevertheless, even when an activity is

scheduled to execute on an external resource, the

control over the workflow execution is held by the

SWfMS. The following sub-sections discuss those

issues.

2.1 Workflow Scheduling and Parallelization

Scientific in silico experiments [23] are usually

modeled as Scientific Workflow, which may be

managed by different types of SWfMS. Some activities

of the workflow can be configured to run on external

resources, such as cluster and grids. Many papers

discuss on workflow activity scheduling in parallel

environments. DAGMan [24] and Pegasus [25], for

example, are both SWfMS that became very popular

due to their support for executing workflow activities

on distributed resources. Recently, other studies

propose other approaches for parallel workflow

scheduling. Swift [3] is an environment used to specify

a logical structure of a process using a script language

that enables the registry of provenance data [26].

Additionally, Swift task scheduling can be done using

Falkon [13], which is a many-task computing

framework that sets apart the concept of acquiring

resources from task submission to meet MTC

requirements.

Each SWfMS has its particular characteristics,

notation and language. They focus on different features

such as scientific visualization, provenance or parallel

execution. When experiments are modeled on a given

SWfMS, the workflows stay dependent on specific

technological issues. Besides, the representation on a

particular SWfMS may overshadow the knowledge

behind the modeled workflow. During an experiment,

if scientists demand high performance, they need to re-

model their workflows and possibly change the source

code of their activities to obtain the desired level of

parallelism and performance improvement. However,

to re-model an entire workflow requires too much

effort and may also lead to errors. Further, scientists

are not required to be familiar to computer

programming and/or parallelization methods. Thus, we

believe that the parallel execution of the workflow

activities should be done implicitly. An implicit

approach tries to make the workflow parallel execution

more transparent to the scientists without changing

their applications. It means that the approach should be

noninvasive, so it does not change the applications

source code. This is very important since many

scientific applications have very complex legacy code

[9] that is very difficult to modify. The application may

also be proprietary, which means that scientists do not

have access to its source code. Nevertheless, even

without accessing the code, it is still possible to run

these applications in parallel. Thus, the proposed

approach brings transparency to the parallel execution

of workflow activities, but the control over the

workflow execution is still held by the SWfMS.

Scientists may use their preferred SWfMS to schedule

his workflow to run on a cluster through a MTC

scheduler such as Falkon or Hydra. The scheduler may

use Heracles approach to handle the execution of the

activity in parallel providing transparency, load

balancing and fault tolerance.

During the scientific experiment life cycle [27], the

same experiment modeled as scientific workflows may

run several times exploring different sets of parameters

or input data. It is usually possible to run multiple

parameter combinations simultaneously, in parallel,

assigning instances of the workflow activity for each

machine. This scenario is commonly called a

parameter sweep case [15,28]. Data parallelism is also

used in scientific workflows to increase the execution

performance of the experiments, since the input data of

a given application is fragmented into smaller pieces

that are processed faster by the application. So,

processing fragments in parallel leads to a faster

overall execution. Each instance of these activities that

process a different set of parameter or data fragment

may be seen as a task. Yunhong Gu et al. [29] explore

data parallelism in wide area networks using Sphere, a

cloud computing system to run tasks that demands data

parallelism. They consider network heterogeneity, load

balancing and fault tolerance. However, they do not

consider that the distributed tasks belong to scientific

workflows, what reduces the degree of management of

the experiment as a whole. Heracles uses parameter

sweep and data parallelism approaches to provide a

transparent parallelization, but it also uses other

methods to enhance it as described on section 3.1.

MapReduce programming model is also explored in

workflow scheduling as a particular case of data

parallelism. Basically, a huge set of data is split into

smaller pieces and mapped to be processed on compute

nodes. The pieces are passed into the Splitter function

(called Map) as (key, value) pairs. After the map

function is executed, the intermediate values for a

given output key are merged together into a list by an

aggregation function (called Reduce). The reduce

function combines the intermediate values into one or

more final result related to the same output key.

Some related work in the literature proposes general

solutions for managing workflows executions in large

clusters. One example is GlideinWMS [30]. It is a

general purpose Workload Management System

(WMS) that relies on Condor software, with additional

glideinWMS specific code. Another approach is Corral

[31], which is a system that runs a suite of real

workflow-based applications including in astronomy,

earthquake science, and genomics. Provisioning

resources with Corral ahead of the workflow execution

reduced the runtime of an astronomy application.

Although these approaches propose solutions for

workflow management in distributed environments,

they still do not provide a transparent approach to

submit, execute and gather provenance of workflow

activities. They also do not follow the MTC paradigm

to provide noninvasive parallelism. Therefore, based

on the discussed studies, we believe that there are still

open challenges to enhance workflow parallelism.

2.2 Challenges in Parallelizing Workflows

During an experiment setup, when scientists

configure how the workflow instances may run, it may

be error prone to specify technical factors that define

how the environment must process the activities. The

parallel execution of the workflow activities should be

transparent for scientists just like query processing on

distributed database systems [29].

Usually, on a parallel environment, scientists need

to specify the number of processors they want to

process their tasks. However, it is more transparent for

the scientists if they could just define a deadline for

their results. This approach fits the utility computing

scenario where the users pay only for what they use

[6]. Scientists would only specify what they want

answered and when they need this answer. The

SWfMS would submit this activity to a scheduler

system capable to allocate resources on demand and

deal with resource failure automatically. Thus, to

attend time constraints defined by scientists, the

scheduler must be able to manage the available

resources dynamically. One initial approach would be

to put a special module on the head-nodes of the

clusters to control the scheduling and execution of

workflow tasks dynamically. However, previous work

[17] noticed that these nodes became overloaded due to

the large number of workflow tasks and file transfers

they have to manage on a dynamic scheduling

scenario. Therefore, better strategies are still necessary

to provide a transparent and reliable parallel execution

for scientific workflows.

3. Heracles

Based on the discussed studies, analyzing their

advances and limitations, we propose a new approach

named Heracles. The goal of Heracles is to improve

scientific workflow activities parallelization that

demands many-task computing on huge clusters. To

achieve this objective, we use a set of P2P techniques

and concepts to provide transparency, load balancing

and quality of service. This is designed to support huge

clusters systems that normally have a difficult job

setup, centralized control and frequent hardware

failures.

Heracles is designed to be implemented inside MTC

schedulers for workflows (such as Swift/Falkon [3] or

Hydra [12]) to control the parallelization of workflow

activities. The integration with the SWfMS is a duty of

the scheduler. Hydra, for example, already implements

this SWfMS integration. Figure 1 represents an

overview of Heracles structure. The SWfMS submits

workflow activities to run on a cluster using an MTC

scheduler. The many instances of workflow activities

with different input data or parameters can be wrapped

as tasks. Assuming that MTC schedulers for workflows

are using Heracles, these tasks are not directly

scheduled to run on the cluster. Instead, Heracles

registers the metadata of each task on a distributed

table [32] shared by a group of Heracles processes. A

Heracles process is the actual object that is scheduled

by the regular scheduler of the cluster to run in parallel.

They are bootstrapped just like other jobs of the cluster

and, once started, the processes use P2P techniques to

control the tasks execution and gather all necessary

provenance data requested by the MTC scheduler. The

scheduler may, then, forward the provenance data to

the SWfMS. Since Heracles processes are autonomous,

they have components to handle the virtual P2P

network overlay, to execute tasks and to gather metrics

values and provenance data (execution monitor) during

the task execution.

The advantage of implementing Heracles inside an

MTC scheduler is that Heracles does not have to

concern about important mechanisms such as data

staging ones. Data staging allows you to stage data

needed by a task before the task begins execution and

to move data back to archives when a task has finished

execution. However, data staging is a role of the MTC

solutions for workflows (such as Swift/Falkon or

Hydra). The following sections describe the main

strategies used by Heracles.

3.1 Transparency

Heracles aims to improve the way scientists setup

their activities to run in parallel. Instead of configuring

the number of nodes of the cluster to be involved in the

parallel activity, scientists should specify the deadline

for the experiment results to provide a more flexible

setup for parallelization. Heracles sets a number of

computing nodes to compose the initial execution pool.

This setup is based on the time constraint established

(1)

(2)

by scientists, the available resources and the

information obtained from past executions (called

provenance data [26]). This resource pool may grow or

shrink depending on the time constraints. The

decisions regarding these expansions are based on two

metrics: partial efficiency (
) for the set of p

processors and the number of completed activities per

time unit (
). These metrics can be calculated from

the distributed table available on Heracles process.

For example, let us suppose that scientists configure

a given workflow activity composed by k tasks

deadline to be w hours. Heracles decides to start the

process on the cluster with p processing cores. After an

arbitrary number n of finished activities, Heracles

updates the number of completed activities per time

unit (
). To decide whether is necessary to expand or

shrink the pool, it measures the partial efficiency (
):

Where is the time spent processing activity i and

is the elapsed time. To calculate the new size pnew of

the resource pool, Heracles uses the following formula:

To illustrate the described strategy, consider w = 72

hours, p = 32 processors and k = 10,000 tasks. After

160 tasks have finished in about three hours, Heracles

measures that
 tasks per hour. Heracles

calculates an efficiency of
 . So the new

estimated size of the pool pnew is 57 processors. This

value may be approximated considering the cluster

infrastructure. For example, if each compute node has

eight cores, pnew can be approximated by 64 since 64 is

a multiple of 8. Figure 2 shows the evolution of
 ,

and p over time using the arbitrary example. Heracles

starts with a small pool and then expands it to achieve

a peak task-per-hour rate. Heracles also considers the

amount of available resources on the cluster since there

may be not enough compute nodes to allocate all pnew

processors of the pool. However, based on pnew, it

follows a tendency and, when possible, allocates (or

frees) processing cores. Figure 2 shows that Heracles

initial tendency is to obtain as many as possible

processors on the pool. Yet, during the execution is

seeks better efficiency.

Figure 1: Heracles scenario overview

Using this approach, the resources usage tends to be

more efficient, since activities with looser deadlines

consume fewer resources to let activities with tighter

deadlines to use more. Heracles uses the metrics to

analyze and decide if it can reduce the number of

resources being used in the case where the deadline is

tending to be accomplished. This strategy makes it

simpler and more transparent to scientists to setup their

workflow activities, since they only need to set up a

deadline. Heracles uses metrics to dynamically expand

or contract the working resources to attend the time

constraints.

3.2 Load Balancing

Clusters usually have centralized control on a head-

node that controls submission and execution of all the

cluster jobs on the working nodes. The head-node is

the frontend for all the services available in the cluster

machine. This approach makes it easier to manage a

huge machine, even if there is more than one head-

node. However, centralized approaches naturally lacks

on load balancing. Thus, cluster head-nodes are

powerful server machines capable to handle most

applications that demand high performance computing.

On a many-task computing scenario, though, the head-

node of the cluster may become overloaded like

Sonmez et al. [17] experienced on a workflow

scheduling scenario. This overload happens because of

the big amount of tasks that the workflow activities

may generate. The head-node also has to deal with file

transfers to stage in and stage out all the necessary data

for each task. Provenance data needs also to be

gathered during tasks execution and, since the working

nodes network is private, this data may transit through

the head node network.

Figure 2: Example of the dynamic task
scheduling using Heracles approach

Many of processes executed in the head-node

cannot be moved to another resource, since the head-

node is the only one responsible for many of the cluster

services. However, the workflow scheduling

application should not add extra responsibilities to the

head-node. Thus, Heracles aims at improving load

balancing distributing the task scheduling and

execution management over the working nodes. To

achieve this goal, Heracles establishes a hierarchical

virtual P2P network over the resource pool reserved to

execute the tasks. The hierarchical approach aims at

expanding and shrinking the pool and to provide load

balancing.

Heracles divides the resource pool into groups and

elects one processor of the group to be the leader. On

each pool expansion, new groups are formed. When a

new group enters the hierarchy, it starts in the highest

hierarchy level. As new groups enter the network, the

older groups start to descend in the hierarchy. Since

older groups are likely to leave the network when the

pool shrinks, it seems to be an advantage to keep them

on the bottom of the hierarchy level. Figure 3 (a)

represents the complete resource pool. Each group is

composed of 8 processors from the same compute

node. Figure 3 (b) shows how the groups form the

hierarchy. The numbers indicate the order that the

groups were created and the darker squares are the

leader processors of each group. At the same time that

the hierarchy keeps the oldest groups at the bottom, it

also tries to keep the hierarchy tree balanced.

Group leaders keep the list of tasks to be processed

on a distributed table. When a processor finishes the

processing of a given task, it reports it on the table of

its leader. The processor can then grab a new task

published still to be executed on the distributed table.

The group leaders are also responsible to gather

provenance data of processed tasks. Centralizing the

gathering process on the leader is important to save

database transactions or disk writings operations

depending where provenance data is written. Leaders

are also important on the fault tolerant mechanism

described in the next section. The leader of the highest

level group is the one responsible to measure the

partial efficiency and to make decisions regarding the

expansion or shrinking of the resource pool.

The hierarchy approach improves load balancing

distributing the scheduling and execution control. The

groups of processors have a decentralized autonomy

and report to their leader, while the leader reports to

the upper level leader in the hierarchy. This structure

also makes the dynamic resource management easier

and enables and efficient fault tolerant mechanism.

3.3 Quality of Service

On typical cluster systems, if a working node fails

during the execution of an activity, the activity is

aborted. This procedure is indeed necessary if the

activity is composed of a set of coupled MPI processes.

When scientists submit a huge set of uncoupled tasks

to be executed, some schedulers distinguish that

singular failures affects only the task that was running

on the node that failed. This is a better scenario, but

scientists need to check every failed task and then

resubmit them. These kinds of manual effort increase

the chances to make mistakes and, commonly,

scientists prefer to resubmit the whole set of tasks.

However, the scheduler can automatically reschedule

the tasks that failed. The tasks are, then, processed by

another node just like in a P2P system.

It is possible to relate the failures on a cluster with

churn events [19], which are very common on P2P

networks. On huge clusters the frequency of failure

events would be much smaller compared to a

traditional P2P system. However, if scientists schedule

many-tasks activities using a huge set of nodes from

the same cluster, it is probable to experience failures.

Since these failures are expected, we consider any

failure on a task being processed as a churn event.

After a churn event, the tasks assigned to the process or

compute node that left the network should be assigned

to another one. Fault tolerant mechanisms available on

P2P systems are helpful to handle failures on cluster

during many-task execution. Thus, to improve quality

of service during workflow scheduling and execution

on clusters, Heracles uses a fault tolerant mechanism.

Each processor core available on the resource pool

of Heracles can be seen as a peer. A peer obtains tasks

to process from the distributed table published on its

group leader. The table has the list of all tasks:

pending, running and finished ones. A pending task

changes its state to running just after being scheduled

to be processed by a peer. The group leader keeps an

average of how much time a task takes to accomplish.

If a task is taking too much to finish, it is possible that

the responsible peer failed. The leader peer may, then,

reschedule the task by changing its state to pending

again.

Figure 3: (a) Physical organization of the

resources; (b) Resources mapping into the
P2P groups by Heracles

On a worse scenario, the leader of a group or even

the whole group may fail. This is possible since all the

peers are processor cores which may be inside the

same chip or compute node. Anyway, the leader failure

is as bad as the group failure, since, without a leader,

the peers within the group lose their communication

with Heracles. Thus, on this scenario, the leader of the

group one level above on the hierarchy has to notice

the churn and automatically reschedule all the tasks

once assigned to be processed by the group that has

failed. This rescheduling may be done just changing

the once running state of the tasks to pending. A group

failure is easier to be noticed by other leaders in the

hierarchy since they keep contact using overlay

messages to maintain the distributed table update. If a

leader observes that some other leaders are not

executing their tasks and not responding overlay

messages, it understands that a churn event happened

and decides to reschedule the tasks in the table that

were assigned to that failing group.

 It is notable that, if the group that failed is on an

intermediary level of the hierarchy, the groups below

that level do not lose the communication with Heracles

structure since they keep information regarding other

group leaders and can reposition themselves and later

rebalance the hierarchical tree. Another important

scenario is when the leader or the group on the highest

level of the hierarchy fails. This would cause more

trouble since the leader of the highest level is

responsible by the dynamic resource management

intelligence of Heracles. However, during the update of

the distributed table, the leaders can notice that the

leader above them failed. After detecting the failure,

another group takes place of the highest hierarchy level

and the tasks of the group are rescheduled.

The hierarchical structure and the distributed table

create a scenario to support the fault tolerance

mechanism. Unless all the group leaders fail at the

same time, the automatic reschedule of the tasks grants

that all the workflow activities would be executed. This

mechanism improves the quality of the scheduling and

execution services of a huge cluster system.

4. Case study

Heracles is an approach that enables the scheduling

of activities based on deadline and is resilient of churn

occurrences. As an initial evaluation of Heracles

working inside a MTC scheduling scenario, we present

a simulation study as a proof of concept. Our purpose

is to analyze the impact of churn events on tasks

execution on clusters. In our study, a hypothetical

cluster receives many workflow activities to be

executed. Activities are decomposed into tasks that

may suffer with churn events. We have evaluated

scenarios of having workflow activities producing 512,

1024, 2048 and 4096 tasks. The tasks produced could

be classified as small, medium and big. Smaller tasks

run in an average time of 1 hour each, while large tasks

run in an average time of 4 hours each. The study was

evaluated on a time frame of seven days and considers

that an average of 2000 activities was submitted on the

cluster per day. The churn event frequency is 0.01,

which means that one percent of the activities fail. On

this scenario we have analyzed two different activity

rescheduling approaches: the manual and the

automatic.

The manual rescheduling approach assumes that

scientists submits its activities and checks its status

every twelve hours after the submission. If the activity

is finished and present failures, it is manually

rescheduled to run again all tasks from that particular

activity. The automatic approach automatically

reschedules only the tasks that have failed, so that

when an activity is finished, it is necessarily complete.

The first analyzed scenario considers activities that

produce small tasks. These activities take from 3 hours,

when they have 512 tasks, to 24 hours, when they have

4096 tasks, to execute. Figure 4 (a) shows the

percentage of complete activities for manual (blue

column) and automatic (red column) rescheduling. The

graphics group the activities by their number of tasks.

As expected, the results show that manual rescheduling

do not scale well, even for activities with small tasks.

This inefficiency is caused by the time that many

activities wait to be rescheduled and to the fact that

when any single task fails, the whole activity is

resubmitted. A new submission is also prone to churn

events. Automatic reschedule presents better results

completing more activities and being also less sensitive

to the increasing number of tasks.

Figure 4 (b) presents the results for activities that

produce medium tasks. Medium tasks take from 6

hours, when they have 512 tasks, to 48 hours, when

they have 4096 tasks, to execute. Figure 4 (c)

represents activities with big tasks. Big tasks take from

12 hours, when they have 512 tasks, to 72 hours, when

they have 4096 tasks, to execute. Both results

reinforces our conclusions that manual reschedule do

not scale. In the worst case scenario, the manual

reschedule produces only about 10% of complete

activities while the automatic approach produces more

than 50%. It is also important to reinforce that the

manual approach requires the effort of scientists to

have the activity rescheduled in order to complete all

tasks. Using the automatic approach, scientists only

need to wait until the activity finishes. At the time, the

activity is complete. In the results presented in Figure

4, the automatic approach does not present 100% of

complete activities because the time frame of seven

days is not enough to process all the tasks from the

activities submitted on the last days.

Since the advantage of automatic rescheduling is

clear when compared with the manual approach, we

also made an extra study analyzing the automatic

rescheduling sensitivity to the churn frequency. Figure

5 presents our results with the churn frequency varying

from zero to two percent. This second study is also

modeled on a time frame of seven days and 2000

activities are submitted by day. We used activities with

4096 medium tasks.

Figure 4: Percentage of complete activities

using manual and automatic rescheduling per
activity with (a) small task size, (b) medium

tasks size and (c) big task size

The results presented in Figure 5 shows that the

churn impact on the automatic rescheduling process is

small. It is expected to have worse results with greater

churn rates since more tasks need to run again.

However, the percentage of complete activities

decreases only in 0.5% while the churn frequency

grows from 0.25% to 2%.

The study results reinforced that automatic

rescheduling is an important feature on parallel

workflow activity execution on clusters. Even with low

churn rates, relying on manual rescheduling causes a

great loss in the number of complete activities over

time. Automatic rescheduling, though, scales much

better. Since Heracles also aims at providing a

transparent and fault tolerant mechanism to process

activities, we believe that this proof of concept

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

512 1024 2048 4096

P
e

rc
e

n
ta

ge
 o

f
C

o
m

p
le

te
 A

ct
iv

it
ie

s

Number of Tasks

Small Tasks

(a)

(b)

(c)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

512 1024 2048 4096

P
er

ce
n

ta
ge

 o
f

C
o

m
p

le
te

 A
ct

iv
it

ie
s

Number of Tasks

Medium Tasks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

512 1024 2048 4096P
er

ce
n

ta
ge

 o
f

C
o

m
p

le
te

 A
ct

iv
it

ie
s

Number of Tasks

Big Tasks

Manual Automatic

strengthen our intentions to improve MTC scheduling

and execution for scientific workflow activities.

Figure 5: Automatic rescheduling sensitivity

to different churn frequencies

5. Conclusions

High performance computing clusters have a vast

set of computing nodes. They empower the

development of large scale scientific experiments.

These experiments explore different executions of

scientific workflows; traditionally managed by

SWfMS. Parallelizing workflow activities may

produce a huge number of tasks demanding a many-

task computing approach. However, scheduling and

executing MTC activities on huge clusters may also

suffer with churn events, poor load balancing and

usability issues. To improve MTC scheduling and

execution for scientific workflows, P2P techniques

may help providing fault tolerant mechanisms and

dynamic resource management.

We present the Heracles approach based on well

known P2P techniques, such as distributed tables and

hierarchical topologies, combined with traditional

parallelism approaches for many-task computing, such

as parameter sweep and data parallelism. Heracles

aims to handle the execution of many tasks from

scientific workflows on distributed resources using

P2P techniques. Heracles can be used inside workflow

schedulers. It takes the control over the tasks execution

and gathers provenance data to report to the workflow

scheduler. Heracles provides transparence, since

scientists just need to inform a time constraint when

they need their activities processed. It also enhances

load balancing establishing a hierarchical P2P overlay

on the cluster resources and a fault tolerant mechanism

to be aware of churn events during the activities

execution.

An initial proof of concept showed that churn

events decreases the performance of activities

execution and manual rescheduling does not scale at

all. Automatic rescheduling, though, performed better

and proved itself not very sensitive to the churn

frequency growth. Thus, we believe that Heracles

approach is a necessary attempt to improve MTC in

scientific workflows execution. However, Heracles

does much more than a simple automatic rescheduling,

so we believe that future work must analyze the

advantages that MTC schedulers can achieve when

using Heracles approach. Additionally, another fault

tolerance approach to be evaluated in future versions of

Heracles is to use redundant executions [33].

6. References

[1] E. Deelman, D. Gannon, M. Shields, e I. Taylor, 2009,

Workflows and e-Science: An overview of

workflow system features and capabilities, Future

Generation Computer Systems, v. 25, n. 5, p. 528-

540.

[2] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, e

J. McNabb, 2007, "A Case Study on the Use of

Workflow Technologies for Scientific Analysis:

Gravitational Wave Data Analysis", Workflows for

e-Science, Springer, p. 39-59.

[3] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, e

M. Wilde, 2007, Swift: Fast, Reliable, Loosely

Coupled Parallel Computation, In: Services 2007,

p. 206, 199

[4] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,

e S. Mock, 2004, Kepler: an extensible system for

design and execution of scientific workflows, In:

SSDBM, p. 423-424, Greece.

[5] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T.

Silva, e H.T. Vo, 2006, VisTrails: visualization

meets data management, In: Proc. SIGMOD 2006,

p. 745-747, USA.

[6] J. Yu, R. Buyya, e C.K. Tham, 2005, Cost-Based

Scheduling of Scientific Workflow Application on

Utility Grids, In: Proceedings of the First

International Conference on e-Science and Grid

Computing, p. 140-147

[7] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,

B. Berriman, e J. Good, 2008, On the use of cloud

computing for scientific workflows, In: IEEE

Fourth International Conference on eScience

(eScience 2008), Indianapolis, USA, p. 7–12

[8] W.D. Gropp, 2001, Learning from the Success of MPI,

cs/0109017 (Set.)

[9] P. Chan e D. Abramson, 2008, A Programming

Framework for Incremental Data Distribution in

Iterative Applications, In: Proceedings of the 2008

IEEE International Symposium on Parallel and

Distributed Processing with Applications, p. 244-

251

[10] W. Gropp e E. Lusk, 1995, Dynamic process

management in an MPI setting, In: Parallel and

Distributed Processing, 1995. Proceedings.

65%

66%

67%

68%

69%

70%

71%

72%

73%

74%

75%

0% 0.50% 1% 1.50% 2%

P
er

ce
n

ta
ge

 o
f

C
o

m
p

le
te

 A
ct

iv
it

ie
s

Churn Frequency

Automatic Rescheduling

Seventh IEEE Symposium onParallel and

Distributed Processing, 1995. Proceedings.

Seventh IEEE Symposium on, p. 530-533

[11] I. Raicu, I. Foster, e Yong Zhao, 2008, Many-task

computing for grids and supercomputers, In:

Workshop on Many-Task Computing on Grids and

Supercomputers, p. 1-11, Austin, Texas.

[12] E. Ogasawara, D. Oliveira, F. Chirigati, C.E. Barbosa,

R. Elias, V. Braganholo, A. Coutinho, e M.

Mattoso, 2009, Exploring many task computing in

scientific workflows, In: MTAGS 09, p. 1-10,

Portland, Oregon.

[13] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, e M. Wilde,

2007, Falkon: a Fast and Light-weight tasK

executiON framework, In: SC07, p. 1-12, Reno,

Nevada.

[14] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A.

Mandal, e K. Kennedy, 2005, Task scheduling

strategies for workflow-based applications in grids,

In: Cluster Computing and the Grid, 2005. CCGrid

2005. IEEE International Symposium onCluster

Computing and the Grid, 2005. CCGrid 2005.

IEEE International Symposium on, p. 759-767 Vol.

2

[15] S. Smanchat, M. Indrawan, S. Ling, C. Enticott, e D.

Abramson, 2009, Scheduling Multiple Parameter

Sweep Workflow Instances on the Grid, In: e-

Science, 2009. e-Science '09. Fifth IEEE

International Conference one-Science, 2009. e-

Science '09. Fifth IEEE International Conference

on, p. 300-306

[16] J. Dias e A. Aveleda, 2010, HPC Environment

Management: New Challenges in the Petaflop Era,

In: 9th International Meeting on High Performance

Computing for Computational Science, Berkeley,

CA, USA.

[17] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, e D.

Epema, 2010, Performance Analysis of Dynamic

Workflow Scheduling in Multicluster Grids, In:

Proceedings of the 10th IEEE International

Symposium on High Performance Distributed

Computing (HPDC'10)HPDC, p. 49-60, Chicago,

Illinois, USA.

[18] E. Pacitti, P. Valduriez, e M. Mattoso, 2007, Grid Data

Management: Open Problems and New Issues,

Journal of Grid Computing, v. 5, n. 3, p. 273-281.

[19] D. Wu, Y. Tian, K. Ng, e A. Datta, 2008, Stochastic

analysis of the interplay between object

maintenance and churn, Computer

Communications, v. 31, n. 2 (Fev.), p. 220-239.

[20] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, e S. Lim,

2005, A Survey and Comparison of Peer-to-Peer

Overlay Network Schemes, IEEE Communications

Surveys and Tutorials, v. 7, p. 72-93.

[21] V. Lo, D. Zhou, Y. Liu, C. GauthierDickey, e J. Li,

2005, Scalable Supernode Selection in Peer-to-Peer

Overlay Networks, In: Proceedings of the Second

International Workshop on Hot Topics in Peer-to-

Peer Systems, p. 18-27

[22] E. Ogasawara, J. Dias, D. Oliveira, C. Rodrigues, C.

Pivotto, R. Antas, V. Braganholo, P. Valduriez, e

M. Mattoso, 2010, A P2P Approach to Many Tasks

Computing for Scientific Workflows, In: 9th

International Meeting on High Performance

Computing for Computational Science, Berkeley,

CA, USA.

[23] G.H. Travassos e M.O. Barros, 2003, Contributions of

In Virtuo and In Silico Experiments for the Future

of Empirical Studies in Software Engineering, In:

Proc. of 2nd Workshop on Empirical Software

Engineering the Future of Empirical Studies in

Software Engineering, Roma

[24] C. Team, 2005, DAGMan: A Directed Acyclic Graph

Manager, July 2005.

[25] E. Deelman, G. Mehta, G. Singh, M. Su, e K. Vahi,

2007, "Pegasus: Mapping Large-Scale Workflows

to Distributed Resources", Workflows for e-

Science, Springer, p. 376-394.

[26] J. Freire, D. Koop, E. Santos, e C.T. Silva, 2008,

Provenance for Computational Tasks: A Survey,

Computing in Science and Engineering, v.10, n. 3,

p. 11-21.

[27] M. Mattoso, C. Werner, G.H. Travassos, V. Braganholo,

L. Murta, E. Ogasawara, D. Oliveira, S.M.S.D.

Cruz, e W. Martinho, 2010, Towards Supporting

the Life Cycle of Large Scale Scientific

Experiments, IJBPIM, v. 5, n. 1, p. 79–92.

[28] E. Walker e C. Guiang, 2007, Challenges in executing

large parameter sweep studies across widely

distributed computing environments, In: Workshop

on Challenges of large applications in distributed

environments, p. 11-18, Monterey, California,

USA.

[29] Yunhong Gu e R. Grossman, 2008, Exploring data

parallelism and locality in wide area networks, In:

Workshop on Many-Task Computing on Grids and

Supercomputers, p. 1-10

[30] D. Bradley, I. Sfiligoi, S. Padhi, J. Frey, e T.

Tannenbaum, 2010, Scalability and interoperability

within glideinWMS, Journal of Physics:

Conference Series, v. 219, n. 6, p. 062036.

[31] G. Juve, E. Deelman, K. Vahi, e G. Mehta, 2010,

Experiences with resource provisioning for

scientific workflows using Corral, Sci. Program.,

v. 18, n. 2, p. 77-92.

[32] R. Akbarinia, E. Pacitti, e P. Valduriez, 2007, Data

currency in replicated DHTs, In: Proceedings of

the 2007 ACM SIGMOD international conference

on Management of data, p. 211-222, Beijing,

China.

[33] J. Dean e S. Ghemawat, 2008, MapReduce: simplified

data processing on large clusters, Commun. ACM,

v. 51, n. 1, p. 107-113.

