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Abstract. Distributed Hash Tables (DHTs) provide an efficient solution for 
data location and lookup in large-scale P2P systems. However, it is up to the 
applications to deal with the availability of the data they store in the DHT, e.g. 
via replication. To improve data availability, most DHT applications rely on 
data replication. However, efficient replication management is quite 
challenging, in particular because of concurrent and missed updates. In this 
paper, we propose an efficient solution to data replication in DHTs. We propose 
a new service, called Continuous Timestamp based Replication Management 
(CTRM), which deals with the efficient storage, retrieval and updating of 
replicas in DHTs. To perform updates on replicas, we propose a new protocol 
that stamps update actions with timestamps generated in a distributed fashion. 
Timestamps are not only monotonically increasing but also continuous, i.e. 
without gap. The property of monotonically increasing allows applications to 
determine a total order on updates. The other property, i.e. continuity, enables 
applications to deal with missed updates. We evaluated the performance of our 
solution through simulation and experimentation. The results show its 
effectiveness for replication management in DHTs. 

1 Introduction 

Distributed Hash Tables (DHTs), e.g. CAN  [7] and Chord  [10], provide an efficient 
solution for data location and lookup in large-scale P2P systems. While there are 
significant implementation differences between DHTs, they all map a given key k 
onto a peer p using a hash function and can lookup p efficiently, usually in O(log n) 
routing hops, where n is the number of peers  [2]. One of the main characteristics of 
DHTs (and other P2P systems) is the dynamic behavior of peers which can join and 
leave the system frequently, at any time. When a peer gets offline, its data becomes 
unavailable. To improve data availability, most applications which are built on top of 
DHTs, rely on data replication by storing the (key, data) pairs at several peers, e.g. 
using several hash functions. If one peer is unavailable, its data can still be retrieved 
from the other peers that hold a replica. However, update management is difficult 



because of the dynamic behaviour of peers and concurrent updates. There may be 
replica holders (i.e. peers that maintain replicas) that do not receive the updates, e.g. 
because they are absent during the update operation. Thus, we need a mechanism that 
efficiently determines whether a replica on a peer is up-to-date, despite missed 
updates. In addition, to deal with concurrent updates, we need to determine a total 
order on the update operations.  

In this paper, we give an efficient solution to replication management in DHTs. We 
propose a new service, called Continuous Timestamp based Replication Management 
(CTRM), which deals with the efficient storage, retrieval and updating of replicas in 
DHTs. To perform updates on replicas, we propose a new protocol that stamps the 
updates with timestamps which are generated in a distributed fashion using groups of 
peers managed dynamically. The updates’ timestamps are not only monotonically 
increasing but also continuous, i.e. without gap. The property of monotonically 
increasing allows CTRM to determine a total order on updates and to deal with 
concurrent updates. The continuity of timestamps enables replica holders to detect the 
existence of missed updates by looking at the timestamps of the updates they have 
received. Examples of applications that can take advantage of continuous 
timestamping are the P2P collaborative text editing applications, e.g. P2P Wiki  [11], 
which need to reconcile the updates done by collaborating users. We evaluated our 
CTRM service through experimentation and simulation; the results show its 
effectiveness. In our experiments, we compared CTRM with two baseline services, 
and the results show that with a low overhead in update response time, CTRM 
supports fault tolerant data replication using continuous timestamps. The results also 
show that data retrieval with CTRM is much more efficient than the baseline services. 
We investigated the effect of peer failures on the correctness of CTRM, the results 
show that it works correctly even in the presence of peer failures. 

The rest of this paper is organized as follows. In Section 2, we define the problem 
we address in this paper. In Section 3, we propose our replication management 
service, CTRM. Section 4 describes a performance evaluation of our solution. Section 
5 discusses related work. Section 6 concludes. 

2 Problem Definition 

In this paper we deal with improving data availability in DHTs. Like several other 
protocols and applications designed over DHTs, e.g.  [2], we assume that the lookup 
service of the DHT behaves properly. That is, given a key k, it either finds correctly 
the responsible for k or reports an error, e.g. in the case of network partitioning where 
the responsible peer is not reachable. 

To improve data availability, we replicate each object (for instance a file) at a 
group of peers of the DHT which will call replica holders. Each replica holder keeps 
a replica copy of a DHT object. Each replica may be updated locally by a replica 
holder or remotely by other peers of the DHT.  This model is in conformance with the 
multi-master replication model  [5]. Updates on replicas are asynchronous, i.e., an 
update is applied first to a replica and afterwards (after the update’s commitment), to 
the other replicas of the same object.  



       

 

The problem that arises is that a replica holder may fail or leave the system at any 
time. Then, when re-joining (or recovering) it may need to retrieve the updates it 
missed when gone. Furthermore, updates on different replica copies of an object may 
be performed in parallel. To ensure consistency, updates must be applied to all 
replicas in a specific total order.  

In this model, to ensure consistency of replicas, we need a distributed mechanism 
that determines 1) a total order for the updates; 2) the number of missed updates at a 
replica holder. Such a mechanism allows dealing with concurrent updates, i.e. 
committing them in the same order at all replica holders. In addition, it allows a 
rejoining (recovering) replica holder to determine whether its local replica is up-to-
date or not, and how many updates should be applied on the replica if it is not up-to-
date. 

One solution for realizing such a mechanism is to stamp the updates with 
timestamps that are monotonically increasing and continuous. We call such a 
mechanism update with continuous timestamps. 

Let patch be the action (or set of actions) generated by a peer during one update 
operation. Then, the property of update with continuous timestamps can be defined as 
follows.  

Definition 1: Update with continuous timestamps (UCT). A mechanism of 
update is UCT iff patches of updates are stamped by increasing real numbers such 
that, for any two consecutive committed updates, the difference between their 
timestamps is one.  

Formally, consider two consecutive committed updates u1 and u2 on a data d, and 
let pch1 and pch2 be the patches of u1 and u2, respectively. Assume that u2 is done 
after u1, and let t1 and t2 be the timestamps of pch1 and pch2 respectively. Then we 
should have t2 = t1 + 1; 

To support the UCT property in a DHT, we must deal with two challenges: 1) To 
generate continuous timestamps in the DHT in a distributed fashion; 2) To ensure that 
any two consecutive generated timestamps are used for two consecutive updates. 
Dealing with the first challenge is hard, in particular due to the dynamic behavior of 
peers which can leave or join the system at any time and frequently. This behavior 
makes inappropriate the timestamping solutions based on physical clocks, because the 
distributed clock synchronization algorithms do not guarantee good synchronization 
precision if the nodes are not linked together long enough  [6]. Addressing the second 
challenge is difficult as well, because there may be generated timestamps which are 
used for no update, e.g. because the timestamp requester peer may fail before doing 
the update.  

3 Replication Management 

In this section, we propose a replication management service, called Continuous 
Timestamp based Replication Management (CTRM), that deals with efficient storage, 
retrieval and updating of replicas on top of DHTs, while supporting the UCT 
property. The rest of this section is organized as follows. We firstly give an overview 
of CTRM. Secondly, we introduce the concept of replica holder groups which is an 



efficient approach for replica storage by CTRM. Thirdly, we propose a new protocol 
used by CTRM for performing updates on replicas. Finally, we show how CTRM 
deals with peer faults that may happen during the execution of the protocol. 

3.1 Overview 

To provide high data availability, CTRM replicates each data in the DHT at a group 
of peers, called replica holder group, determined by using a hash function. After each 
update on a data, the corresponding patch is sent to the group where a monotonically 
increasing timestamp is generated by one of the members, i.e. the responsible of the 
group. Then the patch and its timestamp are published to the members of the group 
using an update protocol, called UCT protocol (see the details in Section  3.3).  

To retrieve an up-to-date replica of a data, the request is sent to the responsible of 
the data’s replica holder group. The responsible peer sends the data and the latest 
generated timestamp to the group members, one by one, and the first member that has 
received all patches returns its replica to the requester. To verify whether all patches 
are received, replica holders check the two following conditions, called up-to-date 
conditions: 1) the timestamps of the received patches are continuous, i.e. there is no 
missed update; 2) the latest generated timestamp is equal to the timestamp of the 
latest patch received by the replica holder. 

The above up-to-date conditions are also verified periodically by each member of 
the group. If the conditions do not hold, the member updates its replica by retrieving 
the missed patches and their corresponding timestamps from the responsible of the 
group or other members that hold them. 

3.2 Replica Holder Groups 

Let Gk be the group of peers that maintain the replicas of a data whose ID is k. We 
call these peers the replica holders for k. For replica holders of each data, we use 
peers that are relatively close in the overlay network. For each group, there is a 
responsible peer which is also one of its members. For choosing the responsible of the 
group Gk, we use a hash function hr, and the peer p that is responsible for key=hr(k) in 
the DHT, is the responsible of Gk. In this paper, the peer that is responsible for 
key=hr(k) is denoted by rsp(k , hr), i.e. called responsible of k with respect to hash 
function hr. In addition to rsp(k , hr), some of the peers that are close to it, .e.g. its 
neighbors, are members of Gk. Each member of the group knows the address of other 
members of the group. The number of members of a replica holders group, i.e. Gk, 
is a system’s parameter. 

If the peer p that is responsible for a group leaves the system or fails, another peer, 
say q, becomes responsible for the group, i.e. the new responsible of the key=hr(k) in 
the DHT. In almost all DHTs (e.g. CAN  [7] and Chord  [10]), the new responsible 
peer is one of the neighbors of the previous one. 



       

 

 If a responsible peer p leaves the system normally, i.e. without fail, it sends to the 
next responsible peer, i.e. q, the last timestamps of all data replicated in the group. If p 
fails, then the next responsible peer, say q, contacts the members of the group (most 
of which are its neighbors) and asks them to return the timestamps which they 
maintain for the data replicated over them. Then, for each replicated data, q initializes 
a timestamp equal to the highest received timestamp from the group members. 

Each group member p periodically sends alive messages to the responsible of the 
group, and the responsible peer returns to it the current list of members. If the 
responsible peer does not receive an alive message from a member, it assumes that the 
member has failed. When a member of a group leaves the system or fails, after getting 
aware of this departure, the responsible of the group invites a close peer to join the 
group, e.g. one of its neighbors. The new member receives from the responsible peer 
a list of other members as well as up-to-date replicas of all data replicated by the 
group. 

Each peer can belong to several groups, but it can be responsible for only one 
group. Each group can hold the replicas of several data items. 

3.3 Update with Continuous Timestamps 

In this section, we propose a protocol, called UCT (Update with Continuous 
Timestamps) that deals with updating replicas in CTRM. 

To simplify the description of our update protocol, we assume the existence of (not 
perfect) failure detectors  [3] that can be implemented as follows. When we setup a 

1. On update requester:  
• Send {k, pch} to rsp(k, hr) 
• Monitor rsp(k, hr) using a failure detector  
• Go to Step 8 if rsp(k, hr) fails 

 
2. On rsp(k, hr): upon receiving {k, pch}  

• Set ck = ck + 1; // increase counter by one 
         // initially we have  ck=0; 

• Let ts = ck, send {k, pch, ts} to other replica 
holders; 

• Set a timer on, called ackTimer, to a default 
time 

 
3. On each replica holder: upon receiving {k, pch, 

ts} 
• Maintain {k, pch, ts} in a temporary 

memory  on disk; 
• Send ack to rsp(k, hr); 

 
4. On  rsp(k, hr): upon expiring ackTimer  

• If (number of received acks ≥  threshold δ) 
then send “commit” message to the replica 
holders;  

• Else set ck = ck - 1, and send “abort” 
message to the update requester; 

 

5. On each replica holder: upon receiving 
“commit” 
• Maintain {pch, ts} as a committed patch 

for k.  
• Update the local replica using pch;  
• Send “terminate” message to rsp(k, hr)  

 
6. On rsp(k, hr): upon receiving the first 

‘terminate’ message 
• Send “terminate” to update requester 

 
7. On update requester: receiving the ‘terminate’ 

from  rsp(k, hr) 
• Commit the update operation 

 
8. On update requester: upon detecting a failure 

on rsp(k, hr) 
• If the ‘terminate’ message is received then 

commit the update operation;  
• Else, check replica holders, if at least one 

of them received the ‘commit’ message 
then commit the update operation; 

• Else, abort the update operation; 

Figure 1. UCT protocol 



failure detector on a peer p to monitor peer q, the failure detector periodically sends 
ping messages to q in order to test whether q is still alive (and connected). If the 
failure detector receives no response from q, then it considers q as a failed peer, and 
triggers an error message to inform p about this failure. 

Let us now describe the UCT protocol. Let p0 be the peer that wants to update a 
data whose ID is k. The peer p0 is called update requester. Let pch be the patch of the 
update performed by p0. Let p1 be the responsible of the replica holder group for k, i.e. 
p1= rsp(k, hr). The protocol proceeds as follows (see Figure 1): 

 
• Update request. In this phase, the update requester, i.e. p0, obtains the address of 

the responsible of the replica holder group, i.e. p1, by using the DHT's lookup 
service, and sends to it an update request containing the pair (k, pch). Then, p0 
waits for a commit message from p1. It also uses a failure detector and monitors 
p1. The wait time is limited by a default value, e.g. by using a timer. If p0 receives 
the terminate message from p1, then it commits the operation. If the timer 
timeouts or the failure detector reports a fault of p1, then p0 checks whether the 
update has been done or not, i.e. by checking the data at replica holders. If the 
answer is positive, then the operation is committed, else it is aborted. 

 
• Timestamp generation and replica publication. After receiving the update 

request, p1 generates a timestamp for k, e.g. ts, by increasing a local counter that 
it keeps for k, say ck. Then, it sends (k, pch, ts) to the replica holders, i.e. the 
members of its group, and asks them to return an acknowledgement. When a 
replica holder receives (k, pch, ts), it returns the acknowledgement to p1 and 

maintains the data in a temporary memory on disk. The patch is not considered as 
an update before receiving a commit message from p1. If the number of received 
acknowledgements is more than or equal to a threshold δ, then p1 starts the 
update confirmation phase. Otherwise p1 sends an abort message to p0. The 
threshold δ is a system parameter, e.g. it is chosen in such a way that the 
probability that δ peers of the group simultaneously fail is almost zero.  

 
• Update confirmation. In this phase, p1 sends the commit message to the replica 

holders. When a replica holder receives the commit message, it labels {pch, ts} as 
a committed patch for k. Then, it executes the patch on its local replica, and sends 
a terminate message to p1. After receiving the first terminate message from 
replica holders, p1 sends a terminate message to p0. If a replica holder does not 
receive the commit message for a patch, it discards the patch upon receiving a 
new patch containing the same or greater timestamp value. 

 
Notice that the goal of our protocol is not to provide eager replication, but to have 

at least δ replica holders that receive the patch and its timestamp. If this goal is 
attained, the update operation is committed. Otherwise it is aborted, and the update 
requester should try its update later. 

Let us now consider the case of concurrent updates, e.g. two or more peers want to 
update a data d at the same time. In this case, the concurrent peers send their request 
to the responsible of the d’s group, say p1. The peer p1 determines an order for the 
requests, e.g. depending on their arrival time or on the distance of requesters if the 



       

 

requests arrive at the same time. Then it processes the requests one by one according 
their order, i.e. it commits or aborts one request and starts the next one. Thus, 
concurrent updates make no problem of inconsistency for our replication management 
service. 

3.4 Fault Tolerance 

Let us now study the effect of peer failures on the UCT protocol and discuss how they 
are handled. By peer failures, we mean the situations where a peer crashes or gets 
disconnected from the network abnormally, e.g. without informing the responsible of 
the group. We show that these failures do not block our update protocol. We also 
show that even in the presence of these failures, the protocol guarantees continuous 
timestamping, i.e. when an update is committed, the timestamp of its patch is only 
one unit greater than that of the previous one. For this, it is sufficient to show that 
each generated timestamp is attached with a committed patch, or it is aborted. By 
aborting a timestamp, we mean returning the counter's value to its value before the 
update operation. 

During our update protocol, a failure may happen on the responsible of the group 
or on a replica holder. We first study the case of the responsible of the group.  In this 
case, the failure may happen in one of the following time intervals: 

 
• I1: after receiving the update request and before generating the timestamp. 

If the responsible of the group fails in this interval, then after some time, the 
failure detector detects the failure or the timer timeouts. Afterwards, the update 
requester checks the update at replica holders, and since it has not been done, the 
operation is aborted. Therefore, a failure in this interval does not block the 
protocol, and continuous timestamping is assured, i.e. because no update is 
performed. 

 
• I2: after I1 and before sending the patch to replica holders. In this interval, 

like in the previous one, the failure detector detects the failure or the timer 
timeouts, and thus the operation is aborted. The timestamp ts, which is generated 
by the failed responsible peer, is aborted as follows. When the responsible peer 
fails, its counters get invalid, and the next responsible peer initializes its counter 
using the greatest timestamp of the committed patches at replica holders. Thus, 
the counter returns to its value before the update operation. Therefore, in the case 
of crash in this interval, continuous timestamping is assured. 

 
• I3: after I2 and before sending the commit message to replica holders. If the 

responsible peer fails in this interval, since the replica holders have not received 
the commit, they do not consider their received data as a valid replica. Thus, 
when the update requester checks the update, they answer that the update has not 
been done and the operation gets aborted. Therefore, in this case, continuous 
timestamping is not violated. 

 



• I4: after I3 and before sending the terminate message to the update 
requester. In this case, after detecting the failure or timeout, the update requester 
checks the status of the update in the DHT and finds out that the update has been 
done, thus it commits the operation. In this case, the update is done with a 
timestamp which is one unit greater than that of the previous update, thus the 
property of continuous timestamping is enforced. 

4 Experimental Validation 

In this section, we evaluate the performance of CTRM through experimentation over 
a 64-node cluster and simulation. The experimentation over the cluster was useful to 
validate our algorithm and calibrate our simulator. The simulation allows us to study 
scale up to high numbers of peers (up to 10,000 peers).  

4.1 Experimental and Simulation Setup 

Our experimentation is based on an implementation of the Chord  [10] protocol. We 
tested our algorithms over a cluster of 64 nodes connected by a 1-Gbps network. Each 
node has two Intel Xeon 2.4 GHz processors, and runs the Linux operating system. To 
study the scalability of CTRM far beyond 64 peers, we also implemented a simulator 
using SimJava. After calibration of the simulator, we obtained simulation results 
similar to the implementation results up to 64 peers.  

Our default settings for different experimental parameters are as follows. The 
latency between any two peers is a random number with normal distribution and a 
mean of 100 ms. The bandwidth between peers is also a random number with normal 
distribution and a mean of 56 Kbps (as in  [1]). The simulator allows us to perform 
tests with up to 10,000 peers, after which simulation data no longer fit in RAM and 
makes our tests difficult. Therefore, the default number of peers is set to 10,000.  

In our experiments, we consider a dynamic P2P system, i.e. there are peers that 
leave or join the system. Peer departures are timed by a random Poisson process (as in 
 [8]). The average rate, i.e. λ, for events of the Poisson process is λ=1/second. At each  
event, we select a peer to depart uniformly at random. Each time a peer goes away, 
another joins, thus keeping the total number of peers constant (as in  [8]).  

We also consider peer failures. Let fail rate be a parameter that denotes the 
percentage of peers that leave the system due to a fail. When a peer departure event 
occurs, our simulator should decide on the type of this departure, i.e. normal leave or 
fail. For this, it generates a random number which is uniformly distributed in [0..100]; 
if the number is greater than fail rate then the peer departure is considered as a normal 
leave, else as a fail. In our tests, the default setting for fail rate is 5% (as in  [1]). In 
our tests, unless otherwise specified, the number of replicas of each data is 10. 

Although they cannot provide the same functionality as CTRM, the closest prior 
works to CTRM are the BRICKS project  [4], denoted as BRK, and the Update 
Management Service (UMS) [1]. The assumptions made by these two works are close 
to ours, e.g. they do not assume the existence of powerful servers. BRK stores the 



       

 

data in the DHT using multiple keys, which are correlated to the data key. To be able 
to retrieve an up-to-date replica, BRK uses versioning, i.e. each replica has a version 
number which is increased after each update. UMS has been proposed to support data 
currency in DHTs, i.e. the ability to return an up-to-date replica. It uses a set of m 
hash functions and replicates the data randomly at m different peers. UMS works 
based on timestamping, but the generated timestamps are not necessarily continuous.  

4.2 Update Cost 

Let us first investigate the performance of CTRM’s update protocol. We measure the 
performance of data update in terms of response time and communication cost. By 
update response time, we mean the time needed to send the patch of an update 
operation to the peers that maintain the replicas. By update communication cost, we 
mean the number of messages needed to update a data. 

Using our simulator, we ran experiments to study how the response time increases 
with the addition of peers. Using the simulator, Figure 2 depicts the total number of 
messages while increasing the number of peers up to 10,000, with the other 
simulation parameters set as defaults described in Section  4.1. In all three services, 
the communication cost increases logarithmically with the number of peers. However, 
the communication cost of CTRM is much better than that of UMS and BRK. The 
reason is that UMS and BRK perform multiple lookups in the DHT, but CTRM does 
only one lookup, i.e. only for finding the responsible of the group. Notice that each 
lookup needs O(log n) messages where n is the number of peers of the DHT. 

Figure 3 shows the update response time with the addition of peers up to 10,000, 
with the other parameters set as described in Section  4.1. The response time of CTRM 
is a little bit higher than that of UMS and BRK. The reason is that for guaranteeing 
continuous timestamping, the update protocol of CTRM performs two round-tips 
between the responsible of the group and the other members of the group.  But, UMS 
and BRK only send the update actions to the replica holders by looking up the replica 
holders in parallel (note that the impact of parallel lookups on response time is very 
slight, but they have a high impact on communication cost). However, the difference 
in the response time of CTRM and that of UMS and BRK is small because the round-
trips in the group are less time consuming than lookups. This slight increase in 
response time of CTRM’s update operation is the price to pay for guaranteeing 
continuous timestamping. 

4.3 Data Retrieval Response Time 

We now investigate the data retrieval response time of CTRM. By data retrieval 
response time, we mean the time to return an up-to-date replica to the user. 

Figure 4 shows the response time of CTRM, UMS and BRK with the addition of 
peers up to 10000, with the other parameters set as defaults described in Section  4.1. 
The response time of CTRM is much better than that of UMS and BRK. This 
difference in response time can be explained as follows. Both CTRM and UMS 
services contact some replica holders, say r, in order to find an up-to-date replica, e.g.  



r=6. For contacting these replica holders, CTRM performs only one lookup (to find 
the responsible of the group) and some low-cost communications in the group. But, 
UMS performs exactly r lookups in the DHT. BRK retrieves all replicas of data from 
the DHT (to determine the latest version), and for each replica it performs one lookup. 
Thus the number of lookups done by BRK is equal to the total number of data 
replicas, i.e. 10 in our experiments.  

Let us now study the effect of the number of replicas of each data, say m, on 
performance of data retrieval. Figure 5 shows the response time of data retrieval for 
the three solutions with varying the number of replicas up to 30. The number of 
replicas has almost a linear impact on the response time of BRK, because to retrieve 
an up-to-date replica it has to retrieve all replicas by doing one lookup for each 
replica. But, it has a slight impact on CTRM, because for finding an up-to-date replica  
CTRM performs only one lookup, and some low cost communications, i.e. in the 
group. 

4.4 Effect of Peer Failures on Timestamps Continuity 

Let us now study the effect of peer failures on the continuity of timestamps used for 
data updates. This study is done only for CTRM and UMS that work based on 
timestamping. In our experiments we measure timestamp continuity rate by which we 
mean the percentage of the updates whose timestamps are only one unit higher than 
that of their precedent update. We varied the fail rate parameter, and observed its 
effect on timestamp continuity rate. 

Figure 6 shows timestamp continuity rate for CTRM and UMS while increasing 
the fail rate, with the other parameters set as described in Section  4.1. The peer 
failures do not have any negative impact on the continuity of timestamps generated by 
CTRM, because our protocol assures timestamp continuity. However, when 
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increasing the fail rate in UMS, the percentage of updates whose timestamps are not 
continuous increases.  

4.5 Effect of Concurrent Updates on Result Consistency 

In this section, we investigate the effect of concurrent updates on the consistency of 
the results returned by CTRM. In our experiments, we perform u updates done 
concurrently by u different peers using the CTRM service, and after finishing the 
concurrent updates, we invoke the service’s data retrieval operation from n randomly 
chosen peers (n=50 in our experiments). If there is any difference between the data 
returned to the n peers, we consider the result as inconsistent. We repeat each 
experiment several times, and report the percentage of the experiments where the 
results are consistent. We perform the same experiments using the BRK service. 

Figure 7 shows the results with the number of concurrent updates, i.e. u, increasing 
up to 8, and with the other parameters set as defaults described in Section  4.1. As 
shown, in 100% of experiments the results returned by CTRM are consistent. This 
shows that our update protocol works correctly even in the presence of concurrent 
updates. However, the BRK service cannot guarantee the consistency of results in the 
case of concurrent updates, because two different updates may have the same version 
at different replica holders. 

5 Related Work 

Most existing P2P systems support data replication, but usually they do not deal with 
concurrent and missed updates.  

OceanStore  [9] is a data management system designed to provide a highly 
available storage utility on top of P2P systems. It allows concurrent updates on 
replicated data, and relies on reconciliation to assure data consistency. The 
reconciliation is done by a set of powerful servers using a consensus algorithm. The 
servers agree on which operations to apply, and in what order. However, in the 
applications, which we address, the presence of powerful servers is not guaranteed.  

The BRICKS project  [4] provides high data availability in DHTs through 
replication. For replicating a data, BRICKS stores the data in the DHT using multiple 
keys, which are correlated to the data key, e.g. k. There is a function that given k, 
determines its correlated keys. To be able to retrieve an up-to-date replica, BRICKS 
uses versioning. Each replica has a version number which is increased after each 
update. However, because of concurrent updates, it may happen that two different 
replicas have the same version number, thus making it impossible to decide which 
one is the latest replica.  

In  [1], an update management service, called UMS, was proposed to support data 
currency in DHTs, i.e. the ability to return an up-to-date replica. However, UMS does 
not guarantee continuous timestamping which is a main requirement for collaborative 
applications which need to reconcile replica updates. UMS uses a set of m hash 
functions and replicates randomly the data at m different peers, and this is more 



expensive than the groups which we use in CTRM, particularly in terms of 
communication cost. A prototype based on UMS was demonstrated in  [12]. 

6 Conclusion 

In this paper, we addressed the problem of efficient replication management in DHTs. 
We proposed a new service, called continuous timestamp based replication 
management (CTRM), which deals with efficient and fault tolerant data replication, 
retrieval and update in DHTS, by taking advantage of replica holder groups and 
monotonically increasing and continuous timestamps.  
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