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Abstract 
 

Large-scale scientific experiments are usually 

supported by scientific workflows that may demand 

high performance computing infrastructure. Within a 

given experiment, the same workflow may be explored 

with different sets of parameters. However, the 

parallelization of the workflow instances is hard to be 

accomplished mainly due to the heterogeneity of its 

activities. Many-Task computing paradigm seems to be 

a candidate approach to support workflow activity 

parallelism. However, scheduling a huge amount of 

workflow activities on large clusters may be 

susceptible to resource failures and overloading. In 

this paper, we propose Heracles, an approach to apply 

consolidated P2P techniques to improve Many-Task 

computing of workflow activities on large clusters. We 

present a fault tolerance mechanism, a dynamic 

resource management and a hierarchical organization 

of computing nodes to handle workflow instances 

execution properly. We have evaluated Heracles by 

executing experimental analysis regarding the benefits 

of P2P techniques on the workflow execution time. 

 

1. Introduction 
 

Over the last years the power of clusters has grown, 

which enabled the development of large-scale 

scientific experiments that are dependent of High 

Performance Computing (HPC) environments [1]. 

These experiments explore many executions of a set of 

related and dependent activities. Running these 

activities respecting their relations of dependencies and 
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also controlling data transfers between different 

resources require a high level management. Large-

scale experiments are typically executed as scientific 

workflows [2], which is an abstraction that represents 

the chaining of activities to be executed. These 

activities consume input data by executing a computer 

program or scripts, in order to produce output data. The 

input and output data may be a set of parameters or 

files. Additionally, the output of a given activity can be 

consumed by following activities representing the 

workflow chaining. Scientific workflows are enacted 

by engines called Scientific Workflow Management 

Systems (SWfMS). Many SWfMS are available [3-5].  

During the execution of an experiment, the same 

activity from a scientific workflow or even the whole 

workflow may be executed several times exploring 

different parameter combinations. Many of the 

workflow activities also process huge amounts of data. 

This intensive computation motivates the 

parallelization of a workflow activity execution. 

Furthermore, instead of letting scientists to specify 

how many processes a given activity should be 

parallelized, scientists should just specify a deadline, 

i.e the maximum time that an activity (or workflow) 

can execute in the cluster. This approach would be 

more flexible to scientists and adequate to the utility 

computing model [6]. However, it may require 

mechanisms for dynamically scheduling computing 

resources. High performance computing environments 

such as clusters, grids and clouds [7] are candidates to 

execute workflows in parallel. 

A possible approach is to use MPI [8] to parallelize 

workflow activities. However, it may be unviable to 

add MPI logic inside complex and legacy code [9]. 

Parallelizing legacy programs can be very complex and 

it may demand a completely new code to be written.  

MPI does not support dynamic resource management 

either. This is problematic since activities are 



submitted as coupled parallel MPI processes. A single 

process failure aborts the whole group of activities 

[10]. Alternatively, submitting many uncoupled 

activities may also lead to a long waiting in queues. 

The success of a workflow execution depends on the 

successful execution of all running instances of the 

workflow activities. Thus, if one activity execution 

fails and is not automatically rescheduled, the whole 

workflow execution fails. Many activity rescheduling 

is very complex to be performed manually. 

There is no uniform invasive MPI approach to 

parallelize workflow activities, since they belong to a 

heterogeneous set of programs, scripts and services 

from different sources. Thus, noninvasive parallelisms, 

i.e., parallel approaches that do not make changes on 

the activity source code, such as parameter sweep or 

data parallelism, are more suitable to deal with 

workflow parallelization. Moreover, since these 

workflows may also generate a great amount of tasks, 

the new computational paradigm, known as Many-

Task Computing (MTC) [11] seems to be adequate to 

support scientific workflow parallel execution [12].  

Although MTC is a new and promising paradigm, 

there are still many open, yet important, issues to find 

adequate strategies for different types of scheduling 

and execution. Current MTC solutions [3,13-15] 

explore workflow parallelization, but they are 

somehow grid oriented and do not explore some 

characteristics of current clusters. For example, what 

are the winners approaches to deal with the dynamic 

behavior of computing nodes inside huge clusters? 

This issue is important since the number of cores per 

cluster is growing fast and, even with better machinery, 

as the number of electronic components increases, 

greater is the chance of a failure [16].  

On this scenario, when a node of a cluster fails 

during the execution of a workflow activity, the MPI 

limitation causes a serious management issue. Sonmez 

et al. [17] analyze the performance of traditional 

scheduling policies on grids of multiple independent 

clusters and find that there is no single workflow 

scheduling policy with good performance on their 

investigated scenarios. They also noticed that head-

nodes of the clusters usually get overloaded during 

workflow executions. That is the reason to believe that 

studies regarding scientific workflow execution using 

MTC on huge clusters are still necessary. 

The huge number of nodes with possibly 

heterogeneous hardware and their dynamic behavior on 

clusters make us consider this scenario as similar to the 

ones found in Peer-to-Peer (P2P) computing. 

Consequently, P2P techniques may be useful on 

clusters to the management of workflow activities 

execution that demands MTC. Pacitti et al. [18] show 

that P2P techniques are useful on large-scale grids. 

However, there are still not enough studies evaluating 

the usage of P2P techniques on huge clusters to 

process MTC workflow activities. 

This paper proposes Heracles, an approach that uses 

P2P techniques to address many-task computing in 

scientific workflows on huge clusters such as a 

petascale supercomputer. Among its techniques, 

Heracles explores fault tolerance mechanisms, 

dynamic resource management and hierarchical node 

arrangement. Heracles deals with node failures, node 

overloading and dynamic node allocation to attend 

workflow execution time constraints. These 

characteristics are not explored by traditional cluster 

job schedulers (such as Torque [24]). This paper 

presents an initial evaluation of Heracles working 

inside an MTC scheduling scenario. Simulation studies 

analyze the impact of failure events on tasks execution 

on clusters. We have evaluated scenarios of having 

workflow activities producing 512, 1024, 2048 and 

4096 tasks. The study results reinforced that Heracles’ 

automatic rescheduling is an important feature on 

parallel workflow activity execution on clusters. Even 

with low failure rates, relying on manual rescheduling 

causes a great loss in the number of complete activities 

over time.  

The remainder of this paper is as follows. Section 2 

discusses background on P2P computing and workflow 

scheduling mechanisms; Section 3 presents Heracles, 

explaining its strategies using P2P techniques; Section 

4 presents a proof of concept discussing the need to use 

Heracles. Section 5 concludes the paper. 

 

2. Issues in Workflow Parallelization 
 

P2P computing provides high scalability by forming 

heterogeneous and dynamic networks with 

decentralized control. P2P networks are also aware of 

churn events [19], since peers autonomy let them join 

and leave the network at anytime. Thus, P2P systems 

must be fault tolerant and implement dynamic resource 

management to provide quality of service.  

In previous work [18], the authors discussed how 

P2P techniques might be combined to enhance large-

scale grid data management. It was observed that 

different combinations of techniques can be envisioned 

for different grids. Thus, we believe that huge clusters 

may also take advantage of a given combination of P2P 

techniques. Additionally, other study [22] about 

workflow activities execution on P2P networks 

suggests that the hierarchical P2P network [20] is an 

indicated approach to schedule and execute workflow 

activities in parallel.  

Workflow scheduling means that an activity of the 

workflow is scheduled to run on external resources 



such as clusters or grids. The workflow parallelization 

means that the execution of an activity or some 

activities of the workflow is done in parallel to speed 

up the process. Nevertheless, even when an activity is 

scheduled to execute on an external resource, the 

control over the workflow execution is held by the 

SWfMS. The following sub-sections discuss those 

issues. 

 

2.1 Workflow Scheduling and Parallelization 
 

Scientific in silico experiments [23] are usually 

modeled as Scientific Workflow, which may be 

managed by different types of SWfMS. Some activities 

of the workflow can be configured to run on external 

resources, such as cluster and grids. Many papers 

discuss on workflow activity scheduling in parallel 

environments. DAGMan [24] and Pegasus [25], for 

example, are both SWfMS that became very popular 

due to their support for executing workflow activities 

on distributed resources. Recently, other studies 

propose other approaches for parallel workflow 

scheduling. Swift [3] is an environment used to specify 

a logical structure of a process using a script language 

that enables the registry of provenance data [26]. 

Additionally, Swift task scheduling can be done using 

Falkon [13], which is a many-task computing 

framework that sets apart the concept of acquiring 

resources from task submission to meet MTC 

requirements.  

Each SWfMS has its particular characteristics, 

notation and language. They focus on different features 

such as scientific visualization, provenance or parallel 

execution. When experiments are modeled on a given 

SWfMS, the workflows stay dependent on specific 

technological issues. Besides, the representation on a 

particular SWfMS may overshadow the knowledge 

behind the modeled workflow. During an experiment, 

if scientists demand high performance, they need to re-

model their workflows and possibly change the source 

code of their activities to obtain the desired level of 

parallelism and performance improvement. However, 

to re-model an entire workflow requires too much 

effort and may also lead to errors. Further, scientists 

are not required to be familiar to computer 

programming and/or parallelization methods. Thus, we 

believe that the parallel execution of the workflow 

activities should be done implicitly. An implicit 

approach tries to make the workflow parallel execution 

more transparent to the scientists without changing 

their applications. It means that the approach should be 

noninvasive, so it does not change the applications 

source code. This is very important since many 

scientific applications have very complex legacy code 

[9] that is very difficult to modify. The application may 

also be proprietary, which means that scientists do not 

have access to its source code. Nevertheless, even 

without accessing the code, it is still possible to run 

these applications in parallel. Thus, the proposed 

approach brings transparency to the parallel execution 

of workflow activities, but the control over the 

workflow execution is still held by the SWfMS. 

Scientists may use their preferred SWfMS to schedule 

his workflow to run on a cluster through a MTC 

scheduler such as Falkon or Hydra. The scheduler may 

use Heracles approach to handle the execution of the 

activity in parallel providing transparency, load 

balancing and fault tolerance. 

During the scientific experiment life cycle [27], the 

same experiment modeled as scientific workflows may 

run several times exploring different sets of parameters 

or input data. It is usually possible to run multiple 

parameter combinations simultaneously, in parallel, 

assigning instances of the workflow activity for each 

machine. This scenario is commonly called a 

parameter sweep case [15,28]. Data parallelism is also 

used in scientific workflows to increase the execution 

performance of the experiments, since the input data of 

a given application is fragmented into smaller pieces 

that are processed faster by the application. So, 

processing fragments in parallel leads to a faster 

overall execution. Each instance of these activities that 

process a different set of parameter or data fragment 

may be seen as a task. Yunhong Gu et al. [29] explore 

data parallelism in wide area networks using Sphere, a 

cloud computing system to run tasks that demands data 

parallelism. They consider network heterogeneity, load 

balancing and fault tolerance. However, they do not 

consider that the distributed tasks belong to scientific 

workflows, what reduces the degree of management of 

the experiment as a whole. Heracles uses parameter 

sweep and data parallelism approaches to provide a 

transparent parallelization, but it also uses other 

methods to enhance it as described on section 3.1. 

MapReduce programming model is also explored in 

workflow scheduling as a particular case of data 

parallelism. Basically, a huge set of data is split into 

smaller pieces and mapped to be processed on compute 

nodes. The pieces are passed into the Splitter function 

(called Map) as (key, value) pairs. After the map 

function is executed, the intermediate values for a 

given output key are merged together into a list by an 

aggregation function (called Reduce). The reduce 

function combines the intermediate values into one or 

more final result related to the same output key.  

Some related work in the literature proposes general 

solutions for managing workflows executions in large 

clusters. One example is GlideinWMS [30]. It is a 

general purpose Workload Management System 

(WMS) that relies on Condor software, with additional 



glideinWMS specific code. Another approach is Corral 

[31], which is a system that runs a suite of real 

workflow-based applications including in astronomy, 

earthquake science, and genomics. Provisioning 

resources with Corral ahead of the workflow execution 

reduced the runtime of an astronomy application. 

Although these approaches propose solutions for 

workflow management in distributed environments, 

they still do not provide a transparent approach to 

submit, execute and gather provenance of workflow 

activities. They also do not follow the MTC paradigm 

to provide noninvasive parallelism. Therefore, based 

on the discussed studies, we believe that there are still 

open challenges to enhance workflow parallelism. 

 

2.2 Challenges in Parallelizing Workflows 
 

During an experiment setup, when scientists 

configure how the workflow instances may run, it may 

be error prone to specify technical factors that define 

how the environment must process the activities. The 

parallel execution of the workflow activities should be 

transparent for scientists just like query processing on 

distributed database systems [29].  

Usually, on a parallel environment, scientists need 

to specify the number of processors they want to 

process their tasks. However, it is more transparent for 

the scientists if they could just define a deadline for 

their results. This approach fits the utility computing 

scenario where the users pay only for what they use 

[6]. Scientists would only specify what they want 

answered and when they need this answer. The 

SWfMS would submit this activity to a scheduler 

system capable to allocate resources on demand and 

deal with resource failure automatically. Thus, to 

attend time constraints defined by scientists, the 

scheduler must be able to manage the available 

resources dynamically. One initial approach would be 

to put a special module on the head-nodes of the 

clusters to control the scheduling and execution of 

workflow tasks dynamically. However, previous work 

[17] noticed that these nodes became overloaded due to 

the large number of workflow tasks and file transfers 

they have to manage on a dynamic scheduling 

scenario. Therefore, better strategies are still necessary 

to provide a transparent and reliable parallel execution 

for scientific workflows. 

 

3. Heracles 
 

Based on the discussed studies, analyzing their 

advances and limitations, we propose a new approach 

named Heracles. The goal of Heracles is to improve 

scientific workflow activities parallelization that 

demands many-task computing on huge clusters. To 

achieve this objective, we use a set of P2P techniques 

and concepts to provide transparency, load balancing 

and quality of service. This is designed to support huge 

clusters systems that normally have a difficult job 

setup, centralized control and frequent hardware 

failures. 

Heracles is designed to be implemented inside MTC 

schedulers for workflows (such as Swift/Falkon [3] or 

Hydra [12]) to control the parallelization of workflow 

activities. The integration with the SWfMS is a duty of 

the scheduler. Hydra, for example, already implements 

this SWfMS integration.  Figure 1 represents an 

overview of Heracles structure. The SWfMS submits 

workflow activities to run on a cluster using an MTC 

scheduler. The many instances of workflow activities 

with different input data or parameters can be wrapped 

as tasks. Assuming that MTC schedulers for workflows 

are using Heracles, these tasks are not directly 

scheduled to run on the cluster. Instead, Heracles 

registers the metadata of each task on a distributed 

table [32] shared by a group of Heracles processes. A 

Heracles process is the actual object that is scheduled 

by the regular scheduler of the cluster to run in parallel. 

They are bootstrapped just like other jobs of the cluster 

and, once started, the processes use P2P techniques to 

control the tasks execution and gather all necessary 

provenance data requested by the MTC scheduler. The 

scheduler may, then, forward the provenance data to 

the SWfMS. Since Heracles processes are autonomous, 

they have components to handle the virtual P2P 

network overlay, to execute tasks and to gather metrics 

values and provenance data (execution monitor) during 

the task execution. 

The advantage of implementing Heracles inside an 

MTC scheduler is that Heracles does not have to 

concern about important mechanisms such as data 

staging ones. Data staging allows you to stage data 

needed by a task before the task begins execution and 

to move data back to archives when a task has finished 

execution. However, data staging is a role of the MTC 

solutions for workflows (such as Swift/Falkon or 

Hydra). The following sections describe the main 

strategies used by Heracles. 

 

3.1 Transparency 
 

Heracles aims to improve the way scientists setup 

their activities to run in parallel. Instead of configuring 

the number of nodes of the cluster to be involved in the 

parallel activity, scientists should specify the deadline 

for the experiment results to provide a more flexible 

setup for parallelization. Heracles sets a number of 

computing nodes to compose the initial execution pool. 

This setup is based on the time constraint established 



(1) 

(2) 

by scientists, the available resources and the 

information obtained from past executions (called 

provenance data [26]). This resource pool may grow or 

shrink depending on the time constraints. The 

decisions regarding these expansions are based on two 

metrics: partial efficiency (  
 ) for the set of p 

processors and the number of completed activities per 

time unit (  
 ). These metrics can be calculated from 

the distributed table available on Heracles process. 

For example, let us suppose that scientists configure 

a given workflow activity composed by k tasks 

deadline to be w hours. Heracles decides to start the 

process on the cluster with p processing cores. After an 

arbitrary number n of finished activities, Heracles 

updates the number of completed activities per time 

unit (  
 ). To decide whether is necessary to expand or 

shrink the pool, it measures the partial efficiency (  
 ): 

 

  
  

   
 
   

    
 

Where    is the time spent processing activity i and    

is the elapsed time. To calculate the new size pnew of 

the resource pool, Heracles uses the following formula: 

 

     
 

  
 
 
       

    
 

  

 

To illustrate the described strategy, consider w = 72 

hours, p = 32 processors and k = 10,000 tasks. After 

160 tasks have finished in about three hours, Heracles 

measures that   
       tasks per hour. Heracles 

calculates an efficiency of   
      . So the new 

estimated size of the pool pnew is 57 processors. This 

value may be approximated considering the cluster 

infrastructure. For example, if each compute node has 

eight cores, pnew can be approximated by 64 since 64 is 

a multiple of 8. Figure 2 shows the evolution of   
 ,   

  

and p over time using the arbitrary example. Heracles 

starts with a small pool and then expands it to achieve 

a peak task-per-hour rate. Heracles also considers the 

amount of available resources on the cluster since there 

may be not enough compute nodes to allocate all pnew 

processors of the pool. However, based on pnew, it 

follows a tendency and, when possible, allocates (or 

frees) processing cores. Figure 2 shows that Heracles 

initial tendency is to obtain as many as possible 

processors on the pool. Yet, during the execution is 

seeks better efficiency. 

 
Figure 1: Heracles scenario overview 

Using this approach, the resources usage tends to be 

more efficient, since activities with looser deadlines 

consume fewer resources to let activities with tighter 

deadlines to use more. Heracles uses the metrics to 

analyze and decide if it can reduce the number of 

resources being used in the case where the deadline is 

tending to be accomplished. This strategy makes it 

simpler and more transparent to scientists to setup their 

workflow activities, since they only need to set up a 

deadline. Heracles uses metrics to dynamically expand 

or contract the working resources to attend the time 

constraints. 

 

3.2 Load Balancing 
 

Clusters usually have centralized control on a head-

node that controls submission and execution of all the 

cluster jobs on the working nodes. The head-node is 

the frontend for all the services available in the cluster 

machine. This approach makes it easier to manage a 

huge machine, even if there is more than one head-

node. However, centralized approaches naturally lacks 

on load balancing. Thus, cluster head-nodes are 

powerful server machines capable to handle most 

applications that demand high performance computing. 

On a many-task computing scenario, though, the head-

node of the cluster may become overloaded like 

Sonmez et al. [17] experienced on a workflow 

scheduling scenario. This overload happens because of 

the big amount of tasks that the workflow activities 

may generate. The head-node also has to deal with file 

transfers to stage in and stage out all the necessary data 

for each task. Provenance data needs also to be 

gathered during tasks execution and, since the working 

nodes network is private, this data may transit through 

the head node network. 

 



 
Figure 2: Example of the dynamic task 
scheduling using Heracles approach 

Many of processes executed in the head-node 

cannot be moved to another resource, since the head-

node is the only one responsible for many of the cluster 

services. However, the workflow scheduling 

application should not add extra responsibilities to the 

head-node. Thus, Heracles aims at improving load 

balancing distributing the task scheduling and 

execution management over the working nodes. To 

achieve this goal, Heracles establishes a hierarchical 

virtual P2P network over the resource pool reserved to 

execute the tasks. The hierarchical approach aims at 

expanding and shrinking the pool and to provide load 

balancing. 

Heracles divides the resource pool into groups and 

elects one processor of the group to be the leader. On 

each pool expansion, new groups are formed. When a 

new group enters the hierarchy, it starts in the highest 

hierarchy level. As new groups enter the network, the 

older groups start to descend in the hierarchy. Since 

older groups are likely to leave the network when the 

pool shrinks, it seems to be an advantage to keep them 

on the bottom of the hierarchy level. Figure 3 (a) 

represents the complete resource pool. Each group is 

composed of 8 processors from the same compute 

node. Figure 3 (b) shows how the groups form the 

hierarchy. The numbers indicate the order that the 

groups were created and the darker squares are the 

leader processors of each group. At the same time that 

the hierarchy keeps the oldest groups at the bottom, it 

also tries to keep the hierarchy tree balanced. 

Group leaders keep the list of tasks to be processed 

on a distributed table. When a processor finishes the 

processing of a given task, it reports it on the table of 

its leader. The processor can then grab a new task 

published still to be executed on the distributed table. 

The group leaders are also responsible to gather 

provenance data of processed tasks. Centralizing the 

gathering process on the leader is important to save 

database transactions or disk writings operations 

depending where provenance data is written. Leaders 

are also important on the fault tolerant mechanism 

described in the next section. The leader of the highest 

level group is the one responsible to measure the 

partial efficiency and to make decisions regarding the 

expansion or shrinking of the resource pool. 

The hierarchy approach improves load balancing 

distributing the scheduling and execution control. The 

groups of processors have a decentralized autonomy 

and report to their leader, while the leader reports to 

the upper level leader in the hierarchy. This structure 

also makes the dynamic resource management easier 

and enables and efficient fault tolerant mechanism. 

 

3.3 Quality of Service 
  

On typical cluster systems, if a working node fails 

during the execution of an activity, the activity is 

aborted. This procedure is indeed necessary if the 

activity is composed of a set of coupled MPI processes. 

When scientists submit a huge set of uncoupled tasks 

to be executed, some schedulers distinguish that 

singular failures affects only the task that was running 

on the node that failed. This is a better scenario, but 

scientists need to check every failed task and then 

resubmit them. These kinds of manual effort increase 

the chances to make mistakes and, commonly, 

scientists prefer to resubmit the whole set of tasks. 

However, the scheduler can automatically reschedule 

the tasks that failed. The tasks are, then, processed by 

another node just like in a P2P system. 

It is possible to relate the failures on a cluster with 

churn events [19], which are very common on P2P 

networks. On huge clusters the frequency of failure 

events would be much smaller compared to a 

traditional P2P system. However, if scientists schedule 

many-tasks activities using a huge set of nodes from 

the same cluster, it is probable to experience failures. 

Since these failures are expected, we consider any 

failure on a task being processed as a churn event. 

After a churn event, the tasks assigned to the process or 

compute node that left the network should be assigned 

to another one. Fault tolerant mechanisms available on 

P2P systems are helpful to handle failures on cluster 

during many-task execution. Thus, to improve quality 

of service during workflow scheduling and execution 

on clusters, Heracles uses a fault tolerant mechanism. 



Each processor core available on the resource pool 

of Heracles can be seen as a peer. A peer obtains tasks 

to process from the distributed table published on its 

group leader. The table has the list of all tasks: 

pending, running and finished ones. A pending task 

changes its state to running just after being scheduled 

to be processed by a peer. The group leader keeps an 

average of how much time a task takes to accomplish. 

If a task is taking too much to finish, it is possible that 

the responsible peer failed. The leader peer may, then, 

reschedule the task by changing its state to pending 

again. 

 
Figure 3: (a) Physical organization of the 

resources; (b) Resources mapping into the 
P2P groups by Heracles 

On a worse scenario, the leader of a group or even 

the whole group may fail. This is possible since all the 

peers are processor cores which may be inside the 

same chip or compute node. Anyway, the leader failure 

is as bad as the group failure, since, without a leader, 

the peers within the group lose their communication 

with Heracles. Thus, on this scenario, the leader of the 

group one level above on the hierarchy has to notice 

the churn and automatically reschedule all the tasks 

once assigned to be processed by the group that has 

failed. This rescheduling may be done just changing 

the once running state of the tasks to pending. A group 

failure is easier to be noticed by other leaders in the 

hierarchy since they keep contact using overlay 

messages to maintain the distributed table update. If a 

leader observes that some other leaders are not 

executing their tasks and not responding overlay 

messages, it understands that a churn event happened 

and decides to reschedule the tasks in the table that 

were assigned to that failing group.  

 It is notable that, if the group that failed is on an 

intermediary level of the hierarchy, the groups below 

that level do not lose the communication with Heracles 

structure since they keep information regarding other 

group leaders and can reposition themselves and later 

rebalance the hierarchical tree. Another important 

scenario is when the leader or the group on the highest 

level of the hierarchy fails. This would cause more 

trouble since the leader of the highest level is 

responsible by the dynamic resource management 

intelligence of Heracles. However, during the update of 

the distributed table, the leaders can notice that the 

leader above them failed. After detecting the failure, 

another group takes place of the highest hierarchy level 

and the tasks of the group are rescheduled. 

The hierarchical structure and the distributed table 

create a scenario to support the fault tolerance 

mechanism. Unless all the group leaders fail at the 

same time, the automatic reschedule of the tasks grants 

that all the workflow activities would be executed. This 

mechanism improves the quality of the scheduling and 

execution services of a huge cluster system. 

 

4. Case study 
 

Heracles is an approach that enables the scheduling 

of activities based on deadline and is resilient of churn 

occurrences. As an initial evaluation of Heracles 

working inside a MTC scheduling scenario, we present 

a simulation study as a proof of concept. Our purpose 

is to analyze the impact of churn events on tasks 

execution on clusters. In our study, a hypothetical 

cluster receives many workflow activities to be 

executed. Activities are decomposed into tasks that 

may suffer with churn events. We have evaluated 

scenarios of having workflow activities producing 512, 

1024, 2048 and 4096 tasks. The tasks produced could 

be classified as small, medium and big. Smaller tasks 

run in an average time of 1 hour each, while large tasks 

run in an average time of 4 hours each. The study was 

evaluated on a time frame of seven days and considers 

that an average of 2000 activities was submitted on the 

cluster per day. The churn event frequency is 0.01, 

which means that one percent of the activities fail. On 

this scenario we have analyzed two different activity 

rescheduling approaches: the manual and the 

automatic.  

The manual rescheduling approach assumes that 

scientists submits its activities and checks its status 

every twelve hours after the submission. If the activity 

is finished and present failures, it is manually 

rescheduled to run again all tasks from that particular 



activity. The automatic approach automatically 

reschedules only the tasks that have failed, so that 

when an activity is finished, it is necessarily complete.  

The first analyzed scenario considers activities that 

produce small tasks. These activities take from 3 hours, 

when they have 512 tasks, to 24 hours, when they have 

4096 tasks, to execute. Figure 4 (a) shows the 

percentage of complete activities for manual (blue 

column) and automatic (red column) rescheduling. The 

graphics group the activities by their number of tasks. 

As expected, the results show that manual rescheduling 

do not scale well, even for activities with small tasks. 

This inefficiency is caused by the time that many 

activities wait to be rescheduled and to the fact that 

when any single task fails, the whole activity is 

resubmitted. A new submission is also prone to churn 

events. Automatic reschedule presents better results 

completing more activities and being also less sensitive 

to the increasing number of tasks. 

Figure 4 (b) presents the results for activities that 

produce medium tasks. Medium tasks take from 6 

hours, when they have 512 tasks, to 48 hours, when 

they have 4096 tasks, to execute.  Figure 4 (c) 

represents activities with big tasks. Big tasks take from 

12 hours, when they have 512 tasks, to 72 hours, when 

they have 4096 tasks, to execute. Both results 

reinforces our conclusions that manual reschedule do 

not scale. In the worst case scenario, the manual 

reschedule produces only about 10% of complete 

activities while the automatic approach produces more 

than 50%. It is also important to reinforce that the 

manual approach requires the effort of scientists to 

have the activity rescheduled in order to complete all 

tasks. Using the automatic approach, scientists only 

need to wait until the activity finishes. At the time, the 

activity is complete. In the results presented in Figure 

4, the automatic approach does not present 100% of 

complete activities because the time frame of seven 

days is not enough to process all the tasks from the 

activities submitted on the last days. 

Since the advantage of automatic rescheduling is 

clear when compared with the manual approach, we 

also made an extra study analyzing the automatic 

rescheduling sensitivity to the churn frequency. Figure 

5 presents our results with the churn frequency varying 

from zero to two percent. This second study is also 

modeled on a time frame of seven days and 2000 

activities are submitted by day. We used activities with 

4096 medium tasks.  

 

 
Figure 4: Percentage of complete activities 

using manual and automatic rescheduling per 
activity with (a) small task size, (b) medium 

tasks size and (c) big task size 

The results presented in Figure 5 shows that the 

churn impact on the automatic rescheduling process is 

small. It is expected to have worse results with greater 

churn rates since more tasks need to run again. 

However, the percentage of complete activities 

decreases only in 0.5% while the churn frequency 

grows from 0.25% to 2%. 

The study results reinforced that automatic 

rescheduling is an important feature on parallel 

workflow activity execution on clusters. Even with low 

churn rates, relying on manual rescheduling causes a 

great loss in the number of complete activities over 

time. Automatic rescheduling, though, scales much 

better. Since Heracles also aims at providing a 

transparent and fault tolerant mechanism to process 

activities, we believe that this proof of concept 
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strengthen our intentions to improve MTC scheduling 

and execution for scientific workflow activities. 

 

 
Figure 5: Automatic rescheduling sensitivity 

to different churn frequencies 

5. Conclusions 
 

High performance computing clusters have a vast 

set of computing nodes. They empower the 

development of large scale scientific experiments. 

These experiments explore different executions of 

scientific workflows; traditionally managed by 

SWfMS. Parallelizing workflow activities may 

produce a huge number of tasks demanding a many-

task computing approach. However, scheduling and 

executing MTC activities on huge clusters may also 

suffer with churn events, poor load balancing and 

usability issues. To improve MTC scheduling and 

execution for scientific workflows, P2P techniques 

may help providing fault tolerant mechanisms and 

dynamic resource management. 

We present the Heracles approach based on well 

known P2P techniques, such as distributed tables and 

hierarchical topologies, combined with traditional 

parallelism approaches for many-task computing, such 

as parameter sweep and data parallelism. Heracles 

aims to handle the execution of many tasks from 

scientific workflows on distributed resources using 

P2P techniques. Heracles can be used inside workflow 

schedulers. It takes the control over the tasks execution 

and gathers provenance data to report to the workflow 

scheduler. Heracles provides transparence, since 

scientists just need to inform a time constraint when 

they need their activities processed. It also enhances 

load balancing establishing a hierarchical P2P overlay 

on the cluster resources and a fault tolerant mechanism 

to be aware of churn events during the activities 

execution. 

An initial proof of concept showed that churn 

events decreases the performance of activities 

execution and manual rescheduling does not scale at 

all. Automatic rescheduling, though, performed better 

and proved itself not very sensitive to the churn 

frequency growth. Thus, we believe that Heracles 

approach is a necessary attempt to improve MTC in 

scientific workflows execution. However, Heracles 

does much more than a simple automatic rescheduling, 

so we believe that future work must analyze the 

advantages that MTC schedulers can achieve when 

using Heracles approach. Additionally, another fault 

tolerance approach to be evaluated in future versions of 

Heracles is to use redundant executions [33]. 
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