Continuous Timestamping for Efficient Replication
Management in DHTs

Reza Akbarinid Mounir Tlili?, Esther Pacitlj Patrick ValdurieZ Alexandre A.
B. Lima®

L2NRIA and LINA, Univ. Nantes, France
3LIRMM and INRIA, Univ. Montpellier, France
4INRIA and LIRMM, Montpellier, France
*COPPE/UFRJ, Rio de Janeiro, Brazil
L¥Firstname.Lastname@inria.fpacitti@lirmm.fr, 3Firstname. Lastname @univ-nantes. fr,
®assis@cos.ufrj.br

Abstract. Distributed Hash Tables (DHTS) provide an effitisolution for
data location and lookup in large-scale P2P systétosvever, it is up to the
applications to deal with the availability of thatd they store in the DHT, e.g.
via replication. To improve data availability, md3HT applications rely on
data replication. However, efficient replication magement is quite
challenging, in particular because of concurrerd amssed updates. In this
paper, we propose an efficient solution to datdigation in DHTs. We propose
a new service, called Continuous Timestamp basedidéph Management
(CTRM), which deals with the efficient storage, rewal and updating of
replicas in DHTs. To perform updates on replicas,propose a new protocol
that stamps update actions with timestamps gemkrata distributed fashion.
Timestamps are not only monotonically increasing &lso continuous, i.e.
without gap. The property of monotonically increasiallows applications to
determine a total order on updates. The other prppee. continuity, enables
applications to deal with missed updates. We etetlLithe performance of our
solution through simulation and experimentation.e Thesults show its
effectiveness for replication management in DHTSs.

1 Introduction

Distributed Hash Tables (DHTs}.,g. CAN [7] and Chord10], provide an efficient
solution for data location and lookup in large-sc&®2P systems. While there are
significant implementation differences between DHifey all map a given kel
onto a peep using a hash function and can lookupfficiently, usually in Olpg n)
routing hops, where is the number of peefg]. One of the main characteristics of
DHTs (and other P2P systems) is the dynamic beha¥ipeers which can join and
leave the system frequently, at any time. Whenex gets offline, its data becomes
unavailable. To improve data availability, most ligggions which are built on top of
DHTs, rely on data replication by storing they data) pairs at several peerag.
using several hash functions. If one peer is uthabig, its data can still be retrieved
from the other peers that hold a replica. Howeupdate management is difficult

because of the dynamic behaviour of peers and cawuupdates. There may be
replica holders (i.e. peers that maintain replicas) that do noeinee the updates, e.g.

because they are absent during the update operatios, we need a mechanism that
efficiently determines whether a replica on a peemup-to-date, despite missed

updates. In addition, to deal with concurrent upgatve need to determine a total
order on the update operations.

In this paper, we give an efficient solution tolregtion management in DHTs. We
propose a new service, called Continuous Timestaased Replication Management
(CTRM), which deals with the efficient storage rietal and updating of replicas in
DHTs. To perform updates on replicas, we proposew protocol that stamps the
updates with timestamps which are generated istalslited fashion using groups of
peers managed dynamically. The updates’ timestaan@snot only monotonically
increasing but also continuous, i.e. without gape Tproperty of monotonically
increasing allows CTRM to determine a total order updates and to deal with
concurrent updates. The continuity of timestampbkss replica holders to detect the
existence of missed updates by looking at the tamegs of the updates they have
received. Examples of applications that can takevamtdge of continuous
timestamping are the P2P collaborative text editipglications, e.g. P2P WiklL1],
which need to reconcile the updates done by calihny users. We evaluated our
CTRM service through experimentation and simulgtidhe results show its
effectiveness. In our experiments, we compared CTWM two baseline services,
and the results show that with a low overhead idatg response time, CTRM
supports fault tolerant data replication using pamus timestamps. The results also
show that data retrieval with CTRM is much moreogéht than the baseline services.
We investigated the effect of peer failures on t¢berectness of CTRM, the results
show that it works correctly even in the preserfgeecer failures.

The rest of this paper is organized as followsSémtion 2, we define the problem
we address in this paper. In Section 3, we prommsereplication management
service, CTRM. Section 4 describes a performaneguation of our solution. Section
5 discusses related work. Section 6 concludes.

2 Problem Definition

In this paper we deal with improving data availipiln DHTSs. Like several other
protocols and applications designed over DHTSs, [@]g.we assume that the lookup
service of the DHT behaves properly. That is, giaekeyk, it either finds correctly
the responsible fdk or reports an errog.g. in the case of network partitioning where
the responsible peer is not reachable.

To improve data availability, we replicate eaaffiject (for instance a file) at a
group of peers of the DHT which will caléplica holders. Each replica holder keeps
a replica copy of a DHT object. Each replica may be updated lgday a replica
holder or remotely by other peers of the DHT. Thizdel is in conformance with the
multi-master replication model [5]. Updates on replicas are asynchronous, i.e., an
update is applied first to a replica and afterwdedter the update’s commitment), to
the other replicas of the same object.

The problem that arises is that a replica holdey fad or leave the system at any
time. Then, when re-joining (or recovering) it maged to retrieve the updates it
missed when gone. Furthermore, updates on diffeegtica copies of an object may
be performed in parallel. To ensure consistencydatgs must be applied to all
replicas in a specific total order.

In this model, to ensure consistency of replicas,nged a distributed mechanism
that determines 1) a total order for the updatgsh@ number of missed updates at a
replica holder. Such a mechanism allows dealingh wvdbncurrent updates, i.e.
committing them in the same order at all replicddars. In addition, it allows a
rejoining (recovering) replica holder to determinbether its local replica is up-to-
date or not, and how many updates should be apgidtie replica if it is not up-to-
date.

One solution for realizing such a mechanism is tamp the updates with
timestamps that are monotonically increasing andtisoous. We call such a
mechanisnmupdate with continuous timestamps.

Let patch be the action (or set of actions) generated bgex puring one update
operation. Then, the property of update with cardums timestamps can be defined as
follows.

Definition 1. Update with continuous timestamps (UCT). A mechanism of
update isUCT iff patches of updates are stamped by increasingnteabers such
that, for any two consecutive committed updateg tlifference between their
timestamps is one.

Formally, consider two consecutive committed upslateandu, on a datal, and
let pch; andpch, be the patches af; and u,, respectively. Assume thap is done
afteru;, and lett; andt, be the timestamps qich, andpch, respectively. Then we
should have, = t; + 1;

To support the UCT property in a DHT, we must dedh two challenges: 1) To
generate continuous timestamps in the DHT in aildiged fashion; 2) To ensure that
any two consecutive generated timestamps are umetivb consecutive updates.
Dealing with the first challenge is hard, in pantar due to the dynamic behavior of
peers which can leave or join the system at ang timd frequently. This behavior
makes inappropriate the timestamping solutionsdasephysical clocks, because the
distributed clock synchronization algorithms do goarantee good synchronization
precision if the nodes are not linked together lengugh6]. Addressing the second
challenge is difficult as well, because there maygknerated timestamps which are
used for no update, e.g. because the timestamgstgupeer may fail before doing
the update.

3 Replication Management

In this section, we propose a replication managénsernvice, called Continuous
Timestamp based Replication Management (CTRM),dkats with efficient storage,
retrieval and updating of replicas on top of DHWeghile supporting the UCT
property. The rest of this section is organizedolisws. We firstly give an overview
of CTRM. Secondly, we introduce the concept of icgpholder groups which is an

efficient approach for replica storage by CTRM.r@hj, we propose a new protocol
used by CTRM for performing updates on replicanaly, we show how CTRM
deals with peer faults that may happen during #eeetion of the protocol.

3.1 Overview

To provide high data availability, CTRM replicateach data in the DHT at a group
of peers, calledeplica holder group, determined by using a hash function. After each
update on a data, the corresponding patch is sghetgroup where a monotonically
increasing timestamp is generated by one of thelbmesni.e. the responsible of the
group. Then the patch and its timestamp are pudalish the members of the group
using an update protocol, called UCT protocol theedetails in Sectio8.3).

To retrieve an up-to-date replica of a data, tlyest is sent to the responsible of
the data’s replica holder group. The responsibler gends the data and the latest
generated timestamp to the group members, one dyaor the first member that has
received all patches returns its replica to thaiester. To verify whether all patches
are received, replica holders check the two follgyconditions, calledip-to-date
conditions: 1) the timestamps of the received patches aréntmus, i.e. there is no
missed update; 2) the latest generated timestanggual to the timestamp of the
latest patch received by the replica holder.

The above up-to-date conditions are also verifiedaglically by each member of
the group. If the conditions do not hold, the memigedates its replica by retrieving
the missed patches and their corresponding timgstdnom the responsible of the
group or other members that hold them.

3.2 ReplicaHolder Groups

Let G¢ be the group of peers that maintain the replidas data whose ID ik We
call these peers theeplica holders for k. For replica holders of each data, we use
peers that are relatively close in the overlay oetw For each group, there is a
responsible peer which is also one of its memid&schoosing the responsible of the
groupGy, we use a hash functidn, and the peep that is responsible for kepk) in
the DHT, is the responsible @,. In this paper, the peer that is responsible for
key=h,(k) is denoted bysp(k , h,), i.e. called responsible df with respect to hash
function h,. In addition torsp(k , h;), some of the peers that are close to i, .e.g. its
neighbors, are members @f. Each member of the group knows the address ef oth
members of the group. The number of members opliceeholders group, i.€1G,[],
is a system’s parameter.

If the peerp that is responsible for a group leaves the systefails, another peer,
sayq, becomes responsible for the group, i.e. the rempansible of the keyHK) in
the DHT. In almost all DHTs (e.g. CAN] and Chord[10]), the new responsible
peer is one of the neighbors of the previous one.

On update requester:

» Send{k, pch} torsp(k, h;)

» Monitor rsp(k, h;) using a failure detector
» Go to Step 8 ifsp(k, h) fails

Onrsp(k, h,): upon receivindk, pch}
» Set ¢ =g+ 1; // increase counter by one
// initially we have &0;
* Letts = g, send{k, pch, ts} to other replica
holders;

» Set atimer on, called ackTimer, to a default

time

On each replica holder: upon receivifg pch,

ts}

* Maintain{k, pch, ts} in a temporary
memory on disk;

» Send ack tosp(k, h,);

On rsp(k, h,): upon expiring ackTimer
* If (number of received acks thresholdd)

then send “commit” message to the replica

holders;
 Else setg=¢ -1, and send “abort”
message to the update requester;

7.

On each replica holder: upon receiving

“commit”

e Maintain{pch, ts} as a committed patch
for k.

» Update the local replica usimpgh;

» Send “terminate” messagersp(k, h;)

Onrgp(k, hy): upon receiving the first
‘terminate’ message
» Send “terminate” to update requester

On update requester: receiving the ‘terminat
from rsp(k, h,)
e Commit the update operation

On update requester: upon detecting a failur

onrsp(k, hy)

» If the ‘terminate’ message is received thg
commit the update operation;

» Else, check replica holders, if at least on
of them received the ‘commit’ message
then commit the update operation;

» Else, abort the update operation;

)

EN

Figure 1. UCT protocol

If a responsible peqrleaves the system normally, i.e. without fail,@nds to the
next responsible peer, i@.the last timestamps of all data replicated ingtwup. Ifp
fails, then the next responsible peer, gagontacts the members of the group (most
of which are its neighbors) and asks them to reth timestamps which they
maintain for the data replicated over them. Thenghch replicated datq,initializes
a timestamp equal to the highest received timesfaomp the group members.

Each group membey periodically sends alive messages to the resplensibthe
group, and the responsible peer returns to it theent list of members. If the
responsible peer does not receive an alive me$sagea member, it assumes that the
member has failed. When a member of a group letheesystem or fails, after getting
aware of this departure, the responsible of theigravites a close peer to join the
group,e.g. one of its neighbors. The new member receives ttmresponsible peer
a list of other members as well as up-to-date capliof all data replicated by the

group.

Each peer can belong to several groups, but itbeamesponsible for only one
group. Each group can hold the replicas of sedat items.

3.3 Updatewith Continuous Timestamps

In this section, we propose a protocol, called UQ@Ipdate with Continuous
Timestamps) that deals with updating replicas ifRGIT

To simplify the description of our update protoosé assume the existence of (not
perfect) failure detectorg3] that can be implemented as follows. When weiset

failure detector on a pe@rto monitor peen, the failure detector periodically sends
ping messages tq in order to test whethey is still alive (and connected). If the
failure detector receives no response frpnthen it considerg as a failed peer, and
triggers an error message to infoprabout this failure.

Let us now describe the UCT protocol. Ipgtbe the peer that wants to update a
data whose ID i&. The peer, is called update requester. Ipeh be the patch of the
update performed byy,. Letp; be the responsible of the replica holder grougkfoe.
p:= rsp(k, h;). The protocol proceeds as follows (see Figure 1):

e Updaterequest. In this phasethe update requestere. po, obtains the address of
the responsible of the replica holder group, p;, by using the DHT's lookup
service, and sends to it an update request congpthie pair(k, pch). Then,p
waits for a commit message frgm It also uses a failure detector and monitors
p:- The wait time is limited by a default valieg. by using a timer. Ip, receives
the terminate message from, then it commits the operation. If the timer
timeouts or the failure detector reports a faulppfthenp, checks whether the
update has been done or niog, by checking the data at replica holders. If the
answer is positive, then the operation is commitésk it is aborted.

e Timestamp generation and replica publication. After receiving the update
requestp; generates a timestamp figre.g. ts, by increasing a local counter that
it keeps fork, sayc.. Then, it sendgk, pch, ts) to the replica holders,e. the
members of its group, and asks them to return &ncadedgement. When a
replica holder receivegk, pch, ts), it returns the acknowledgement pg and
maintains the data in a temporary memory on disle fatch is not considered as
an update before receiving a commit message froif the number of received
acknowledgements is more than or equal to a thlgshothenp; starts the
update confirmation phase. Otherwipe sends an abort message @@ The
threshold § is a system parameter, e.g. it is chosen in suataw that the
probability thatd peers of the group simultaneously fail is almesbz

» Update confirmation. In this phasep, sends the commit message to the replica
holders. When a replica holder receives the commaisage, it labefgch, ts} as
a committed patch fde. Then, it executes the patch on its local repbea] sends
a terminate message fm. After receiving the first terminate message from
replica holdersp; sends a terminate messagepgolf a replica holder does not
receive the commit message for a patch, it discregpatch upon receiving a
new patch containing the same or greater timestatyez.

Notice that the goal of our protocol is not to pdmveager replication, but to have
at leastod replica holders that receive the patch and itsegiamp. If this goal is
attained, the update operation is committed. Otlsenit is aborted, and the update
requester should try its update later.

Let us now consider the case of concurrent updatgsfwo or more peers want to
update a datd at the same time. In this case, the concurrenspand their request
to the responsible of th&#s group, sayp;. The peemp; determines an order for the
requests, e.g. depending on their arrival time rothe distance of requesters if the

requests arrive at the same time. Then it procabseequests one by one according
their order, i.e. it commits or aborts one requastl starts the next one. Thus,
concurrent updates make no problem of inconsistérrcgur replication management

service.

3.4 Fault Tolerance

Let us now study the effect of peer failures onW&ET protocol and discuss how they
are handled. By peer failures, we mean the sitnatishere a peer crashes or gets
disconnected from the network abnormally, e.g. edthinforming the responsible of
the group. We show that these failures do not blmaek update protocol. We also
show that even in the presence of these failuhesptotocol guarantees continuous
timestampingj.e. when an update is committed, the timestamp opdich is only
one unit greater than that of the previous one.this; it is sufficient to show that
each generated timestamp is attached with a coetngatch, or it is aborted. By
aborting a timestamp, we mean returning the colsnteue to its value before the
update operation.

During our update protocol, a failure may happerth@nresponsible of the group
or on a replica holder. We first study the caséhefresponsible of the group. In this
case, the failure may happen in one of the follgwtime intervals:

» |4 after receiving the update request and before generating the timestamp.
If the responsible of the group fails in this im&ly then after some time, the
failure detector detects the failure or the timerebuts. Afterwards, the update
requester checks the update at replica holderssiand it has not been done, the
operation is aborted. Therefore, a failure in thiterval does not block the
protocol, and continuous timestamping is assurexl,because no update is
performed.

* |, after 1, and before sending the patch to replica holders. In this interval,
like in the previous one, the failure detector dtgethe failure or the timer
timeouts, and thus the operation is aborted. Trhegiamps, which is generated
by the failed responsible peer, is aborted asvi@ldNhen the responsible peer
fails, its counters get invalid, and the next resdole peer initializes its counter
using the greatest timestamp of the committed sttt replica holders. Thus,
the counter returns to its value before the updperation. Therefore, in the case
of crash in this interval, continuous timestampimgssured.

* |3 after 1, and before sending the commit message to replica holders. If the
responsible peer fails in this interval, since téplica holders have not received
the commit, they do not consider their receivecadat a valid replica. Thus,
when the update requester checks the update, ttssyea that the update has not
been done and the operation gets aborted. Theydforhis case, continuous
timestamping is not violated.

|4 after I3 and before sending the terminate message to the update
requester. In this case, after detecting the failure or tiote¢he update requester
checks the status of the update in the DHT andsfind that the update has been
done, thus it commits the operation. In this cdbke, update is done with a
timestamp which is one unit greater than that ef phevious update, thus the
property of continuous timestamping is enforced.

4 Experimental Validation

In this section, we evaluate the performance of MTtRrough experimentation over
a 64-node cluster and simulation. The experimemativer the cluster was useful to
validate our algorithm and calibrate our simulafine simulation allows us to study
scale up to high numbers of peers (up to 10,006sphee

4.1 Experimental and Simulation Setup

Our experimentation is based on an implementatfotive Chord[10] protocol. We
tested our algorithms over a cluster of 64 nodesieoted by a 1-Gbps network. Each
node has two Intel Xeon 2.4 GHz processors, ansl thaLinux operating system. To
study the scalability of CTRM far beyond 64 peevs,also implemented a simulator
using SimJava. After calibration of the simulatere obtained simulation results
similar to the implementation results up to 64 peer

Our default settings for different experimental graeters are as follows. The
latency between any two peers is a random numbgr mdgrmal distribution and a
mean of 100 ms. The bandwidth between peers issataodom number with normal
distribution and a mean of 56 Kbps (as[1}). The simulator allows us to perform
tests with up to 10,000 peers, after which simalatiata no longer fit in RAM and
makes our tests difficult. Therefore, the defaultnber of peers is set to 10,000.

In our experiments, we consider a dynamic P2P syste. there are peers that
leave or join the system. Peer departures are thyedrandom Poisson process (as in
[8]). The average ratége. A, for events of the Poisson process#d/second. At each
event, we select a peer to depart uniformly at eandEach time a peer goes away,
another joins, thus keeping the total number ofpeenstant (as if8]).

We also consider peer failures. Ll rate be a parameter that denotes the
percentage of peers that leave the system dudaih &/hen a peer departure event
occurs, our simulator should decide on the typthisfdeparture, i.e. normal leave or
fail. For this, it generates a random number wingctiniformly distributed in [0..100];
if the number is greater thaail rate then the peer departure is considered as a normal
leave, else as a fail. In our tests, the defadtingefor fail rate is 5% (as if1]). In
our tests, unless otherwise specified, the numbeapdicas of each data is 10.

Although they cannot provide the same functionaditsy CTRM, the closest prior
works to CTRM are the BRICKS projef4], denoted as BRK, and the Update
Management Service (UMS) [1]. The assumptions nidiese two works are close
to ours, e.g. they do not assume the existenceowegul servers. BRK stores the

data in the DHT using multiple keys, which are etated to the data key. To be able
to retrieve an up-to-date replica, BRK uses veismgni.e. each replica has a version
number which is increased after each update. UMSokan proposed to support data
currency in DHTSs, i.e. the ability to return an tgpelate replica. It uses a set rof
hash functions and replicates the data randomim different peers. UMS works
based on timestamping, but the generated timestarepsot necessarily continuous.

4.2 Update Cost

Let us first investigate the performance of CTRMxlate protocol. We measure the
performance of data update in terms of response #nd communication cost. By
update response time, we mean the time neededntb tbe patch of an update
operation to the peers that maintain the repliBysupdate communication cost, we
mean the number of messages needed to update. a data

Using our simulator, we ran experiments to study lite response time increases
with the addition of peers. Using the simulatogute 2 depicts the total number of
messages while increasing the number of peers ud0t600, with the other
simulation parameters set as defaults describeéfeation4.1. In all three services,
the communication cost increases logarithmicallhwhe number of peers. However,
the communication cost of CTRM is much better thizat of UMS and BRK. The
reason is that UMS and BRK perform multiple lookupshe DHT, but CTRM does
only one lookup, i.e. only for finding the respdisi of the group. Notice that each
lookup need©(log n) messages whereis the number of peers of the DHT.

Figure 3 shows the update response time with thigian of peers up to 10,000,
with the other parameters set as described in@etti. The response time of CTRM
is a little bit higher than that of UMS and BRK. & heason is that for guaranteeing
continuous timestamping, the update protocol of ®ITRerforms two round-tips
between the responsible of the group and the atleenbers of the group. But, UMS
and BRK only send the update actions to the reiatders by looking up the replica
holders in parallel (note that the impact of paldibokups on response time is very
slight, but they have a high impact on communicatost). However, the difference
in the response time of CTRM and that of UMS andB&small because the round-
trips in the group are less time consuming tharkdps. This slight increase in
response time of CTRM’s update operation is theepttio pay for guaranteeing
continuous timestamping.

4.3 DataRetrieval Response Time

We now investigate the data retrieval response wh&€TRM. By data retrieval
response time, we mean the time to return an wate+eplica to the user.

Figure 4 shows the response time of CTRM, UMS aRdKBvith the addition of
peers up to 10000, with the other parameters sdefasilts described in Sectidnl.
The response time of CTRM is much better than tfatJMS and BRK. This
difference in response time can be explained dswsl Both CTRM and UMS
services contact some replica holders,rsay order to find an up-to-date replica, e.g.

Update Communication Cost |—*—CTRM| |Update Response Time| —e— CTRM Data Retrieval Response Time | B CTRM
.

—=—UMS uMs B UMS
250 BRK 5 BRK
B Py
8 200 " < 4 2
3 150 _/.__:-—4/ E . e E
= =
: W 8
100 2
] 15
o 50| e—e—— " 14
3 8
E ob0—r———— o
z 1000 2000 4000 6000 8000 10000 1000 2000 4000 6000 8000 10000
Number of peers Number of peers Number of peers

Figure 2. Communication Figure 3. Response time of Figure 4. Response time of
cost of updates vs. number ofupdate operation vs. number oflata retrievals vs. number of

peers peers peers
Effect of number of replicas | —#—CTRM Timestamp Continuity | —¢— CTRM Consistency —e— CTRM
on dataretrieval responsetimg +g":\eﬂKS —=—UMS BRK
100 + -—og:.:m:’j:: g 100 +—o o N
Y- - — - - -
B /- ————— - — g 8ot - 14 e e —
|~ N — I Y v g e
IR S —— - g‘ 40 1
§ Rf-——--—-—-—--——---—- § o 20
ﬁ' 8 r4=—=—m=——a==-n——8— 20 4 g
@ 4+ ———Q—— === — — * o
0 E o o 2 4 6 8
5 10 15 2 % E 0 5 101520253035 4p Number of cuncur rent updates|
Number of replicas of each data Fail rate (%)
Figure 5. Effect of the Figure6. Timestamp continuity Figure 7. Consistency of
number of replicas on vs. fail rate returned results vs. number of
response time of data concurrent updates
retrievals

r=6. For contacting these replica holders, CTRM penfoionly one lookup (to find
the responsible of the group) and some low-costnaonications in the group. But,
UMS performs exactly lookups in the DHT. BRK retrieves all replicasdzta from
the DHT (to determine the latest version), andefach replica it performs one lookup.
Thus the number of lookups done by BRK is equath® total nhumber of data
replicas, i.e. 10 in our experiments.

Let us now study the effect of the number of regdiof each data, say, on
performance of data retrieval. Figure 5 shows #eponse time of data retrieval for
the three solutions with varying the number of iegd up to 30. The number of
replicas has almost a linear impact on the resptimse of BRK, because to retrieve
an up-to-date replica it has to retrieve all regdidoy doing one lookup for each
replica. But, it has a slight impact on CTRM, besmfor finding an up-to-date replica
CTRM performs only one lookup, and some low cognemnications, i.e. in the

group.

4.4 Effect of Peer Failureson Timestamps Continuity

Let us now study the effect of peer failures oncbatinuity of timestamps used for
data updates. This study is done only for CTRM &HdS that work based on
timestamping. In our experiments we meagimestamp continuity rate by which we
mean the percentage of the updates whose timestamapmly one unit higher than
that of their precedent update. We varied the rii¢ parameter, and observed its
effect on timestamp continuity rate.

Figure 6 shows timestamp continuity rate for CTRM aJMS while increasing
the fail rate, with the other parameters set asrieesi in Sectiod.1. The peer
failures do not have any negative impact on thdicaoity of timestamps generated by
CTRM, because our protocol assures timestamp aotitin However, when

increasing the fail rate in UMS, the percentagemdates whose timestamps are not
continuous increases.

45 Effect of Concurrent Updates on Result Consistency

In this section, we investigate the effect of canent updates on the consistency of
the results returned by CTRM. In our experimentg performu updates done
concurrently byu different peers using the CTRM service, and afiteishing the
concurrent updates, we invoke the service's ddteval operation frorm randomly
chosen peerm€50 in our experiments). If there is any differefmween the data
returned to then peers, we consider the result as inconsistent. ré¢eat each
experiment several times, and report the percentdgbe experiments where the
results are consistent. We perform the same expetsrusing the BRK service.

Figure 7 shows the results with the number of coneett updates, i.ai, increasing
up to 8, and with the other parameters set as liefdascribed in SectioA.1. As
shown, in 100% of experiments the results retudm@dCTRM are consistent. This
shows that our update protocol works correctly ewethe presence of concurrent
updates. However, the BRK service cannot guarahteeonsistency of results in the
case of concurrent updates, because two diffeqgadtes may have the same version
at different replica holders.

5 Redated Work

Most existing P2P systems support data replicabahusually they do not deal with
concurrent and missed updates.

OceanStore[9] is a data management system designed to prosidaighly
available storage utility on top of P2P systemsallbws concurrent updates on
replicated data, and relies on reconciliation teues data consistency. The
reconciliation is done by a set of powerful servesgg a consensus algorithm. The
servers agree on which operations to apply, anavhat order. However, in the
applications, which we address, the presence oépalhservers is not guaranteed.

The BRICKS project[4] provides high data availability in DHTs through
replication. For replicating a data, BRICKS stottes data in the DHT using multiple
keys, which are correlated to the data key, k.ghere is a function that given
determines its correlated keys. To be able toewtrian up-to-date replica, BRICKS
uses versioning. Each replica has a version numiich is increased after each
update. However, because of concurrent updatesayt happen that two different
replicas have the same version number, thus makimgpossible to decide which
one is the latest replica.

In [1], an update management service, called UMS, jwvaposed to support data
currency in DHTSsj.e. the ability to return an up-to-date replica. HoeewWMS does
not guarantee continuous timestamping which is & meguirement for collaborative
applications which need to reconcile replica upslatéMS uses a set ah hash
functions and replicates randomly the datamatifferent peers, and this is more

expensive than the groups which we use in CTRM(tiquéarly in terms of
communication cost. A prototype based on UMS wasatestrated if12].

6

Conclusion

In this paper, we addressed the problem of efftgieplication management in DHTSs.
We proposed a new service, called continuous tangst based replication
management (CTRM), which deals with efficient aadlf tolerant data replication,
retrieval and update in DHTS, by taking advantageeplica holder groups and
monotonically increasing and continuous timestamps.

References

(1]
(2]

(3]

[4]

[5]
(6]

[7]
(8]
[9]

[10]

[11]
[12]

Akbarinia, R., Pacitti, E., Valduriez, P.: Data €amcy in Replicated DHTSs.
S GMOD Conf., 211-222(2007)

Chawathe, Y., Ramabhadran, S., Ratnasamy, S., lad&., Shenker, S.,
Hellerstein, J.M.: A case study in building layer&HT applications.
S GCOMM Conf., 97-108 (2005)

Dabek, F., Kaashoek, M.F., Karger, D., Morris, Btpica, |.: Wide-Area
Cooperative Storage with CFACM Symp. on Operating Systems Principles,
202-215 2001)

Knezevic, P., Wombacher, A., Risse, T.: EnablingtHData Availability in a
DHT. Proc. of Int. Workshop on Grid and P2P Computing Impacts on Large
Scale Heterogeneous Distributed Database Systems, 363-367 2005)

Ozsu, T., Valduriez, P.Principles of Distributed Database Systems. 2nd
Edition, Prentice Hall, 1999.

PalChaudhuri, S., Saha, A.K., Johnson, D.B.: AdapGlock Synchronization
in Sensor Networkdnt. Symp. on Information Processing in Sensor Networks,
340-348 R004)

Ratnasamy, S., Francis, P., Handley, M., Karp,SRhenker, S.: A scalable
content-addressable netwoBGCOMM Conf., 161-172 2001)

Rhea, S.C., Geels, D., Roscoe, T., Kubiatowiczddndling churn in a DHT.
USENIX Annual Technical Conf., 127-140 2004)

Rhea, S.C., Eaton, P., Geels, D., Weatherspoorzhdg, B., Kubiatowicz, J.:
Pond: the OceanStore PrototypeUSENIX Conf. on File and Sorage
Technologies, 1-14 (2003)

Stoica, I., Morris, R., Karger, D.R., Kaashoek, MBalakrishnan, H.: Chord:
a scalable peer-to-peer lookup service for inteamgtlications.SGCOMM
Conf., 149-160 2001)

Xwiki Concerto Project: http://concerto.xwiki.com

Tlili, M., Dedzoe, W.K., Pacitti, E., Valduriez, PAkbarinia, R., Molli, P.,
Canals, G., Lauriere, S.: P2P logging and timesbtagnjor reconciliation.
PVLDB 1(2): 1420-1423 (2008)

