
Adaptive Virtual Partitioning for OLAP Query

Processing in a Database Cluster 1

Alexandre A. B. Lima, Marta Mattoso

Computer Science Department, COPPE, Federal University of Rio de Janeiro – Brazil

{assis, marta}@cos.ufrj.br

Patrick Valduriez

INRIA and LIRMM, Montpellier – France

Patrick.Valduriez@inria.fr

OLAP queries are typically heavy-weight and ad-hoc thus requiring high storage capacity and
processing power. In this paper, we address this problem using a database cluster which we see as
a cost-effective alternative to a tightly-coupled multiprocessor. We propose a solution to efficient
OLAP query processing using a simple data parallel processing technique called adaptive virtual
partitioning which dynamically tunes partition sizes, without requiring any knowledge about the
database and the DBMS. To validate our solution, we implemented a Java prototype on a 32
node cluster system and ran experiments with typical queries of the TPC-H benchmark. The
results show that our solution yields linear, and sometimes super-linear, speedup. In many cases,

it outperforms traditional virtual partitioning by factors superior to 10.

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Additional Key Words and Phrases: Parallel Databases, Database Cluster, Query Processing

1. INTRODUCTION

On-Line Analytical Processing (OLAP) applications typically access large databases
using heavy-weight read-intensive queries. Updates may occur but at specific prede-
fined times. This is illustrated in the TPC-H Benchmark [TPC 2004], representative
of OLAP systems. Out of twenty-four database queries, there are twenty-two com-
plex heavy-weight read-only queries and two updates. Furthermore, OLAP queries
have an ad-hoc nature. As users get more experienced about their OLAP systems,
they demand more efficient ad-hoc query support [Gorla 2003].
The efficient execution of ad-hoc heavy-weight OLAP queries is still an open

problem, mainly when efficiency means as fast as possible. Traditionally, high-
performance of database management has been achieved with parallel database
systems [Valduriez 1993], using tightly-coupled multiprocessors and data partition-
ing and replication techniques. Although quite effective, this solution requires the
database system to have full control over the data and is expensive in terms of
hardware and software.
Clusters of PC servers appear as a cost-effective alternative. Recently, the

1 Work partially funded by CNPq, CAPES, INRIA and COFECUB.

Copyright c©2010 **** INFORMATION ON COPYRIGHT ****

Journal of Information and Data Management, Vol. V, No. N, February 2010, Pages 1–16.

2 ·

database cluster approach has gained much interest for various database appli-
cations ([Akal et al. 2002], [Gançarski et al. 2002], and [Röhm et al. 2000]). A
database cluster [Akal et al. 2002] is a set of PC servers interconnected by a dedi-
cated high-speed network, each one having its own processor(s) and hard disk(s),
and running an off-the-shelf DBMS. Similar to multiprocessors, various cluster sys-
tem architectures are possible: shared-disk, shared-cache and shared-nothing [Özsu
and Valduriez 1999]. Shared-nothing (or distributed memory) is the only architec-
ture that does not incur the additional cost of a special interconnect. Furthermore,
shared-nothing can scale up to very large configurations. In this paper, we strive
to exploit a shared-nothing architecture as in PowerDB [Schek et al. 2000] and
Leg@Net [Gançarski et al. 2002]. Each cluster node can simply run an inexpen-
sive (non parallel) DBMS. In our case, we use the PostgreSQL [PostgreSQL 2004]
DBMS, which is freeware. Furthermore, the DBMS is used as a ”black-box” com-
ponent [Gançarski et al. 2002]. In other words, its source code is not available and
cannot be changed or extended to be ”cluster-aware”. Therefore, extra functional-
ity like parallel query processing capabilities must be implemented via middleware.

OLAP query processing in a database cluster is addressed in [Akal et al. 2002].
The approach which we refer to as simple virtual partitioning (SVP) consists in
fully replicating a database along a set of sites, and breaking each query in sub-
queries by adding predicates. Each DBMS receives a sub-query and is forced to
process a different subset of data items. Each subset is called a virtual partition.
Such strategy allows for greater flexibility on node allocation for query processing
than physical (static) data partitioning [Özsu and Valduriez 1999]. A preventive
replication protocol [Coulon et al. 2004], which scales up well in cluster systems,
could be used to keep copy consistency. However, SVP presents some problems.
First, determining the best virtual partitioning attributes and value ranges can be
a complex task since assuming uniform value distribution is not very realistic [Akal
et al. 2002]. Second, some DBMSs perform full table scans instead of indexed access
when retrieving tuples from large intervals of values. This reduces the benefits of
parallel disk access since one node could incidentally read all pages of a virtually
partitioned table. It makes SVP more dependent on the underlying DBMS query
capabilities. Third, as a query cannot be externally modified while being executed,
load balancing is difficult to achieve and depends on the good initial partition
design.

To overcome these problems, we proposed fine-grained virtual partitioning (FGVP)
[Lima et al. 2004]. As SVP, FGVP employs sub-queries to obtain virtual parti-
tions. Unlike SVP, FGVP uses a large number of sub-queries instead of one per
DBMS. Working with small, light-weight sub-queries avoids full table scans and
makes query processing less vulnerable to DBMS idiosyncrasies. Our preliminary
experimental results showed that FGVP outperforms SVP for some representative
OLAP queries. However, we used a simplistic method for partition size determina-
tion, based on database statistics and query processing time estimates. In practice,
these estimates are hard to obtain with black-box DBMSs which makes it difficult
to build a DBMS-independent cluster query processor.

In this paper, we address the partition size determination problem by using an
adaptive approach that dynamically tunes partition sizes. We propose adaptive vir-

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 3

tual partitioning (AVP) which is completely DBMS-independent and uses neither
database statistics nor query processing time estimates. AVP avoids full table scans
on huge database tables in addition to parallel processing. It is also easy to imple-
ment. To validate our approach, we implemented AVP in a Java prototype and ran
experiments on a 32-node cluster running PostgreSQL. The results show that linear
and sometimes super-linear speedup is obtained for many tested OLAP queries. In
the worst cases, almost linear speedup is achieved, which is excellent considering
the simplicity of the techniques. AVP also shows much better performance than
SVP in most cases. In all cases, it is more robust.
This paper is organized as follows. Section 2 introduces the general principle of

simple virtual partitioning and describes our adaptive algorithm for dynamic de-
termination and tuning of partition sizes. Section 3 describes our query processor
architecture. Section 4 describes our prototype implementation and our experimen-
tal results. Section 5 concludes.

2. ADAPTIVE VIRTUAL PARTITIONING

In this section, we introduce the general principle of simple virtual partitioning
(SVP) and fine-grained virtual partitioning (FGVP). We discuss the issue of parti-
tion size determination in FGVP. Then, we describe our adaptive algorithm which
solves this problem.

2.1 SVP and FGVP

The goal of Simple Virtual Partitioning (SVP) [Akal et al. 2002] is to achieve intra-
query parallelism in OLAP query processing. Considering a database cluster with
full database replication over all cluster nodes, SVP limits the amount of data pro-
cessed by each DBMS by adding predicates to incoming queries. Doing so, it forces
each DBMS to process a different subset of data items. For example, let us consider
query Q6, taken from TPC-H Benchmark [TPC 2004], which accesses its largest
fact table (Lineitem):

Q6: select sum(l extendedprice * l discount) as revenue
from Lineitem
where l shipdate ≥ date ’1994-01-01’
and l shipdate < date ’1994-01-01’ + interval ’1 year’
and l discount between .06 - 0.01 and .06 + 0.01
and l quantity < 24;

Q6 is a typical OLAP query. It has an aggregation function and accesses a
huge table (in TPC-H smallest configuration, Lineitem has 6,001,215 tuples). For
simplicity, we chose a query that contains no joins. Using SVP, this query would
typically be rewritten by adding the predicate “and l orderkey ≥ :v1 and l orderkey
< :v2” to the “where” clause of Q6. The rewritten query can then be submitted to
the nodes that participate on Q6 processing. Lineitem’s primary key is formed by
the attributes l orderkey and l linenumber. Since there is a clustered index on the
primary key and l orderkey has a large range of values, l orderkey has been chosen
as the virtual partitioning attribute. Each node receives the same query, but with

Journal of Information and Data Management, Vol. V, No. N, February 2010.

4 ·

different values for v1 and v2, so that the whole range of l orderkey is scanned.
This technique allows great flexibility for node allocation during query processing:
any set of nodes in the cluster can be chosen for executing any query.

Simplicity is one of SVP most appealing characteristics. However, its efficiency
depends on some factors. First of all, there must be a clustered index associated to
the partitioning attribute. Making each cluster node to process a different subset
of tuples does not guarantee that only a subset of the disk pages associated to the
partitioned table will be read by each node. Occasionally, one node could read all
of them. If tuples are physically ordered according to the partitioning attribute,
full-table reading can be avoided if a clustered index is available.

Having a clustered index is necessary but it is not enough. The clustered index
must be used by the underlying DBMSs during sub-query processing. Some DBMSs
do not use indexes to access a table if they estimate that the number of accessed
tuples is greater than some threshold. In this case, they perform a full table scan,
which hurts the basic goal of SVP.

Uniform value distribution on the partitioning attribute is another requirement
for SVP good performance. SVP is a static decomposition technique, requiring
partition limits determined before query execution. Once submitted, sub-queries
cannot be dynamically changed when black-box DBMSs are employed. Such charac-
teristic prevents a cluster query processor from performing dynamic load balancing
among cluster nodes since task reassignment cannot be done. In order to avoid
load unbalancing, one approach could be to consider information concerning value
distribution during virtual partition size determination, at the very beginning of
the process.

Although quite simple, SVP is not very robust since its efficiency relies on the
underlying DBMS characteristics. Therefore, our goal with FGVP [Lima et al.
2004] was to propose a robust and efficient parallel query processing technique for
database clusters as simple as possible. Many SVP limitations are due to the “one
virtual partition per cluster node” approach it adopts, which can be re-stated as
“one sub-query per node” approach. Having one sub-query per node makes dynamic
load balancing difficult or even impossible. Furthermore, it can lead to full table
scans depending on the amount of accessed tuples. Thus, our proposal was to have
an initial number of virtual partitions greater than the number of participating
nodes which is the main difference with SVP. Instead of one (possibly) heavy-weight
sub-query, FGVP makes each cluster node to process a set of small, light-weight
sub-queries. These sub-queries are produced in the same way as SVP does: through
query predicate addition.

Some advantages can be immediately obtained from the FGVP approach. First,
if sub-queries are small enough, i.e., if they access small amounts of partitioned table
data, DBMSs will effectively use clustered indexes, thus avoiding full table scans.
This makes our technique more robust, as it is less vulnerable to the underlying
DBMS idiosyncrasies. When considering join queries, FGVP can also be more
attractive than SVP. Some join processing techniques, like hash-join and merge-join
[Graefe 1993], require temporary disk-based structures when processing data that
do not fit in main memory. Using small sub-queries, such structures are no longer
necessary since only small amounts of data need to be processed by each sub-query

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 5

at a time. In addition, having many sub-queries allows for dynamic load balancing.
At the beginning of query processing, FGVP assigns each node a different virtual
partition. Each node processes its partition through many sub-queries. If node N1

finishes before node N2, some non-processed N2 sub-queries can be re-assigned to
N1.
Of course, some problems can arise. The most obvious problem concerns the size

of each virtual partition. Such size is directly related to the number of sub-queries.
The smaller the virtual partitions are, the more sub-queries we have. Having many
sub-queries can degrade performance, especially if many non-partitioned tables are
accessed. In [Lima et al. 2004], we adopted a simplistic method based on database
statistics and query processing time estimates. Such estimates are very hard to
obtain from black-box DBMSs. It makes it difficult the task of constructing a
cluster query processor that should perform well no matter the DBMS being used.

2.2 AVP

One of the fundamental issues in FGVP is how to determine virtual partition sizes,
i.e., how to find out value intervals to be used by each sub-query. The total process-
ing cost of a query is determined by a number of components [Özsu and Valduriez
1999]. Before starting accessing data, there is the cost incurred by the generation
of a query execution plan (QEP) for query parsing, translation and optimization.
Then there is the query processing initialization cost, e.g. memory allocation and
temporary data structures creation. After initialization, data can be read and the
query processed. When there are no more data to process, the results must be sent
to the requester and the system resources released. These are roughly the query
processing phases.
The amount of data accessed by a query does not affect these phases in the same

way. The time required for QEP generation for example is much more related
to the query statement complexity than to the number of bytes read from disk.
On the other hand, resource releasing can be more or less expensive depending
on the amount of data processed and operations performed. How does this affect
FGVP? If we work with too many small sub-queries, operations whose costs are not
affected by the number of processed tuples (like QEP generation) will predominate
and we will obtain poor performance. On the other hand, a small number of
large queries could yield all the aforementioned problems (full table scans on the
partitioned table, temporary disk-based structures, etc.). These problems could be
even worse for FGVP than for SVP due to the greater number of sub-queries the
former demands.
One approach to solve this problem is to try to compute partition size before

query execution based on DBMS catalog information like table cardinality, at-
tribute values distribution, existing clustered indexes and so on. However, our
basic assumption is that we are dealing with black-box DBMSs. In general, dif-
ferent DBMSs have different catalog structures. Directly accessing them would
require the development of specific DBMS-dependent components. Even if we do
so, DBMSs usually have different query optimizers that work in different ways. It
would be hard to precisely determine which access structures and which algorithms
would be effectively employed during query execution. We would have to guess
some things and expect these “guessings” to be correct. Besides, for all such effort

Journal of Information and Data Management, Vol. V, No. N, February 2010.

6 ·

to be valid, we should try to answer the following questions: “Is there a ‘best’ size
that should be used for all sub-queries during one query execution? If there is,
what is the cost of finding it?”
Instead of addressing all these issues, we opted for a simpler, more dynamic

approach which led to AVP. The AVP algorithm runs independently in each partic-
ipating cluster node, avoiding inter-node communication (for partition size deter-
mination). At the beginning, each node receives an interval of values to work with.
These intervals are determined exactly as for SVP. Then, each node performs the
following steps:

(1) Start with a very small partition size beginning with the first key value of the
received interval;

(2) Execute a sub-query with this interval;

(3) Increase the partition size and execute the corresponding sub-query while the
increase in execution time is proportionally smaller than the increase in parti-
tion size;

(4) Stop increasing. A stable size has been found;

(5) Monitor query execution time to detect performance deterioration;

(6) If deterioration is confirmed, i.e., there were consecutive worse executions, de-
crease size and return to Step 2.

These main steps of the algorithm illustrate some of our basic principles. Starting
with a very small partition size avoids full table scans at the very beginning of
the process. Otherwise, we would have to know the threshold after which the
DBMS does not use clustered indexes and starts performing full table scans. Such
information would have to be given by the database administrator.

When we increase partition size, we monitor query execution time. This allows
us to determine after which point the query processing phases that are data-size
independent do not influence too much total query execution time. If, for example,
we double the partition size and we get an execution time that is almost twice the
previous one, we have found such point. Thus we stop increasing the size.

System performance can deteriorate due to DBMS data cache misses and/or
overall system load increase. It may happen that the size being used is too large
and has benefited from previous data cache hits. In this case, it may be better
to shrink partition size. That is precisely what step 6 does. It gives a chance to
go back and inspect smaller partition sizes. On the other hand, if performance
deterioration was due to a casual and temporary increase on system load or to data
cache misses, keeping a small partition size can lead to poor performance. To avoid
such situation, we go back to step 2 and restart increasing sizes.

The general algorithm for query execution is shown in Figure 1. In our archi-
tecture, sub-query execution is performed by a Query Executor component (which
executes the algorithm in Figure 1) and partition size determination and tuning is
performed by a component called Partition Tuner. As Figure 1 shows, Query Execu-
tor and Partition Tuner interact to implement AVP. Basically, the Query Executor
demands a partition size to the Partition Tuner; executes one or more sub-queries
according to its instructions; and gives it feedback. This process restarts until the
entire node assigned interval has been processed.

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 7

Figure 1. Algorithm for sub-query execution.

execute_query()

input: query {query to be executed}

 firstkey {first key of the virtual partition that will be

processed by the node}

 lastkey {last key of the virtual partition that will be processed

by the node}

output: lr {local query result}

 tuner {partition tuner}

 pfk {first key of the virtual partition being processed}

 plk {last key of the virtual partition being processed}

 psize {size of the virtual partition being processed}

 pnexec {number of sub-query executions}

 meant {mean sub-query execution time}

begin

 tuner � create PartitionTuner instance

 lr � ø

 pfk � firstkey

 repeat

 tuner.get_size(psize, pnexec)

 plk � pfk + psize

 if (plk > lastkey) then

 plk � lastkey

 execute (query, pfk, plk, pnexec, lr, meant)

 tuner.set_size_results (psize, meant)

 pfk � plk

 until (pfk >= lastkey)

end

Fig. 1. Algorithm for sub-query execution.

Now we give some details about how Partition Tuner works. During its lifetime,
a Partition Tuner component can assume four different states: “initial”, “search-
ing”, “tuned” and “restarting”. When a new Partition Tuner instance is created,
attribute variables are initialized and the object goes to “initial” state. When the
first partition size is demanded, the initial small size is given and the object goes to
the “searching” state. While in this state, the Partition Tuner increases partition
size while no significant increase on query execution time is obtained. After that,
it goes to the “tuned” state. Then, it starts monitoring execution times to detect
performance deterioration. When it is detected, the Partition Tuner goes to the
“restarting” state. The partition size is decreased and the Partition Tuner goes
back to “searching” state to restart size increasing.
In some states, the Partition Tuner determines that more than one sub-query will

be executed with the same partition size. This is to try to diminish temporary sys-
tem load influence when evaluating partition sizes performance. In such cases, the
considered execution time is in fact the mean sub-query execution time. Avoiding
potential system load fluctuations is also the goal of the performance deterioration
verification carried on when the Partition Tuner is in “tuned” state.

In [Stöhr et al. 2000], small database partitions are also used for OLAP query pro-
cessing with good results. The parallel architecture employed was shared-disk [Özsu
and Valduriez 1999] but the authors claim that their technique can easily be used
in other architectures. A data fragmentation technique is proposed, called multi-
dimensional hierarchical fragmentation (MDHF). MDHF physically fragments the
fact table. Its success solely depends on a good fragmentation. Fragmentation
guidelines are given in [Stöhr et al. 2000]. Some depend on the query profile while
others depend on the system, e.g. main memory or disk storage space. AVP does
not depend on any of these factors. Partition sizes are obtained according to the
dynamic query behavior. With respect to the architecture, as AVP is being used
in a shared-nothing context with fully replicated databases, it can be directly used
in shared-disk architectures.

3. QUERY PROCESSOR ARCHITECTURE

In this section, we show how query processing is carried out in our architecture.
Figure 2 illustrates the global process.

Journal of Information and Data Management, Vol. V, No. N, February 2010.

8 ·

Cluster Query

Processor
Catalog

Global Result

Collector

Final Result

Node Query

Processor

Node Query

Processor
…

Global Query Task

Query

Metadata

QEP

QEP
Node Results

Node Results

Work

Finished

Work

Finished

Final Result

* Rectangles represent static code while ellipses represent dynamically created objects

Client Proxy

Query
Query

Final Result

Final Result

Fig. 2. Query processing - global components.

Query processing starts when the Client Proxy receives a query from a client
application. The query is then passed on to the Cluster Query Processor (CQP).
CQP creates a new object, named Global Query Task (GQT), in a separate thread,
to deal with the new query. GQT gets metadata from the Catalog and, with such
information, determines the partitioning attributes. OLAP queries usually have
aggregation and/or duplicate tuple elimination operations. Virtual partitioning
requires extra steps after sub-queries completion in order to produce correct fi-
nal results. In our architecture, the Global Result Collector (GRC) is responsible
for such steps at a global level. GQT creates a new GRC in a separate thread.
Afterwards, GQT sends the QEP to the Node Query Processor (NQP) of each
participating node.
Each NQP locally processes the received QEP. After execution, local results are

sent to the GRC. When an NQP finishes its task, it also sends a message to GQT
in order to indicate that its job is done. When all NQPs have finished their tasks,
GQT waits for the final result, which is sent by GRC. Then, it sends the results
to CQP, which delivers it to the Client Proxy. Finally, the Client Proxy sends the
response to the appropriate client application.
We now describe what happens at each cluster node during query processing.

Figure 3 illustrates the main node components and their interaction. The main
components that run in each cluster node are the Node Query Processor (NQP),
the DBGateway (DBG) and the DBMS instance with the local database. When
NQP receives a QEP, it creates a Local Query Task (LQT) object in a separate
thread. LQT is responsible for one client query execution. Each different QEP
received will generate a different LQT object. The QEP is sent to LQT, which
creates a PartitionTuner object and, in a different thread, a Local Result Collector
(LRC) object. Our goal with LRC creation is to avoid an occasional bottleneck
that could appear in our architecture if all intermediate query results were directly
sent to Global Result Collector. So, LRC performs the same tasks as Global Result
Collector but in a node level. Afterwards, LQT creates a Query Executor (QE),
also in a different execution thread. The QE role is to prepare final SQL queries
that will be submitted by DBGateway to the DBMS. During query processing,
QE communicates with PartitionTuner, which dynamically calculates and adjusts
partition sizes using the adaptive algorithm proposed on section 2. Their interac-

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 9

Node Query

Processor

Local Query

Task

Partition

Tuner
Query Executor

Local Result

Collector

DBGateway

DBMS

Node

ResultsQEP

Work Finished

QEP

Query +

VP limits

Node

Results

Work

Finished

Query

Results

Node

Results

SQL

Query

SQL Query Query Results

Query Results

Partition Size

Query

Execution

Time

* Rectangles represent static code while ellipses represent dynamically created objects

Fig. 3. Query processing - node components.

tion implements AVP. When QE is created, LQT gives it a range of keys to work
with and a parameterized query. Then, each QE starts submitting SQL queries to
DBGateway, each one corresponding to a different virtual partition.
DBGateway (DBG) role is twofold: it provides a pool of DBMS connections

and makes other middleware components DBMS-independent. There is only one
DBG per cluster node and during system initialization each one creates a pool
of connections to the same DBMS. As each QE demands one exclusive connection,
time is saved during query execution. Also, as there are no direct connections among
other modules and DBMSs, just the DBG may need to be DBMS-dependent. After
receiving a query, DBG submits it to the DBMS. The DBMS processes it and
gives the result to DBG, which passes it to the corresponding QE. Then, QE sends
the result to its associated LRC. This process is repeated until there are no more
virtual partitions to be processed. Then, QE sends LQT a message indicating its
work is done. Afterwards, LQT receives the final local result from LRC and sends
it to NQP. NQP takes two actions: sends the result to Global Result Collector and
notifies Global Query Task that its work is finished.
In the next section, we give implementation details of our prototype. We also

describe some experimental results.

4. EXPERIMENTAL VALIDATION

To validate our solution, we implemented a prototype on a cluster system and
ran experiments with the TPC-H benchmark. In this section, we first present our
prototype implementation and the experimental setup. Then we discuss the queries
used in our experiments and the partitioning strategies for these queries. Finally, we
report on speedup experiments for AVP and performance comparisons with SVP.

4.1 Experimental Setup

Our cluster system has 32 nodes, each with 2 Intel Xeon 2.4 GHz processors, 1
GB main memory, and a disk capacity of 20 GB. We use the PostgreSQL 7.3.4
DBMS running on Linux. We used the TPC Benchmark H because it is a decision
support benchmark that “consists of a suite of business oriented ad-hoc queries”
[TPC 2004]. We generated the TPC-H database as specified in [TPC 2004], using
a scale factor of 5 which produced a database of approximately 11 GB. The fact
tables (Orders and Lineitem) have clustered indexes on their primary keys. We
also built indexes for all foreign keys of all fact and dimension tables. After data
generation and indexes creation, database statistics were updated in order to be

Journal of Information and Data Management, Vol. V, No. N, February 2010.

10 ·

used by DBMS query optimizer. As our goal is to deal with ad-hoc queries, no
other optimization was performed. The database is replicated at each cluster node.
Our prototype is implemented in Java. Some components are implemented as

Java RMI objects: Cluster- and NodeQueryProcessor, DBGateway, Global- and
LocalQueryTask, Global- and LocalResultComposer. Our implementation uses
multi-threading. Each instance of Global- and LocalQueryTask, Global- and Local-
ResultComposer and QueryExecutor runs in a different execution thread. Result
composition is done in parallel at each node. Only the final global result com-
position is done by GRC in one of the participating nodes. To maximize system
throughput and avoid bottlenecks, sub-query submission and result composition
are processed by separate threads.

4.2 TPC-H Queries

To help understanding queries, we give a brief description of the TPC-H database
structure. Eight tables are defined: six dimensions (Region, Nation, Supplier, Part,
Customer and Partsupp) and two fact tables (Orders and Lineitem). Region and
Nation are very small dimensions with 5 and 25 tuples respectively. This number
is fixed and independent of the scale factor used for database generation. Let SF
be the scale factor, the cardinalities of the other tables are: |Supplier|=SF*10,000;
|Customer| = SF*150,000; |Part| = SF*200,000; |Partsupp| = SF*800,000; |Orders|
= SF*1,500,000; and |Lineitem| = SF*6,000,000. Lineitem is the largest table,
followed by Orders, with 25% of its size. Lineitem tuples reference Orders tuples
through a foreign key (l orderkey) that is also part of its primary key.
We use TPC-H queries Q1, Q5, Q6, Q14 and Q18, which represent OLAP queries

of different complexities. Q1 accesses only Lineitem table and performs many ag-
gregate operations. Its “where” predicate is not very selective since 98% of tuples
are retrieved. Q5 joins four dimension tables (Region, Nation, Supplier and Cus-
tomer) and the two fact tables. It performs only one aggregate operation. As Q1,
Q6 accesses only Lineitem. The main differences between them are that Q6 has
only one aggregate operation and its “where” predicate is more selective, retrieving
only 1.9% of tuples. Q14 joins Lineitem and Part. Q18 joins one dimension (Cus-
tomer) and the two fact tables. Its main characteristic is that it also contains one
sub-query on Lineitem table. This sub-query performs an aggregation and has no
predicate to restrict Lineitem tuples being processed. Thus, these five queries were
chosen because we believe they are quite representative of OLAP applications.

The virtual partitioning strategy employed is similar to that in [Akal et al. 2002].
For Q1 and Q6, it is based on l orderkey since it is the first primary key attribute of
Lineitem and has few tuples for each value. For Q5 and Q18, we use primary virtual
fragmentation for the Orders table based on primary key o orderkey and derived
virtual fragmentation for the Lineitem table based on foreign key l orderkey. For
Q18, we also add a virtual fragmentation predicate to the sub-query as it does
not affect query results. For Q14 we employ the same strategy as for Q1 and Q6,
leaving the Part table not fragmented.

4.3 Speedup Experiments with AVP

We now describe results of experiments performed to analyze the speedup charac-
teristics of AVP. Queries were executed using different numbers of nodes. Each one

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 11

Table I. AVP Running Parameters
Parameter Value Description

ini part sz 1024 First partition size (in terms of keys) used in algorithm execu-
tion.

num exec tuning 2 Number of queries that must be executed with a given partition
size while PartitionTuner is in “searching” state.

num exec after tuning 1 Number of queries that must be executed with a given partition

size while the PartitionTuner is in “tuned” state.

ini sz growth tx 100% First tax used for partition size increase.

sz decrease tx 5% Tax used for partition size reduction when performance deterio-
ration is detected. It is applied when the PartitionTuner enters
“restarting”’ state.

restarting sz growth tx 20% Partition size increase tax used when the PartitionTuner restarts

increasing partition size after performance deterioration detec-

tion.

tuning exec time inc tol 25% When the partition size is increased by a factor fi and the
PartitionTuner is in “searching” state, an increase of (tun-
ing exec time inc tol% * fi) is tolerated on query execution time.

tuned exec time inc tol 10% Tolerance limit for an increase in query execution time when the
PartitionTuner is on “tuned” state. Superior execution times
will indicate performance deterioration. If it happens for a con-
secutive number of times, it is time for “restarting”.

num bad exec for rest 3 Number of consecutive query executions with time superior to
tuned exec time inc tol tolerated. After this limit, the Parti-
tionTuner goes from “tuned” to “restarting” state.

was run several times. Our graphics show mean query execution times. The AVP
implementation uses some running parameters. Table I gives a brief description of
each one and shows the values we used during our experiments.
Our speedup experiments consist in measuring mean execution time of each query

using AVP varying the number of nodes from 1 to 32. Following algorithm execu-
tion, we notice in all cases that the majority of sub-queries were performed with
partition sizes varying from 1,000 to 10,000 keys, independently of the number of
nodes being used. The largest sizes were not superior to 20,000 despite the inexis-
tence of any predefined superior limit. This result shows that AVP is very effective
in keeping small partition sizes. Analyzing execution plans generated by Post-
greSQL for all queries with partition sizes of 512, 1024, 4096 and 16384 keys, we
see that no full table scans were performed, except for the very small tables Region
and Nation on query Q5. Furthermore, all joins were processed through indexed
nested-loop join algorithm [Graefe 1993], which needs no temporary disk structures.
Merge- and hash-join algorithms, which may need such structures [Graefe 1993],
were not employed in spite of being available. As the amount of data processed by
each sub-query is small, some sort operations could be processed using main mem-
ory structures. This shows AVP efficacy in keeping sub-queries as fast as possible,
avoiding extra disk access.
The results from our experiments are shown in Figure 4. We show normalized

mean query execution times for an increasing number of nodes. Times were nor-
malized by dividing each mean response time by the greatest mean response time
of its associated query. In order to ease reading and analysis, we use logarithmic

Journal of Information and Data Management, Vol. V, No. N, February 2010.

12 ·

Fig. 4. Query execution times with AVP.

scales.
One characteristic of AVP is that partition sizes used by sub-queries are inde-

pendent of interval sizes assigned to nodes at the beginning of the process. Thus,
we expect that large intervals will require more sub-queries than small ones. As
stated before, some query processing operations (parsing and optimization, for ex-
ample) are not impacted by virtual partitioning. So, having many sub-queries is
expected to reduce the overall AVP performance. This explains why all queries
present sub-linear speedup with 2 and 4 nodes (in spite of being very close to linear
speedup).
With 8 processors, queries Q1 and Q6 start having super-linear speedup. This

is due to the reduction in the number of sub-queries and to the fact that they
access only the virtually partitioned table Lineitem. Q18 has execution time only
6.9% higher than the expected time (in absolute terms, 0.98 seconds) because it
accesses a non-partitioned dimension table (Customer). Even then the speedup
is very good because the query time is dominated by sub-query processing, which
accesses a partitioned table (Lineitem). The worst speedups for this configuration
are for queries Q5 and Q14. Both access non-partitioned tables and the large
number of sub-queries hurts AVP performance. For 16 and 32 nodes all queries
have super-linear speedup. As fewer sub-queries are processed by each node in these
configurations, the effect of partition size-independent operations and of accessing
non-partitioned tables is negligible.

4.4 AVP versus SVP

We performed experiments to compare AVP and SVP performances. Figure 5 shows
the mean response time obtained with SVP over the mean response time obtained
with AVP. The number of nodes varies from 1 to 32, plotted in logarithmic scale. To
explain the figure, we analyzed execution plans generated by PostgreSQL for each
query. First, we analyzed execution plans for ordinary sequential execution, i.e.,
executions with one node and no virtual partitioning. Then, we analyzed execution
plans for virtually partitioned queries with different partition sizes. It facilitates

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 13

Fig. 5. SVP versus AVP.

understanding how and when virtual partitioning influences QEP generation.
For the sequential execution of query Q1, PostgreSQL generates a plan that

performs a full table scan on Lineitem. The retrieved tuples are then sorted for
grouping. As Q1 presents a “where” predicate which is not very selective, such
sorting operation is very expensive. Sub-queries generated by SVP in all cases
(from 1 to 32 nodes) have partition sizes that are not small enough to avoid full
table scans. Also, from 1 to 4 nodes the number of tuples retrieved is high, thereby
requiring expensive sorting. From 8 to 32 nodes, sorting is not so expensive. As
AVP sub-queries require neither full table scans nor expensive sorting, Q1 presents
better performance with AVP than with SVP in all configurations. With 32 nodes,
AVP performs 6.36 times better than SVP.
The sequential execution plan for Q5 shows sequential scans for accessing all

tables. This is the same plan generated when SVP is used with only 1 node. With
2 and 4 nodes, the partitioning strategy starts being effective and the fact tables are
accessed through clustered indexes. In fact, we noticed that the predicate added for
derived partitioning (on the Lineitem table) has no practical effect. This is because
Lineitem is joined to Orders through an indexed nested-loop algorithm. All other
tables are fully scanned. This explains why AVP presents better performance than
SVP with 1, 2 and 4 nodes. With 8 nodes, the Supplier table is accessed through an
index and this is the case for almost all tables with 16 and 32 nodes (the exceptions
are the very small dimensions Region and Nation). These executions with no full
scans together with the fact that with SVP only one sub-query is processed by each
node, explain the good performance of SVP relative to AVP. With 32 nodes, SVP
outperforms AVP by a factor of 1.84. But the worst case is with 8 nodes when SVP
outperforms AVP by a factor of 5.41 which is due to the high number of queries
with AVP.
Similar to Q1, Q6 accesses only the Lineitem table. Its sequential execution

plan presents a full table scan. The difference is its “where” predicate which is
more selective. There is no sorting operation (there is no “group by” clause) and
it performs less aggregate functions. For SVP, all QEPs (from 1 to 32 nodes)

Journal of Information and Data Management, Vol. V, No. N, February 2010.

14 ·

perform full table scans. In these cases, the partitioning predicate has no effect
and represents one more predicate to be evaluated by the query processor. With
one node, SVP outperforms AVP. The large number of sub-queries performed by
AVP associated to the reduced number of aggregation functions explains it. In all
other configurations (2 to 32 nodes), AVP outperforms SVP. With 32 nodes, AVP
is 28.72 times faster than SVP.

The sequential QEP for query Q14 also shows full table scan operations for
retrieving tuples from both tables (Lineitem and Part). SVP sub-queries for 1,
2, 4 and 8 nodes are processed in the same way. With 16 and 32 nodes, the Part
table is accessed through an index but the Lineitem table keeps being fully scanned.
The predicate added for partitioning has only a marginal effect on overall query
processing as it allows this indexed access to Part table. Due to the high number
of sub-queries associated to the access to a non-partitioned table, SVP outperforms
AVP with 1 and 2 nodes by a factor of 3.09 and 1.56, respectively. However, from
4 to 32 nodes, AVP outperforms SVP. From Figure 5, we see that this difference
rises very sharply when we go from 8 to 16 nodes. It goes from 2.06 to 11.60. And
it almost doubles when we go from 16 to 32 nodes (22.10). The reason is the use
of a merge-join algorithm, which requires a sort operation on Lineitem tuples. As,
with AVP, the tables are joined through an indexed nested-loop, the performance
differences become very high.

Query Q18 is evaluated in a very inefficient way by PostgreSQL. Looking at the
query statement, we see that its sub-query result is constant and does not depend
on the tuples being processed in the outer query. It could be evaluated once at
the beginning of query processing and joined to outer tuples as they were being
produced. But this is not what happens. In fact, the QEP shows that the sub-
query is re-evaluated for each outer tuple. The outer query has a join among the
Customer, Orders and Lineitem tables and no restrictive predicates. This means
that the sub-query is re-evaluated for each tuple in the Orders fact table. Besides,
all the tables are fully scanned. This explains why this query takes a very long
time to execute. The partitioning strategy includes a predicate on the sub-query.
AVP outperforms SVP for Q18 in all configurations by factors that vary from 4.22
(with 2 nodes) to 36.68 (with 1 node). The curve associated to Q18 shows very
interesting characteristics. First, we can notice a sharp decrease from 1 to 2 nodes.
This is due to the fact that the query generated by SVP for execution with 1 node
performs a full scan on the Orders table while for 2 nodes the clustered index is
used, yielding a reduction of 50% on the number of sub-query executions. So, SVP
shows a good performance improvement. Another interesting characteristic is that
the curve decreases when we go from 16 to 32 nodes. In this case, the factor drops
from 18.89 to 16.85. This is also due to the reduction in the number of Orders tuples
being processed. It is important to say that the derived partitioning of Lineitem is
only effective with 16 and 32 nodes for SVP. With less than 16 nodes, the Lineitem
table is always fully scanned. On the other hand, for SVP, the predicate added to
the sub-query never avoids full table scans. For AVP, no table scans are performed
in any case.

In general, the results obtained for SVP in our experiments were very different
from those shown in [Akal et al. 2002]. In that work, another DBMS was em-

Journal of Information and Data Management, Vol. V, No. N, February 2010.

· 15

ployed. We believe that this explains the differences observed. With PostgreSQL,
SVP showed poor performance in the majority of cases. On the other hand, AVP
performed very well, appearing to be more robust.
We did not experience problems related to load unbalancing among cluster nodes.

This is due to TPC-H value distribution for partitioning attributes. Roughly, all
nodes had to process the same amount of data. It does not affect our results in the
sense that the same data and partitioning criteria were used for SVP experiments.

5. CONCLUSION

In this paper, we proposed an efficient solution, called Adaptive Virtual Partition-
ing (AVP), to OLAP parallel query processing in a database cluster. The idea is
conceptually simple. Assuming full replication of the database among the clus-
ter nodes, queries are rewritten to take advantage from virtual partitions of the
database. AVP is an adaptive algorithm that dynamically adjusts the partition
sizes during query execution. It is completely DBMS-independent and uses neither
database statistics nor query processing time estimates. AVP avoids full table scans
on huge database tables. It is also easy to implement.
To validate our solution, we implemented AVP in a 32-node database cluster

that has a shared-nothing cluster architecture to provide for scale up to large con-
figurations. It supports black-box DBMSs using non intrusive, simple techniques
implemented by Java middleware. Thus, it can support any kind of relational
DBMS. We ran experiments with typical queries of the TPC-H benchmark. The
results show that in many cases AVP yields linear and super-linear speedup. Ex-
periments with 16 and 32 cluster nodes showed super-linear speedup for all tested
queries, in spite of their different characteristics. This is a very desirable behavior
for a technique implemented on top of a highly scalable shared-nothing architecture.

Our experiments also compared AVP and SVP performances. In many cases,
AVP outperforms SVP by factors superior to 10 (28, in the best case). By analyzing
query execution plans generated by PostgreSQL, we noticed that AVP sub-queries
are not influenced by the number of cluster nodes used for query processing. Thus,
it can provide for consistent improvement in query processing in small and large
cluster configurations. On the other hand, execution plans associated to SVP sub-
queries are very different when considering the number of cluster nodes. It happens
because with SVP the amount of data processed by each sub-query is directly
proportional to the number of nodes employed. AVP proved to be very robust
since it is extremely efficient for heavy-weight queries and yields good performance
for light-weight queries with small and large cluster configurations.

6. ACKNOWLEDGEMENTS

Alexandre A. B. Lima would like to thank CAPES and Unigranrio University for
their support while visiting the University of Nantes during his doctoral studies.

REFERENCES

Akal, F., Böhm, K., and Schek, H.-J. Olap query evaluation in a database cluster: A perfor-
mance study on intra-query parallelism. In ADBIS ’02: Proceedings of the 6th East European
Conference on Advances in Databases and Information Systems. Springer-Verlag, London, UK,

pp. 218–231, 2002.

Journal of Information and Data Management, Vol. V, No. N, February 2010.

16 ·

Coulon, C., Pacitti, E., and Valduriez, P. Scaling up the preventive replication of autonomous

databases in cluster systems. In in Cluster Systems, VECPAR, LNCS 3402 - Page. pp. 170–183,
2004.

Gançarski, S., Naacke, H., Pacitti, E., and Valduriez, P. Parallel processing with au-
tonomous databases in a cluster system. In On the Move to Meaningful Internet Systems,
2002 - DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS
and ODBASE 2002. Springer-Verlag, London, UK, pp. 410–428, 2002.

Gorla, N. Features to consider in a data warehousing system. Commun. ACM (11):111–115,
2003.

Graefe, G. Query evaluation techniques for large databases. ACM Comput. Surv.(2):73–169,
1993.

Lima, A. A. B., Mattoso, M., and Valduriez, P. Olap query processing in a database cluster.
In Euro-Par, M. Danelutto, M. Vanneschi, and D. Laforenza, Eds. Lecture Notes in Computer

Science, vol. 3149. Springer, pp. 355–362, 2004.

Özsu, T. M. and Valduriez, P. Principles of Distributed Database Systems (2nd Edition).

Prentice Hall, 1999.

PostgreSQL. http://www.postgres.org, 2004.

Röhm, U., Böhm, K., and Schek, H.-J. Olap query routing and physical design in a database
cluster. In EDBT ’00: Proceedings of the 7th International Conference on Extending Database

Technology. Springer-Verlag, London, UK, pp. 254–268, 2000.

Schek, H.-J., Bohm, K., Grabs, T., Rohm, U., Schuldt, H., and Weber, R. Hyperdatabases.
In Web Information Systems Engineering, 2000. Proceedings of the First International Con-

ference on. Vol. 1. pp. 14–23 vol.1, 2000.

Stöhr, T., Märtens, H., and Rahm, E. Multi-dimensional database allocation for parallel data

warehouses. In VLDB ’00: Proceedings of the 26th International Conference on Very Large
Data Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 273–284, 2000.

TPC. TPC Benchmark H (Decision Support). http://www.tpc.org/tpch, 2004.

Valduriez, P. Parallel database systems: open problems and new issues. Distrib. Parallel

Databases(2):137–165, 1993.

Journal of Information and Data Management, Vol. V, No. N, February 2010.

