
Distrib Parallel Databases (2009) 25: 97–123
DOI 10.1007/s10619-009-7037-8

Parallel OLAP query processing in database clusters
with data replication

Alexandre A.B. Lima · Camille Furtado ·
Patrick Valduriez · Marta Mattoso

Published online: 25 February 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider the problem of improving the performance of OLAP applica-
tions in a database cluster (DBC), which is a low cost and effective parallel solution
for query processing. Current DBC solutions for OLAP query processing provide for
intra-query parallelism only, at the cost of full replication of the database. In this pa-
per, we propose more efficient distributed database design alternatives which combine
physical/virtual partitioning with partial replication. We also propose a new load bal-
ancing strategy that takes advantage of an adaptive virtual partitioning to redistribute
the load to the replicas. Our experimental validation is based on the implementation
of our solution on the SmaQSS DBC middleware prototype. Our experimental results
using the TPC-H benchmark and a 32-node cluster show very good speedup.

Keywords Parallel databases · Database clusters · OLAP query processing · Partial
replication · Virtual partitioning · Dynamic load balancing

Communicated by Ladjel Bellatreche.

C. Furtado · M. Mattoso
COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

C. Furtado
e-mail: camillef@cos.ufrj.br

M. Mattoso
e-mail: marta@cos.ufrj.br

P. Valduriez
INRIA, Nantes, France
e-mail: Patrick.Valduriez@inria.fr

A.A.B. Lima (�)
School of Science and Technology, Unigranrio University, Rio de Janeiro, Brazil
e-mail: abento@unigranrio.com.br

mailto:camillef@cos.ufrj.br
mailto:marta@cos.ufrj.br
mailto:Patrick.Valduriez@inria.fr
mailto:abento@unigranrio.com.br

98 Distrib Parallel Databases (2009) 25: 97–123

1 Introduction

OLAP applications demand high-performance from their underlying database sys-
tems in order to achieve low response time, which is crucial for decision making.
They typically access huge amounts of data through high-cost read-intensive ad-hoc
queries. For instance, the TPC-H Benchmark [1], which models OLAP applications,
specifies 24 queries, including 22 complex high-cost read-intensive queries and only
2 update queries.

High-performance processing in database systems has traditionally been achieved
through parallel database systems [2] running on multiprocessor servers. Data are
typically partitioned and replicated between multiprocessor nodes for each of them
to process queries in parallel over different data subsets. This approach is very effi-
cient, but expensive in terms of hardware and software. Besides, the database man-
agement system must have full control over the database fragments, which makes it
very expensive to migrate from a non-parallel environment.

Database Clusters (DBC) are a very efficient low-cost alternative to tightly-
coupled multiprocessor database systems. A DBC [3] is defined as a cluster of PC
each of them running an off-the-shelf sequential DBMS. These DBMS are orches-
trated by a middleware that implements parallel query processing techniques. Fig-
ure 1 shows a DBC running the PostgreSQL DBMS at each node and our SmaQSS
DBC middleware. SmaQSS implements parallel query processing techniques in a
non-intrusive way. It is DBMS-independent, only requiring that the DBMS processes
SQL3 queries and accepts connections through a JDBC driver. SmaQSS can make
database migration from centralized environments to DBC quite easy, depending on
the features one intends to explore. In its simplest form (with full database repli-
cation), the migration requires just the creation of clustered indexes for the largest
tables, as described in the following. More complex features require the implementa-
tion of other database design techniques (e.g., partial replication).

There are basically two kinds of parallelism employed during query processing:
inter-query and intra-query parallelism. Inter-query parallelism is obtained when dif-
ferent queries are simultaneously processed by different nodes. Intra-query paral-
lelism consists of having multiple nodes processing, at the same time, different oper-
ations of the same query. This kind of parallelism is essential for high-performance
OLAP application support as it can reduce the cost of heavy queries. Distributed
database design is crucial for intra-query parallelism efficiency. It is executed in two

Fig. 1 Database cluster with SmaQSS middleware

Distrib Parallel Databases (2009) 25: 97–123 99

steps: data fragmentation and allocation [4]. During fragmentation, data partitions are
defined and, during allocation, decisions about their replication and placement on the
DBC nodes are taken.

Not many DBC systems implement intra-query parallelism. To the best of our
knowledge, only PowerDB [5], Apuama [6] and ParGRES [7] do it. However, all
these solutions employ full database replication during data allocation and obtain
intra-query parallelism by using virtual partitioning [3] during query processing.
While in physical data partitioning a table is statically partitioned and physical sub-
sets are generated accordingly, in virtual partitioning dynamic table subsets are de-
fined during query processing. This allows for more flexibility as the partitions may
be defined according to each query.

Entirely replicating the database in all cluster nodes demands high disk space,
as each node must be able to hold the entire database. Furthermore, it makes data
updates very expensive.

In this paper, we propose a distributed database design strategy for DBC based
on physical and virtual data partitioning combined with replication techniques. To
address the limitation of static physical partitioning we take advantage of replicas
and propose a dynamic query load balancing strategy.

We present a query load balancing technique that, combined with an adaptive vir-
tual partitioning technique [8], makes it possible to dynamically redistribute tasks
from busy DBC nodes to idle nodes that contain replicas of their data fragments.
Thus, our solution makes it possible to obtain intra-query parallelism during heavy
query execution with dynamic load balancing while avoiding the overhead of full
replication. To the best of our knowledge, this solution is unique in the context of
DBC.

In order to evaluate our solution, we implemented a DBC middleware prototype
called SmaQSS (Smashing Queries while Shrinking disk Space). We performed ex-
tensive experiments by running representative TPC-H queries on top of a 32-node
cluster from the Grid’5000 experimental platform [9] running the PostgreSQL DBMS
[10]. The results show that SmaQSS achieves excellent performance in scenarios
with and without load unbalancing between nodes, thus showing the effectiveness of
our techniques. They also show that good performance can be obtained while avoid-
ing full replication.

This paper is organized as follows. Section 2 shows related work. Section 3 defines
Virtual Partitioning. Section 4 presents our distributed database design strategy. In
Sect. 5, we present our query processing algorithm along with the proposed load
balancing technique. Section 6 shows experimental results and Sect. 7 concludes the
paper.

2 Related work

Parallel processing techniques have been successfully employed to achieve high per-
formance in DBC [3, 5–8, 11–15]. Inter-query parallelism aims at achieving high
throughput during transaction processing and is very effective for On-Line Trans-
action Processing (OLTP) applications, characterized by large numbers of small si-
multaneous transactions. This is the only kind of parallelism explored in [11–13].

100 Distrib Parallel Databases (2009) 25: 97–123

For OLAP applications, intra-query parallelism is more appropriate as it reduces the
execution time of individual queries [3, 5–8, 14].

For intra-query parallelism efficiency, distributed database design is very impor-
tant. It is a two-step process [4]: in the first step (data partitioning), data partitions
are defined; in the second step (partition allocation), decisions about their replication
and placement on the DBC nodes are taken.

There are two basic alternatives to data partitioning in DBC [14]: physical and vir-
tual data partitioning. Each one has already been employed in isolation for intra-query
parallelism implementation during OLAP query processing. Physical data partition-
ing consists of statically defining a table partitioning schema and physically gener-
ating table subsets according it. Virtual partitioning consists of dynamically defining
table subsets. This approach allows for more flexibility as the partitions may be de-
fined according to each query characteristics and the nodes available for processing.

The distributed data design proposed by Röhm et al. in [5] for OLAP applica-
tions has been successfully employed for implementing physical partitioning. For the
data partitioning step it horizontally partitions large tables that are most accessed
(typically the fact tables), and do not partition small tables (typically the dimension
tables). For the allocation step, it replicates all dimension tables at all nodes and
distributes the horizontal partitions of all fact tables among the DBC nodes. Such dis-
tributed data design is illustrated in Fig. 1, where D represents replicated dimensions
and each Fi represents a partition i of a fact table F, where typically the number of
partitions equals to the number of the DBC nodes. The partitioning of F is based on
its key attributes.

This partitioning design for the fact and dimension tables can be used in both
physical and virtual partitioning. However, the allocation design is quite different
in each case. When virtual partitioning is employed, some database replication is
required. Physical partitioning requires more complex allocation strategies, where
full or partial or no replication may be adopted.

Many variations of virtual partitioning with full replication were implemented
with very good results [3, 6–8, 14], showing this is a quite efficient alternative to
accelerate OLAP query processing. However, full replication is a major issue due to
its high cost concerning disk space utilization and data updates.

Experimental results obtained with physical partitioning without any replication
also present very good results when the load between nodes was balanced during
query processing [5, 15]. In this case, intra-query parallelism can be implemented
with great reduction of disk space utilization when compared to full replication. How-
ever, in most real scenarios the load is not balanced and query performance results in
the presence of skew are very poor [8].

In addition, physical partitioning without replication presents severe limitations.
One of them is low availability as, if one table partition becomes unavailable, queries
that require access to that table cannot be processed. Another major issue (which we
address in this paper) is that dynamic load balancing during query processing cannot
be employed without data transfers between nodes, which may also lead to poor
performance. The implementation of dynamic load balancing in DBC is not trivial
as, due to its DBMS independent nature, it is not possible to interrupt a sequential
DBMS to make it to stop processing a running query to redistribute its load using

Distrib Parallel Databases (2009) 25: 97–123 101

non-intrusive techniques. Then, high performance in this case strongly relies on a
“balanced” static physical database design.

In [16], Furtado proposed a distributed database design strategy for OLAP data-
bases called Node Partitioned Data Warehouses (NPDW). NPDW adopts the ap-
proach of replicating dimensions and physically partitioning fact tables. It also
presents some strategies for replicating the physical partitions between nodes. The
techniques described in NPDW were designed for OLAP databases distributed over
low-cost computer nodes, thus it could be easily implemented in a DBC. One major
difference between our work and NPDW is that, in that work, replication is applied
and analyzed in the terms of system availability, while in our work replication is
applied to make it possible to implement dynamic load balancing with no intrusive
adaptive virtual partitioning techniques. NPDW does not take advantage of replica-
tion to implement dynamic load balancing. In [17], improvements are made to NPDW
such as the physical partitioning of large dimensions and the proposal of techniques
for query processing. The improvements proposed to NPDW database design strategy
take into account a previously known query workload to be processed by the system.
Our work focuses on the typical ad-hoc nature of OLAP queries, thus no previous as-
sumptions about such queries can be made. Furthermore, the query processing tech-
niques proposed by Furtado in [17] require data repartitioning, which implies data
transfers between nodes, which is not the case for our solution. Finally, techniques in
[17] assume a load balanced scenario. So, the performance obtained relies on a good
initial database design and on the efficiency of data repartitioning techniques.

Works like [18, 19] employ physical partitioning of the dimension tables. Small
grain physical partitions have been successfully applied in [18]. However, it requires
careful distributed database design to generate physical partitions. Thus, it is more
sensitive to skew conditions. Simulation results presented in [18] lack an analysis of
the complexity in managing a schema with very large number of partitions. Finally,
performance results in the presence of data skew cannot be found in related work
for database clusters. In [19], dimension partitions guide the fact table partitioning
process and a genetic algorithm is employed to choose the best schema. However,
in both works, previous knowledge about OLAP queries submitted to the database
system is required. So, ad-hoc queries are not considered.

Our approach takes advantage of physical and virtual partitioning with partial
replication, which allows for dynamic task redistribution between nodes that keep
replicas of the same partition. Such redistribution is made possible through a combi-
nation of physical and adaptive virtual data partitioning. We do not use any previous
knowledge about query profiles. Our solution is aimed at ad-hoc OLAP queries.

3 Query processing with virtual partitioning

In this section, we explain in more detail the concept of virtual partitioning (VP)
proposed in [3], and show how queries can be processed by using it. Section 3.1 con-
ceptually defines VP and explains its principles. Section 3.2 describes query rewriting
and final result composition for VP considering queries containing aggregate func-
tions. Section 3.3 discuss requirements for obtaining high performance during query

102 Distrib Parallel Databases (2009) 25: 97–123

processing when using VP. Section 3.4 shows typical queries that can be parallelized
through VP.

3.1 Virtual partitioning definition

We start by defining the concept of virtual partition:

Definition 1 (Virtual Partition) Given a relation R and a predicate P , a virtual parti-
tion RVP = σP (R), where P is of the form A ∈ [a1, a2), A is the partitioning attribute
and ai are values from A’s domain, with a2 > a1.

A virtual partition differs from a physical partition as it is dynamically obtained from
a base relation through a relational algebra operation. The same base relation can
be virtually partitioned in many different ways without requiring any physical re-
organization of its data. This is not true for physical partitioning: different physical
partitioning schemes require physical reorganization of the tuples on disk.

We call virtual partitioning the operation of producing virtual partitions of a rela-
tion. According to Definition 1, it seems that relations can only be horizontally parti-
tioned. However, this is not true. Virtual partitioning can produce horizontal, vertical
or hybrid relation partitions [4] from a relation. It suffices to replace the relational
select (σ) operation that appears at Definition 1 by the appropriate operation, e.g.,
the relational project (π) operation (vertical virtual partitioning) or a select operation
followed by a project operation (hybrid partitioning). In this work, we only deal with
horizontal partitions. For the best of our knowledge, no work tried to use different
kinds of virtual partitions, but this is not conceptually impossible.

With virtual partitioning, a query can be processed as follows. Let Q(R,S) be a
query submitted to the database cluster, where R is a relation chosen for virtual parti-
tioning and S is a set of other relations accessed by Q. Let n be the chosen number of
virtual partitions, n range predicates are computed to produce a virtual partitioning
of R: RVP1,RVP2, . . . ,RVPn. Then, Q is replaced by a set of sub-queries, each one
over a different virtual partition of R: Q1(RVP1, S),Q2(RVP2, S), . . . ,Qn(RVPn, S).
In order to avoid wrong results, the virtual partitioning of R is required to be disjoint
and complete. The virtual partitioning of a relation R is said to be disjoint if, and
only if, ∀i, j (i �= j,1 ≤ i, j ≤ n), RVPi ∩ RVPj = ∅. It is said to be complete if, and
only if, ∀r ∈ R,∃RVPi ,1 ≤ i ≤ n, where r ∈ RVPi . We use here the same terminology
found in the literature for physical partitioning (or fragmentation) [4].

Obtaining the final result of a query processed by using virtual partitioning re-
quires more than just executing its sub-queries. Let Res(Q) be the result of query
Q,Res(Q) must be obtained by the composition of the results of each sub-query Qi ,
i = 1, . . . , n. In other words, Res(Q) = ∇Res(Qi), i = 1, . . . , n, where the operation
∇ varies from a simple relational union (∪) operation to a set of complex operations,
according to Q.

Let us give an example using SQL. Consider a database with a relation that has
the following schema: T (tpk, tprice, tqty, tname). Suppose that this database is fully
replicated over four nodes in a database cluster. Also, suppose the following ad-hoc
query Q is submitted to the cluster:

Distrib Parallel Databases (2009) 25: 97–123 103

Q: select max(tprice) from T ;

We want to process Q by using virtual partitioning. Then, T must be virtually par-
titioned and we will choose tpk as its partitioning attribute. According to Defini-
tion 1, T should be replaced in each sub-query Qi by the virtual partition TVP =
σ(tpk>=:v1) and (tpk<:v2) (T), the values of :v1 and :v2 varying according to the sub-
query. In SQL, it means that each Qi will be written as follows:

Qi: select max(tprice) from T

where tpk >= :v1 and tpk < :v2;

The parameters :v1 and :v2 that appear in Qi will receive different values for each
virtual partition. Suppose, for example, that tpk values range from 1 to 10,000. We
could produce four disjoint virtual partitions of T through four sub-queries and
give the following values for :v1 and :v2 in each of them: Q1 (:v1=1; :v2=2,501),
Q2 (:v1=2,501; :v2=5,001), Q3 (:v1=5,001; :v2=7,501) and Q4 (:v1=7,501;
:v2=10,001). Here, we simply divided the value range of the partitioning attribute
by the number of desired virtual partitions, producing equal-sized virtual partitions
(considering interval sizes). As our hypothetical cluster has four nodes, we could sim-
ply give one sub-query to each one and pick the highest result as the response to Q.
The number of virtual partitions from a table does not have to be the same of query
processing nodes. This is done in PowerDB [3] and Apuama [6]. In such database
clusters, the number of virtual partitions produced for a query is always equal to the
number of cluster nodes available to execute them. If n nodes are available, n virtual
partitions, and consequently n sub-queries are produced. Then, each node processes
only one sub-query. We call this approach Simple Virtual Partitioning (SVP). It has
some drawbacks, as we explain later. For this reason, we adopt in SmaQSS another
VP approach that produces a number of virtual partitions greater than the number
of nodes, which is an improved version of Adaptive Virtual Partitioning (AVP), we
originally proposed in [8]. The AVP algorithm was slightly modified to achieve better
performance. It is described on Sect. 5.

This explains the basic principles of VP. However, there are some details that must
be considered when more complex queries have to be processed. In the next section,
we discuss them by showing how to use VP to process queries that involve aggregate
function, commonly used in OLAP applications.

3.2 Using VP to process queries with aggregate functions

Processing a query Q by using Virtual Partitioning involves replacing Q by a set of
sub-queries Qi . The sub-queries are very similar to each other, the only difference
being the interval that determines the virtual partitions. However, in many cases,
the sub-queries cannot be similar to the original query or wrong results would be
produced. So, a rewriting process must be executed by the database cluster query
processor in order to obtain correct sub-queries. In such cases, this rewriting can be
more complex than just adding the range predicate required for virtual partitioning.
Also, additional operations may have to be performed for the correct query result to
be produced.

In this section, we discuss query rewriting and result composition for queries that
perform aggregate functions, largely employed by decision support systems. Similar

104 Distrib Parallel Databases (2009) 25: 97–123

Table 1 Obtaining the result of aggregate functions from sub-multisets

Function Result composition from MS sub-multisets

MAX(MS) MAX ({ MAX(MS1), MAX(MS2), . . ., MAX(MSm) })

MIN(MS) MIN ({ MIN(MS1), MIN(MS2), . . ., MIN(MSm) })

SUM(MS) SUM ({ SUM(MS1), SUM(MS2), . . ., SUM(MSm) })

COUNT(MS) SUM ({ COUNT(MS1), COUNT(MS2), . . ., COUNT(MSm) })

AVG(MS)
SUM({SUM(MS1),SUM(MS2), . . . ,SUM(MSm)})

SUM({COUNT(MS1),COUNT(MS2), . . . ,COUNT(MSm)})

processes must also be employed for some queries that present no aggregate func-
tions, but we leave them outside our discussion.

The main SQL aggregate functions are: MAX, MIN, SUM, AVG and COUNT, and
we keep our focus onto them. All these functions are of the form Agg(MS), where MS
is a multiset of values obtained from an expression based on attributes of the relation
tuples that satisfy a query predicate. If MS is a multiset, we can split its elements in
such a way that MS = MS1 ∪ MS2 ∪ · · · ∪ MSm, where each MSj , j = 1, . . . ,m, is
also a multiset. If we have a query “select max(A) from T ” and, in order to process
it by using VP, we break it into sub-queries of the form “select max(A) from T

where att >= :v1 and att < :v2”, we are not directly applying the aggregate function
MAX over the whole multiset of values associated to the attribute A of T . Indeed, we
are applying the MAX function many times, one for each sub-multiset of the values
associated to A, as each virtual partition contains only a subset of the tuples of T .
The main issue is how to obtain the correct result for an aggregate function Agg(MS)
from the sub-multisets MS1, MS2, . . . , MSm. Table 1 shows how it can be done for
the aggregation functions considered here. In the table, the notation “{e1, e2, . . . ,

em}” represents a multiset.
Table 1 shows that the result of an SQL aggregation function Agg(MS) can be

obtained by applying one or more different functions (also from SQL) over each
MSi . Let us see how it can be used to process queries with virtual partitioning.

Let Ã be the multiset of values associated to attribute A on a relation R. For
a query Q(R,S) to be processed by using virtual partitioning, a set of sub-queries
Qi(RVPi , S) will be produced. Each Qi will access a sub-multiset of Ã that we des-
ignate as ÃVPi . Then, if Q includes an aggregation function Agg(Ã), the result of this
function will have to be calculated from each ÃVPi . Since Ã is a multiset, we can
apply the rules from Table 1 to obtain the correct results. This is shown by Table 2.

The aggregate functions query Q must be translated in order to produce sub-
queries. The translation rules are given by Table 3.

To illustrate aggregate query rewriting, let us consider the following query:

QAgg: select max(A) as ca, min(B) as cb, sum(C) as cc,
count(D) as cd, avg(E) as ce
from R;

QAgg is to be processed by using VP. According the translation rules from Table 3,
and considering PK the partitioning attribute of R, the sub-queries of QAgg will be
written as follows:

Distrib Parallel Databases (2009) 25: 97–123 105

Table 2 Result composition of aggregate functions using virtual partitions

Function Result composition from Ã sub-multisets

MAX(Ã) MAX ({ MAX(ÃVP1), MAX(ÃVP2), . . ., MAX(ÃVPm) })

MIN(Ã) MIN ({ MIN(ÃVP1), MIN(ÃVP2), . . ., MIN(ÃVPm) })

SUM(Ã) SUM ({ SUM(ÃVP1), SUM(ÃVP2), . . ., SUM(ÃVPm) })

COUNT(Ã) SUM ({ COUNT(ÃVP1), COUNT(ÃVP2), . . ., COUNT(ÃVPm) })

AVG(Ã)
SUM({SUM(ÃVP1),SUM(ÃVP2), . . . ,SUM(ÃVPm)})

SUM({COUNT(ÃVP1),COUNT(ÃVP2), . . . ,COUNT(ÃVPm)})

Table 3 Translation rules for aggregate functions in VP

Aggregation function in Q Corresponding aggregate function(s) in Qi

MAX(A) MAX(A)

MIN(A) MIN(A)

SUM(A) SUM(A)

COUNT(A) COUNT(A)

AVG(A) SUM(A), COUNT(A)

QAggi: select max(A) as ica, min(B) as icb, sum(C) as icc,
count(D) as icd, sum(E) as ice1, count(E) as ice2

from R
where PK >= :v1 and PK < :v2;

The final result will be produced according to the rules shown by Table 2, which can
be easily implemented in SQL.

Usually, aggregate functions are used in conjunction with grouping operations
(GROUP BY clause, in SQL). It does not affect the query rewriting process described
so far. The grouping attributes that appear in Q just have to be repeated in each Qi .
However, for the final results to be externally composed, the database cluster middle-
ware must have to be able to store groups and their corresponding partial results.

Other SQL operators like UNION, INTERSECTS, MINUS and ORDER BY must
have to be externally implemented by the database cluster middleware but they are
beyond the scope of this paper.

3.3 Virtual partitioning requirements for obtaining high-performance

Virtual Partitioning is a technique that can be employed to process a query even when
only one processor is available: it suffices to make the same processor to execute all
sub-queries. However, this is not very useful as modern sequential DBMS can do a
better job by processing the entire query once. Virtual partitioning is an attractive
approach in multi-processor systems, where it can be employed in order to obtain
intra-query parallelism during query processing. However, even in parallel environ-
ments, simply using virtual partitioning does not guarantee high performance for
database query processing. There are two requirements for this technique to achieve
good results.

106 Distrib Parallel Databases (2009) 25: 97–123

The first requirement is that each cluster node must physically access (or retrieve
from the disk) only the tuples that belong to the virtual partition determined by its sub-
query. Otherwise, the main goal of virtual partitioning may not be achieved and the
performance can be severely hurt. This restriction cannot be guaranteed by the simple
addition of a range predicate to the original query. The tuples of a virtual partition can
be spread over many different disk pages that stores tuples of the virtually partitioned
relation. They can even be mixed up with tuples from other virtual partitions. In
the worst case, there can be tuples of a single virtual partition in all disk pages that
store data from the virtually partitioned relation. In this case, the node responsible for
processing such virtual partition would have to read the entire relation from the disk.

To solve this problem (or to diminish its effects), the tuples of the relation that is
intended to be virtually partitioned must be physically ordered in the disk according to
the partitioning attribute. This can be achieved by constructing a clustered index based
on the partitioning attribute to the relation that is intended to be virtually partitioned,
as indicated in [3]. If the tuples are clustered this way, a cluster node can use the
index to find the first tuple of its virtual partition, and all the other tuples that must
be accessed will be in logically contiguous disk pages. This way, the node almost
exclusively reads from disk tuples that belong to its virtual partition. The exceptions
are the first and the last disk pages that contain its tuples. If the node is processing the
virtual partition RVPi from relation R, the first page it accesses may contain tuples
from RVP(i−1) and the last page may contain tuples from RVP(i+1).

The second requirement for virtual partitioning to achieve high performance is that
the DBMS must effectively use the clustered index to access the virtually partitioned
table when a cluster node is processing its sub-query. Many of the modern DBMS
query optimizers estimate the number of tuples from a relation that must be retrieved
by a query before deciding to use an index or not. If, for example, a query has a
range predicate based on a attribute a of a relation R, and the DBMS query optimizer
estimates that the number of tuples that must be retrieved is larger than a certain
threshold (that varies according to the DBMS), it will decide to perform a full scan
over the relation even if a clustered index based on a is associated to R. If one node
performs a full relation scan, the virtual partitioning goal of restricting each node to
its own partition is compromised because the cost of accessing disk pages is usually
high. This happened when we re-executed the experiments done for testing SVP in
PowerDB [3] using the DBMS PostgreSQL 7.3.4. In many cases, for different queries
using different numbers of nodes, the DBMS performed full scans over the virtually
partitioned relations, severely hurting the performance. It happened mostly when the
number of nodes was low, in which case the size of each virtual partition is high.
Apparently, it did not happen for PowerDB because the DBMS employed during the
experiments always used the clustered index to access the virtually partitioned table.
But we cannot guarantee that all DBMS will behave this way.

We conclude SVP solely depends on the underlying DBMS to achieve good per-
formance. As our goal is to build a high performance database cluster middleware that
is independent from the DBMS, SVP seems not to be a good approach to be adopted.
For this reason, we adopt in SmaQSS the AVP technique, which we originally pro-
posed in [8]. Briefly, it subdivides the virtual partitioning interval of a sub-query into
smaller intervals, generating many sub-queries in each node. Such sub-queries can

Distrib Parallel Databases (2009) 25: 97–123 107

be dynamically reallocated during query processing in order to achieve load redis-
tribution. In SmaQSS, we take advantage of its characteristics in order to achieve
dynamic load balancing during query processing. As a last remark, Apuama achieves
good performance using SVP and PostgreSQL, but the use of the clustered index
during query processing is forced by the middleware through hints that are sent to
the DBMS query optimizer. These hints go against our goal of using the DBMS as a
black-box component and require the middleware to be properly re-configured when
used with a different DBMS.

3.4 Query requirements for using virtual partitioning

Not all OLAP queries can be processed by using VP. In [3], a query classification is
proposed, and we give a brief description of it here:

• Class 1: Queries that access a fact table and that do not present sub-queries
– Queries that exclusively access the fact table;
– Queries that access one fact table and references to other tables;
– Queries that access more than one fact table, perform only equi-joins and have

a cycle-free query graph.
• Class 2: Queries that present a sub-query and that are equivalent to Class 1 queries.
• Class 3: All other queries.

Queries from classes 1 and 2 can be parallelized by using VP. It does not happen with
queries from class 3. A more detailed discussion about this can be found in [3].

4 Distributed database design for OLAP in database clusters

A DBC is a cluster of PC, each running an off-the-shelf sequential DBMS. These
DBMS are orchestrated by a middleware that implements parallel query processing
techniques. Sequential DBMS do not implement any parallel query processing tech-
nique. Furthermore, on a DBC, such DBMS are employed as “black-box” compo-
nents, which means that it is assumed that their source codes are node available and,
consequently, they cannot be altered to include parallel processing capabilities. Thus,
DBC are DBMS independent, which eases application migration from sequential en-
vironments to clusters. However, all parallel query processing techniques must be
implemented and coordinated by the middleware that runs on the DBC, as illustrated
in Fig. 1.

Distributed database design for DBC has some special characteristics because par-
tition management is performed by the middleware, not the DBMS. In this section,
we first describe our solution to data partitioning design and then our approach to
allocation design.

4.1 Partitioning design

Most OLAP queries access at least one fact table and are typically heavy-weight
as they process huge amounts of data which may take a long time to execute. This

108 Distrib Parallel Databases (2009) 25: 97–123

Fig. 2 Horizontally partitioning the Lineitem fact table

is why intra-query parallelism fits well for such queries. Considering the traditional
characteristics of database schemas for OLAP applications, we propose the use of
the distributed database design strategy proposed by [5]. Such a strategy horizontally
partitions the fact tables, which are the larger ones. As in most parallel distributed
design, the partitioning function is based on a primary key attribute and generates
value ranges for the attribute. The number of ranges equals the number of DBC nodes.
On the other hand, partitioning is not applied to dimensions, which are fully replicated
on all DBC nodes. Figure 2 illustrates the application of such a design strategy over
the database defined by the TPC-H benchmark [1] on a 4-node DBC.

TPC-H has a slightly different OLAP schema with two fact tables: Orders and
Lineitem, which are linked by a foreign key. Primary horizontal partitioning is ap-
plied over the Orders fact table and its primary key (o_orderkey) is used as the par-
titioning attribute. The fact table Lineitem has a foreign key (l_orderkey) to Orders.
This foreign key is also the first attribute of its primary key. Then, derived horizontal
partitioning is applied over Lineitem, originating almost equal-sized partitions. Be-
cause of this partitioning schema, we can always physically allocate related partitions
from Orders and Lineitem to the same DBC node, easing the join process between
these tables. As in TPC-H, we consider dimensions are small when compared to fact
tables. This is why we opt for fully replicating them, which eases the employment
of virtual partitioning. Dimension partitioning is dealt with in works like [18, 19] but
it is out of the scope of this paper. Figure 2 shows the partitioning schema and the
allocation strategy we adopt.

4.2 Partition allocation through chained declustering

Our proposal is to offer an alternative to either full replication or no replication. We
adopt partial replication of data partitions by adapting the technique called Chained

Distrib Parallel Databases (2009) 25: 97–123 109

#Node 1 2 3 4 5 6 7 8

Primary Copy RP(1) RP(2) RP(3) RP(4) RP(5) RP(6) RP(7) RP(8)
Backup Copies RB(8) RB(1) RB(2) RB(3) RB(4) RB(5) RB(6) RB(7)

RB(7) RB(8) RB(1) RB(2) RB(3) RB(4) RB(5) RB(6)
RB(6) RB(7) RB(8) RB(1) RB(2) RB(3) RB(4) RB(5)

Fig. 3 Allocation of R partitions having 3 backup copies

Declustering [20]. This strategy was originally proposed to provide high availability
to data stored on a set of disks. However, as there are data partition replicas, when a
node is overloaded or fails, load redistribution can be performed by the reassignment
of tasks that access some data partition to other nodes that contain replicas of it.
We adapt chained declustering to our context in order to implement dynamic load
balancing during query processing. However, fault tolerance is out of the scope of
this paper.

Chained declustering distributes data partitions among DBC nodes using the fol-
lowing strategy. Let us take a DBC with M nodes, numbered from 1 to M , and a
relation R, divided into Ri partitions, i = 1 to M . For each partition Ri , its primary
copy is stored on node {[i −1+C(R)] mod M +1}. Besides, a backup copy (replica)
of Ri is stored on node {[i + C(R)] mod M + 1}, which guarantees that the primary
copy and its backup are stored on different nodes. The C(R) function defines the
node on which the first R partition must be stored, thus allowing the first partition to
be stored on any of the M nodes.

The expression “chained declustered” means that nodes are linked just as if they
formed a chain. Figure 3 illustrates the allocation strategy of 8 partitions of relation
R, each one having 3 replicas, on 8 nodes and C(R) = 0. RP(i) and RB(i) denote
the primary and the backup copy of the i-th R partition, respectively. It is possible to
have until M − 1 backups of each primary copy and store each of them on a different
node. As each node has replicas of partitions that are stored in other nodes, if a node
becomes overloaded, its tasks can be redistributed to others that have replicas of its
partitions. This makes chained declustering a very attractive allocation strategy as it
allows for dynamic load balancing during query processing.

The number of replicas depends on the user needs. As more replicas are used, the
cost of updates and the disk space consumption increase. However, as seen in next
section, the dynamic load balancing process becomes more efficient. In OLAP, up-
dates are typically reduced to inserts and often decision can be made based on history
rather than last minute changes. Thus, if data freshness may be relaxed, then update
costs would decrease. This is a tradeoff that must be analyzed by the database admin-
istrator. We can suggest two possible approaches. In the first one, the administrator
chooses the number of replicas based on his/her experience and knowledge of the
data warehouse. In the second approach, experiments should be conducted, based on
the available disk space and on the number of updates, in order to identify the best
number of replicas.

110 Distrib Parallel Databases (2009) 25: 97–123

5 Query processing with dynamic load balancing

Load unbalancing during query processing may be caused by many different reasons.
One of the factors that determine the workload of nodes is the number of tuples it has
to process. Even if table partitions are equal-sized between nodes, operations (e.g.
selects and joins) performed during query processing can generate intermediate re-
sults with different sizes, which can lead to a kind of load unbalancing that is very
hard to preview during distributed database design, mainly for ad-hoc queries. Most
OLAP queries access at least one fact table. Let us take a scenario where fact tables
are fully partitioned and allocated without any replication. If, during query process-
ing, one node becomes overloaded, there is no way to redistribute its load without
data transfer as there are no replicas from the data partitions it holds.

It is very complex to prevent and solve load balancing problems. One possible
solution is to transfer data between nodes during query processing. However, such an
operation tends to be very expensive, requiring extra I/O operations and rising com-
munication costs. Thus, in order to avoid data transfers, our proposal is to perform
query processing with dynamic load balancing over a distributed data set (fully or
partially) replicated with chained declustering between cluster nodes. We call this
approach QueCh (Query processing with Chained declustering replication). QueCh
is implemented in SmaQSS.

QueCh query processing is a three-step process. First, the initial query that ac-
cesses the fact table is mapped to sub-queries that access its physical partitions. In the
second step, each DBC node locally executes its sub-query over its partition. How-
ever, during this phase, the physical table partition is not entirely processed by only
one sub-query. Instead, QueCh virtually re-partitions it and executes the sub-query
once for each virtual partition. This way, it is possible to redistribute sub-queries for
dynamic load balancing. The third step consists of sub-query reallocation, if a node
becomes idle. Load balancing is performed by dynamically reallocating sub-queries
from busy nodes to idle nodes that contain replicas of their partitions. The virtual
partitioning technique makes it possible to dynamically reallocate sub-queries with-
out requiring intrusive operations. In the following sections, we explain each step in
more details.

5.1 Query splitting

The partitioning schema managed by SmaQSS is totally transparent to the user,
whose queries are written according to the non-partitioned global database schema.
After receiving the query, SmaQSS rewrites it considering the partitioning schema
implemented. Such a schema is defined in Sect. 3 and consists of dividing the value
range of the partitioning attribute in equal-sized ranges according to the number of
DBC nodes that hold the fact table accessed.

As an example, let us consider the following query Q submitted to a 4-node DBC:

Q: select max(F.a), min(F.b)
from F, D
where F.dfk = D.dpk
and D.x = 1;

Distrib Parallel Databases (2009) 25: 97–123 111

Q performs an equijoin between the fact table F and the dimension D. For 4 nodes, Q
will be rewritten into 4 sub-queries Q0, Q1, Q2 and Q3, where each Qi replaces the
fact table F by the primary copy of the partition FP(i) stored on node i. Suppose the
partitioning attribute of F is fpk and its values range from 1 to 4,000,000. Let us also
suppose that each partition FP(i) is equal-sized with respect to the range values of fpk.
Then, for FP(0), fpk ranges from 1 to 1,000,000; for FP(1), it ranges from 1,000,001
to 2,000,000; and so on. This way, the 4 sub-queries will be written to correspond to
the 4 FP(i) partitions as follows:

Q0: select max(F.a), min(F.b)

from F, D

where F.dfk = D.dpk

and D.x = 1

and F.fpk >= 1 and F.fpk < 1000001;
Q1: select max(F.a), min(F.b)

from F, D

where F.dfk = D.dpk

and D.x = 1

and F.fpk >= 1000001 and F.fpk < 2000001;
Q2: select max(F.a), min(F.b)

from F, D

where F.dfk = D.dpk

and D.x = 1

and F.fpk >= 2000001 and F.fpk < 3000001;
Q3: select max(F.a), min(F.b)

from F, D

where F.dfk = D.dpk

and D.x = 1

and F.fpk >= 3000001 and F.fpk < 4000001;
We can see this first phase is similar to what is done in SVP with respect to the
number of virtual partitions produced.

5.2 Sub-query processing

Once received by its DBC node i, each sub-query is locally re-written to process
smaller ranges of FP(i) according to AVP. AVP continuously divides the FP(i) range
into smaller ones and executes one different sub-query for each of them. As an ex-
ample, let us take sub-query Q2 assigned to run on node 2 that has the corresponding
primary copy of partition FP(2). Its fpk range [2,000,001; 3,000,000] is subdivided
by AVP producing new sub-queries locally processed by node 2. The fpk sub-range
covered by each sub-query is determined by AVP (more detail below). Then, if the
first range size is 1024, for example, the first Q2 sub-query is:

112 Distrib Parallel Databases (2009) 25: 97–123

Q21: select max(F.a), min(F.b)

from F, D

where F.dfk = D.dpk

and D.x = 1

and F.fpk >= 2000001 and F.fpk < 2001025;
If AVP determines the second range size is 2048, then the next Q2 sub-query is

Q22: select max(F.a), min(F.b)

from F, D

where F.dfk = D.dpk

and D.x = 1

and F.fpk >= 2001025 and F.fpk < 2003073;
The process continues until the entire range in FP(2) is processed.

The use of AVP makes it feasible to perform dynamic load balancing by using
non-intrusive techniques, i.e., treating the DBMS as a “black-box” component. This
way, when a node becomes idle, part of the non-processed range of a busy node can
be assigned to the idle node, if it contains a replica of the busy node partition. Let us
suppose node 3 becomes idle and that it contains FB(2), a backup replica of FP(2).
Let us also suppose node 2 has a heavy join processing between FP(2) and D and
still needs to process tuples with fpk ranging from 2,500,000 to 3,000,000. SmaQSS
divides the remaining range into two equal parts and assigns the second one to node
3. This way, node 2 will continue processing tuples with fpk ranging from 2,500,000
to 2,750,000, and node 3 will start processing tuples with fpk ranging from 2,750,001
to 3,000,000 on its local FB(2). The busy node (node 2) keeps the first half of the
remaining interval in order to take advantage of its database cache. If node 2 becomes
idle before node 3, the process is done again, this way dividing the remaining interval
in node 3 and assigning half of it to node 2. This is done without any data movement
between nodes.

On our experiments, very often this reassignment of ranges had to be done to bal-
ance the load between nodes. In this example, we mentioned we assumed equal-sized
partitions for the 4 initial ranges. However, this does not mean uniform node process-
ing time. Nodes processing time may vary according to the selectivity of predicate
“D.x = 1” on each partition. This becomes even worse when join selectivity between
F and D varies according to each dfk join attribute value distribution. Indeed, the
presence of skew in distributed and parallel query processing is almost bound to hap-
pen. Thus, solutions without load balancing or based on heavy data transfer are not
as efficient.

Figure 4 shows how AVP divides the local value range of the partitioning attribute
in a 4 node DBC. The initial query Q is divided into: Q0, Q1, Q2 and Q3. Then,
the interval in each Qi, 0 <= i <= 3, is divided again into smaller intervals Iij . In
this example, 1 <= j <= 6, but this number can be different for each node. Each
interval Iij is sequentially processed by one sub-query Qij at each node. If some
node finishes processing its j sub-queries and there are busy nodes with replicas of
its local partitions, it can help them by taking part of their non-processed intervals, as
explained above.

Distrib Parallel Databases (2009) 25: 97–123 113

Fig. 4 Overview of AVP on a 4-node DBC

One characteristic of AVP is that the intervals Iij are not equal-sized. We start
trying the idea of working with small virtual partitions in [14]. We used pre-defined
fixed-size small virtual partitions and obtained very good results. However, the main
problem not addressed in [14] is determining the size for such partitions. Each query
used during the experiments described in [14] employed a different partition size to
obtain the best performance. Those sizes were empirically obtained from many tests
we manually performed. So, using small virtual partitions turned out to be a good
approach, but we needed a way to automatically find virtual partition sizes that fit to
different kinds of queries and different node processing load.

The main goal of AVP is to automatically and dynamically adapt virtual partition
sizes whatever the sub-query to be processed, avoiding full scans and reducing the
time required to entirely process the initial workload. Different queries may benefit
from different virtual partition sizes. The same happens for the sub-queries. For this
reason, Iij intervals may not be equal-sized and each node runs the AVP algorithm
locally. As AVP does not “know” a priori the best size for each sub-query, it makes
some tries. It keeps varying the size in order to obtain good performance. The algo-
rithm is described in Fig. 5. Let us now show AVP basic principles and explain how
the algorithm works.

AVP starts with a small interval size. This way, it can avoid full relation scans at
the very beginning of the process. Otherwise, the threshold after which the DBMS
abandon clustered indexes and starts performing full relation scans should be pre-
cisely known. AVP sends to the DBMS a sub-query using such very small size and
keep track of the execution time. After first sub-query completion, the partition size
is increased. In our implementation, we double the size. A new sub-query is then
executed and the execution time is measured. Not all query processing phases exe-
cuted by a DBMS have their execution times determined by the amount of data to
be processed. Query parsing and optimization, for example, depend on query state-
ment complexity. So, if the number of sub-queries produced is huge, the amount of
time spent on processing these phases can hurt the performance. By keeping track of
sub-query execution times, AVP can roughly estimate after which point such query

114 Distrib Parallel Databases (2009) 25: 97–123

Fig. 5 AVP algorithm

processing phases do not significantly influence on total query execution time. If, for
example, it doubles the partition size and gets an execution time that is almost twice
the previous one, such point was found. Thus AVP stops increasing the size. The
process of increasing virtual partition sizes trying to find a “good” one is called the
searching phase of the algorithm.

The second phase of the algorithm is called monitoring phase. During this phase,
AVP executes sub-queries using the partition size found during the searching phase
and keeps track of their execution times. This is done because the partition size in use
may not be ideal to process the whole virtual partition that must be processed by the
node. System performance can deteriorate due to DBMS data cache misses, overall
system load increase, and/or data skew, i.e., the number of tuples associated to differ-
ent equal-sized intervals may vary (non-uniform data distribution). AVP determines
that performance is deteriorating when consecutive sub-query executions with higher
execution times are obtained. It may happen that the partition size obtained during
the searching phase is too large and has benefited from previous data cache hits, i.e.,
the algorithm could have found a local optimum. Due to its non-intrusive nature, it
is very hard to AVP to find a global optimum, i.e., a virtual partition size that can be
used to process the whole original interval with the best performance. In this case, it
may be better to shrink it. It gives AVP a chance to go back and inspect smaller par-
tition sizes. On the other hand, if performance deterioration was due to a casual and
temporary increase on system load or to data cache misses, keeping a small partition
size can lead to poor performance. To avoid such situation, after shrinking the virtual
partition size, AVP goes back to the searching phase and restarts increasing sizes. The
size increase factor used in this new size increasing operation is not necessarily the
same used on the beginning of the algorithm. We employ a smaller factor because we
assume the first search has probably led the algorithm to an adequate partition size.

From the description above, we can notice that AVP has many parameters that
must be set, like the initial virtual partition size, the size increasing factor used dur-
ing the searching phase, and so on. We still did not develop a way for automatically

Distrib Parallel Databases (2009) 25: 97–123 115

Table 4 AVP parameters

Parameter Value

Initial partition size 1024

Initial size increase factor 100%

Tolerated increase in execution time during searching phase 25% * sizeIncrFactor

Tolerated increase in execution time during monitoring phase 10%

Number of consecutive bad executions during monitoring phase 3

to conclude there is performance deterioration

Reduction on partition size when performance deterioration is detected 5%

Size increase factor after performance deterioration 20%

(new searching phase)

setting them up. During AVP development, we tried many different values, refined
them and chose the ones showed by Table 4, with which AVP showed the best perfor-
mance we could obtain. Such values were employed during the experiments described
in Sect. 6.

5.3 Dynamic load balancing

The dynamic load balancing technique implemented by QueCh is fully decentral-
ized. Each node independently and asynchronously executes the technique. When a
node finishes processing its sub-queries, it sends “help offering” messages to other
nodes. This way, according to the taxonomy of [21], we can classify the technique as
“event oriented”, “receiving” and “based on transfer” technique.

The “help offer” is limited by the number of replicas defined by the allocation
schema. When we define the set of nodes that can exchange messages, we are em-
ploying a neighborhood based technique. The neighborhood is determined by the
partition replica chain defined by chained declustering, as shown in Fig. 6. Such lim-
itation reduces the communication costs between nodes.

The load balancing algorithm is quite simple. The help offering node sequentially
sends messages to all nodes in its neighborhood. It follows the replica chain defined
by chained declustering, sending the first message to the node that contains the value
range nearest to its. Thus, due to this proximity, this node is probably the one that
will receive help.

If the receiving node is also idle, it simply ignores the message. Otherwise, it
sends a help acceptance message back to the offering node. This is done for every
help offering message received as there are no guarantees that the node will still be
idle when the help acceptance message arrives. The help offering node remains idle
until the first help acceptance message arrives.

According to the number of partition replicas it holds, a node can offer help to
more than one neighbor. Consequently, it may receive help acceptance messages from
more than one node. In such a case, those messages are queued according to some
queuing policy, i.e., a different value is associated to each of them and they will be
queued and processed according to the order determined by the adopted policy. As

116 Distrib Parallel Databases (2009) 25: 97–123

Fig. 6 Help offering messages during load balancing

our main goal in this work is not to make an exhaustive study about dynamic load
balancing, we implemented a simple policy and performed our experiments using it.
We employ the “Last In First Out” (LIFO) policy, which takes into account the or-
der under which each message arrives at the help offering node. Messages are then
decreasingly ordered and the first node to receive help is the one whose help accep-
tance message last arrived at the offering node. It is a simple technique that provided
very good results. More detailed experiments with other policies (such as “First In
First Out” (FIFO), “Most Workloaded First” (MWLF) and “Least Workloaded First”
(LWLF)) should be done in the future.

The load balancing technique takes the first message from the queue and checks
if the node which sent it still needs help. If not (which occurs if the message stands
a long time in the queue), the message is discarded and the next one is taken. If, oth-
erwise, the node still needs help, the offering node initiates the processes by asking
the busy node an interval to be processed. After receiving it, the offering node starts
processing the interval on its partition replica. During this process, new help accep-
tance messages may keep coming. In such a case, the offering node keeps queuing
them. When the offering node finishes processing its new interval, it takes another
message from the queue and the whole process restarts. If the queue becomes empty,
the offering node sends help offering messages to its neighbors again. Each node
stores its sub-query results. When all nodes are done and the whole process is fin-
ished, the results are sent to the coordinator for final result composition.

The existence of help acceptance messages from nodes that already finished their
tasks causes a waste of communication and processing. To minimize this problem,
QueCh has a parameter that indicates the maximum time during which a help accep-
tance message can stand in the queue. From time to time, the queue is scanned and

Distrib Parallel Databases (2009) 25: 97–123 117

the “old” messages are removed. The whole process is continuously executed until
all nodes have finished processing all their partitions. We did not perform exhaustive
experiments in order to determine the best time for a message to stay in the queue.
We intend to do that in the future.

6 Experimental validation

In order to evaluate QueCh, we implemented it into SmaQSS and run many query
processing experiments on a 32-node cluster from Grid’5000 [9]. Previous work [15]
showed excellent performance when physical partitioning of the fact tables with no
replication was employed. Only dimensions were replicated. In such a scenario, par-
allel sub-queries benefit from the partitioning design. Furthermore, there was no load
unbalancing between nodes during query processing due to the uniform data distrib-
ution verified in TPC-H database. This way, super-linear speedup was obtained with
minimum disk space utilization. For 32 nodes setup, only 19% of disk space required
for full replication was necessary for each node. However, a partitioning design that
has no data replication presents serious limitations as it reduces fault tolerance and
does not allow for dynamic load redistribution without data transfers.

In these experiments, our goal is to evaluate QueCh with the partitioning design
already employed for TPC-H database on previous works but with a different parti-
tion allocation schema and varying the number of replicas. We first ran experiments
using uniform partitions of the fact tables with no replication. Then, we generated
data partitions with different sizes. This unbalanced scenario, called “data skew sce-
nario”, requires an allocation schema that involves data replication in order to make
dynamic load balancing feasible. Furthermore, a data allocation schema that consid-
ers replication is more realistic as it increases fault tolerance.

This section is organized as follows. First, we describe the experimental setup.
Then we describe our distributed database design. Then we show experimental re-
sults obtained when QueCh is employed in scenarios with load unbalancing between
nodes and different numbers of fact table partition replicas. Finally, we discuss issues
in distributed database design.

6.1 Experimental setup

We evaluate QueCh performance by running TPC-H queries against SmaQSS on a
32-node PC cluster from Grid’5000 [9] located at INRIA-Rennes, France. Each clus-
ter node has two 2.4 GHz Intel Xeon processors, 1 GB RAM and 20 GB hard-disk.
Nodes are interconnected by 1 GB Ethernet network. Each node runs an instance of
the PostgreSQL 7.3.4 DBMS on Linux. SmaQSS is implemented in Java. It employs
the multithreading capabilities of Java to take advantage of the 2 processors of each
node. SmaQSS components communicate via Java RMI.

6.2 Distributed database design for TPC-H

During our experiments, we run different queries from the TPC-H benchmark. TPC-
H was employed because it represents decision support applications that issue ad-
hoc queries against the underlying database system [1]. The database was generated

118 Distrib Parallel Databases (2009) 25: 97–123

according to the benchmark specifications with a scale factor of 5, requiring 11 GB
of disk space.

The distributed design follows the specifications from Sect. 3. Dimension tables
are fully replicated on all nodes. Tuples from partitioned fact tables (Orders and
Lineitem) are physically ordered according to their partitioning attributes and clus-
tered indexes based on these attributes were built. We also created indexes for foreign
keys of all tables. As TPC-H queries are ad-hoc, no further optimizations were im-
plemented. All the optimizations implemented are allowed by the benchmark. Due to
the uniform value distribution verified for the partitioning attribute, we forced and ac-
centuate unbalance during partition size definitions. The number of replicas was also
not pre-determined. Our goal is to evaluate the effects of using different numbers of
replicas on performance.

6.3 QueCh performance evaluation

We evaluate the speedup obtained during query processing through QueCh, our dy-
namic load balancing technique. The following TPC-H queries were employed: Q1,
Q4, Q5, Q6, Q12, Q14, Q18 and Q21. We restrict our analysis to these queries be-
cause they have different characteristics and are quite representative of OLAP appli-
cations. Each query is executed three times for each kind of experiment, in order to
minimize load fluctuations caused by the operating system tasks. The results shown
by the tables in this section represent the arithmetic average of the execution times
obtained during the three executions. To ease reading, Table 5 shows the average
elapsed time for sequential executions of all queries, i.e., the elapsed time obtained
when only one node is employed, with no parallelism.

Two cluster configurations were employed during our experiments: the first with
16 nodes and the second with 32 nodes. We chose such configurations because they
are more sensitive to load unbalancing. For each configuration, queries were executed
in two scenarios: with uniform data partitions and with data skew (non-uniform par-
titions). The scenario with uniform partitions is considered ideal because there is
almost no load unbalancing between nodes during query processing and because it
requires minimum disk space, as there is no data replication. The data skew scenario
presents severe load unbalancing during query processing, thus requiring load redis-
tribution between nodes. For 16 nodes, the largest Lineitem partition has 9,660,189
tuples, while the smallest has 296,617 tuples. Besides, 9 partitions have less than
900,000 tuples. For 32 nodes, the largest partition has 5,355,957 tuples and the small-
est has 143,992. Besides, 23 partitions have less than 500,000 tuples. As we can see,
in both cases, the non-uniformity in data distribution is quite magnified.

For data skew experiments, we run experiments by doubling the number of par-
tition replicas from 1 (no replication) to 16 or 32 (full replication), according to the

Table 5 Sequential query processing times in seconds

Sequential execution Queries

Q1 Q4 Q5 Q6 Q12 Q14 Q18 Q21

Elapsed time 802.8 358.8 360.8 200,4 361.6 387.6 300.1 532.1

Distrib Parallel Databases (2009) 25: 97–123 119

configuration employed. This means that, for each execution, the number of replicas
in each node is doubled and allocated in different consecutive nodes, just as deter-
mined by chained declustering. Our goal with such experiments is to evaluate the
tradeoff between speedup and disk space utilization when compared to the ideal sce-
nario (uniform data partitions).

Table 6 gives the results obtained for the 16-node configuration. It shows, for each
query, the elapsed time obtained for the data skew scenario with different numbers of
replicas and for the uniform scenario (ideal). The worst cases are in the second col-
umn, which represents experiments with data skew and no replication, which makes
dynamic load balancing infeasible for QueCh.

Table 6 shows that the use of more replicas and dynamic load balancing accelerates
query processing, obtaining elapsed times closer to the ideal. When full replication is
adopted (16 replicas in 16 nodes) the elapsed time is even closer. The best cases were
obtained for queries Q1 and Q21, which were 3% and 7% faster than in the ideal
scenario, respectively. The worst cases were obtained for queries Q4 and Q14, which
were 2.31 and 3.24 times slower than in the ideal scenario. For all other queries,
the elapsed times were equal or less than 1.34 times the ideal time, showing a good
performance for the load balancing strategy implemented.

It is important to notice that, with only 4 replicas, elapsed times not superior to
3.42 times the ideal time were obtained, except for query Q14. However, Q14 takes 6
minutes to run sequentially. Such time falls down to a little more than 1 minute when
16 nodes and 4 replicas are employed, thus significantly accelerating the decision
making process.

Comparing Tables 5 and 6, we notice excellent performance improvement for all
queries running with 4 replicas, thus requiring only 25% of the disk space employed
with full replication. The elapsed execution times obtained with 16 nodes and 4 repli-
cas are, on average, 1/15 of the sequential elapsed time, which is very close to lin-
ear speedup. And it is verified on a scenario with severe load unbalancing between
nodes. In scenarios with less skew, the speedup obtained with our techniques tends
to be greater and very close to the ideal scenario with the additional benefit of raising
system availability, because of data replication.

Table 6 Elapsed time (in seconds) for parallel query processing on 16-node configuration with and with-
out data skew

Query Data skew with dynamic load balancing Uniform

variation on the number of replicas partitions

1 2 4 8 16

Q1 245 233 95 57 45 46

Q4 110 82 16 14 10 4

Q5 118 55 32 30 18 14

Q6 67 34 26 18 10 7

Q12 114 57 36 25 19 17

Q14 132 103 64 54 27 8

Q18 91 52 36 26 16 13

Q21 177 92 65 46 34 37

120 Distrib Parallel Databases (2009) 25: 97–123

Table 7 Elapsed time (in seconds) for parallel query processing on 32-node configuration with and with-
out data skew

Queries Data skew with dynamic load balancing Uniform

variation on the number of replicas partitions

1 2 4 8 16 32

Q1 133 85 60 44 32 25 23

Q4 59 12 11 9 9 6 2

Q5 85 31 25 24 19 12 8

Q6 36 23 14 11 8 6 4

Q12 57 31 22 19 14 13 8

Q14 82 57 39 37 35 16 4

Q18 51 31 20 17 13 11 7

Q21 103 64 43 34 26 21 18

Similar results were obtained for experiments with the 32 node configuration. The
elapsed times obtained are shown in Table 7, similar to Table 6, but with up to 32
replicas. It is very hard to obtain elapsed times lower than those presented by the
ideal scenario as the data partitions are small enough to fit into the DBMS data cache,
which benefits the consecutive executions of the queries which use them. Even in
these cases, good results were obtained by dynamic load balancing.

For 4 replicas, the elapsed times for all queries were equal or less than 3.85 times
the elapsed time for the ideal scenario, except for query Q14 (with elapsed time 8.15
times the ideal). It is worth remembering that all results obtained for the ideal scenario
yield super-linear speedup when compared to the sequential executions. Thus, what is
considered as ideal here is beyond the expectations of classic parallel processing. The
best cases are obtained for queries Q1, Q12 and Q21, with elapsed times close to 2.5
times the ideal one, requiring only 25% of the disk space needed for full replication.

In these experiments, the dynamic load balancing technique combined with full
replication yields performance that is equal or very close to the ideal for most of the
queries considered here. Considering the speedup, it is very close to linear (super-
linear for query Q14). Quantitatively, it represents elapsed times only 5 seconds su-
perior to the ideal one, on average. The worst case is verified for query Q14, which
required 12 seconds more than in the ideal scenario to be processed. For decision
support scenarios, such differences are not critical.

6.4 Issues in distributed database design

Our data partitioning design is based on primary and derived horizontal partitioning
for fact tables and no partitioning for dimensions. Due to the non-deterministic nature
of the techniques described here, we consider the results obtained very good. By
raising the number of partition replicas, we also raise the number of nodes that can
contribute to dynamic load balancing. However, the techniques cannot guarantee that
each node will effectively be helped during the process.

We can observe that the use of partitioning provides for high performance and
significantly improves data storage requirement and consistency maintenance. Using

Distrib Parallel Databases (2009) 25: 97–123 121

partition replicas is critical for parallel query processing with load unbalancing. It is
worth noticing that load unbalancing is almost unavoidable during parallel process-
ing. Through a simple technique that redistributes tasks between nodes that hold the
replicas of the same data partition, it is possible to obtain query processing times
very close to the ideal (with almost no load unbalancing). We observed that applying
chained declustering to distribute the replicas of the fragments does minimize hot
spots and the overload of specific nodes.

On average, the use of 16 nodes with no replication on a scenario with severe load
unbalancing obtained query elapsed times only 1/3 faster than the sequential times.
With 4 replicas and the load balancing technique, such times are close to 1/15 of the
sequential time, on average. This is a very significant speedup for parallel processing.

The results obtained show that the distributed design approach adopted and the dy-
namic load balancing implemented make it possible to obtain good performance with
no full database replication. Previous works employ full replication or no replication
at all. However, with our solution, the number of replicas employed depends on the
parallel environment available for OLAP applications. The disk space required and
the cost of the updates on the OLAP database must be taken into account. For TPC-H,
as shown by our experiments, we consider the use of 4 replicas for each partition a
good allocation strategy.

7 Conclusion

In this paper, we presented efficient distributed database design strategies for DBC
which combine virtual and physical fragmentation with partial replication. We pro-
posed a new load balancing strategy that takes advantage of the replicas to redis-
tribute the load. The main idea behind this strategy is the use of dynamic adaptive
virtual partitioning as opposed to defining very small physical partitions. Adaptive
virtual partitioning gives much flexibility in defining the size of the partitions while
keeping the number of physical partitions small. Thus, managing physical partitions
and their replicas is simple. Another advantage of virtual partitioning is to take ad-
vantage of the DBMS cache content of a large physical partition, as evidenced in our
experiments.

The flexibility of virtual partitioning is very important due to the different types
of skew that can occur during query processing. Defining the size of a small physical
partition that is efficient for all kinds of ad-hoc OLAP queries and non-uniform values
is a complex issue. With adaptive virtual partitioning, the size of the partition can
enlarge or shrink depending on the kind of skew as well as the load of the processor
nodes.

The use of parallel query processing techniques (in particular, intra-query paral-
lelism), physical data partitioning and an allocation strategy that uses only one replica
of each primary partition is enough to obtain performance gains during query process-
ing when compared to sequential environments. However, if disk space is not an issue,
using more replicas yields better performance improvement, in particular when there
is severe load unbalancing between cluster nodes during query processing.

122 Distrib Parallel Databases (2009) 25: 97–123

We evaluated different partition replication strategies by considering scenarios
with severe load unbalancing conditions between nodes, ranging from no replica-
tion to full replication. Significant performance gains are obtained when four replicas
of each partition are employed. However, the appropriate number of replicas for each
application environment depends on factors like disk space availability, degree of
fault tolerance needed and costs related to data updates which are usually not critical
for OLAP applications. Our results show that there is room to improve the load bal-
ancing strategy. However, the superlinear results obtained have directed us to keep
the solution simple and effective, not necessarily with the highest performance that
can be achieved.

The QueCh techniques proposed here are being implemented into ParGRES [7],
our open source DBC middleware which supports data updates. ParGRES has an
SQL3 parser that allows transparent query rewriting and result composition. The
download version of ParGRES currently relies on full database replication to im-
plement dynamic load balancing and could benefit from partial replication. We have
started this effort with a preliminary implementation on ParGRES, where we eval-
uated the techniques presented in this paper with a real database from the Brazilian
census. Unlike TPC-H, this dataset has a lot of skew within its attribute values and
joins. By issuing typical user queries, we confirmed the efficiency of this approach by
obtaining very good superlinear results while keeping low costs [22]. We also intend
to explore QueCh techniques in the context of data grids in GParGRES [23].

Acknowledgements This work was partially supported by CNPq and INRIA. The experiments pre-
sented in this paper were carried out using the Grid’5000 experimental testbed. The authors are grateful to
the Grid’5000 team.

References

1. TPC: TPC BenchmarkTM H—Revision 2.3.0. Transaction Processing Performance Council.
http://www.tpc.org/tpch (2008). Accessed 20 April 2008

2. Valduriez, P.: Parallel database systems: open problems and new issues. Int. J. Distrib. Parallel Data-
bases 1(2), 137–165 (1993)

3. Akal, F., Böhm, K., Schek, H.-J.: OLAP query evaluation in a database cluster: a performance study
on intra-query parallelism. In: Proceedings of the 6th East European Conference on Advances in
Databases and Information Systems. LNCS, vol. 2435, pp. 218–231. Springer, Berlin (2002)

4. Özsu, T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice Hall, Engle-
wood Cliffs (1999)

5. Röhm, U., Böhm, K., Schek, H.-J.: OLAP query routing and physical design in a database cluster.
In: Proceedings of the 7th International Conference on Extending Database Technology. LNCS, vol.
1777, pp. 254–268. Springer, Berlin (2000)

6. Miranda, B., Lima, A.A.B., Valduriez, P., Mattoso, M.: Apuama: combining intra-query and inter-
query parallelism in a database cluster. In: Proceedings of the EDBT workshops. LNCS, vol. 4254,
pp. 649–661. Springer, Berlin (2006)

7. Mattoso, M., Silva, G.Z., Lima, A.A.B., Baião, F.A., Braganholo, V.P., Aveleda, A., Miranda, B.,
Almentero, B.K., Costa, M.N.: ParGRES: middleware para processamento paralelo consultas OLAP
em clusters de Banco de dados. In: Proceedings of the 21st Brazilian Symposium on Databases—2nd
Demo Session, pp. 19–24, 2006

8. Lima, A.A.B., Mattoso, M., Valduriez, P.: Adaptive virtual partitioning for OLAP query processing in
a database cluster. In: Proceedings of the 19th Brazilian Symposium on Databases, pp. 92–105, 2004

http://www.tpc.org/tpch

Distrib Parallel Databases (2009) 25: 97–123 123

9. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot, E., Lanteri, S., Leduc,
J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard, O.: Grid5000: a large scale and highly re-
configurable grid experimental testbed. In: Proceedings of the 6th IEEE/ACM International Workshop
on Grid Computing, pp. 99–106, 2005

10. PostgreSQL, PostgreSQL DBMS. http://www.postgresql.org (2008). Accessed 11 April 2008
11. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-JDBC: flexible database clustering middleware. In:

Proceedings of the annual conference on USENIX Annual Technical Conference, pp. 26–26, 2004
12. MySQL: A guide to high availability clustering—how MySQL supports 99,999% Availability.

MySQL AB. http://www.mysql.com/why-mysql/white-papers/cluster.php (2004). Accessed 10 April
2008

13. PGCluster, PG-Cluster: the multi-master synchronous replication system for PostgreSQL.
http://pgcluster.projects.postgresql.org/ (2005). Accessed 11 April 2008

14. Lima, A.A.B., Mattoso, M., Valduriez, P.: OLAP query processing in a database cluster. In: Proceed-
ings of the 10th International Euro-Par Conference. LNCS, vol. 3149, pp. 355–362. Springer, Berlin
(2004)

15. Furtado, C., Lima, A.A.B., Pacitti, E., Valduriez, P., Mattoso, M.: Physical and virtual partitioning in
OLAP database clusters. In: Proceedings of the 17th International Symposium on Computer Archi-
tecture on High Performance Computing, pp. 143–150, 2005

16. Furtado, P.: Replication in node partitioned data warehouses. In: VLDB Workshop on Design, Imple-
mentation, and Deployment of Database Replication, 2005

17. Furtado, P.: Node partitioned data warehouses: experimental evidence and improvements. J. Database
Manag. 17(2), 42–60 (2006)

18. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for parallel data warehouses.
In: Proceedings of the 26th International Conference on Very Large Databases, pp. 273–284, 2000

19. Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning selection in a data
warehouse. In: Proceedings of the 7th International Conference DaWaK. LNCS, vol. 3589, pp. 115–
125. Springer, Berlin (2005)

20. Hsiao, H., DeWitt, D.J.: Chained declustering: a new availability strategy for multiprocessor database
machines. In: Proceedings of 6th International Data Engineering Conference, pp. 456–465, 1990

21. Plastino, A., Ribeiro, C.C., Rodriguez, N.: Developing SPMD applications with load balancing. Par-
allel Comput. 29(6), 743–766 (2003)

22. Paes, M., Lima, A.A.B., Valduriez, P., Mattoso, M.: High performance query processing of a real-
world OLAP database with ParGRES. In: Proceedings of the 8th International Conference VECPAR.
LNCS, vol. 5336, pp. 188–200. Springer, Berlin (2008)

23. Kotowski, N., Lima, A.A.B., Pacitti, E., Valduriez, P., Mattoso, M.: Parallel query processing for
OLAP in grids. Concurr. Comput. Pract. Exp. 20(17), 2039–2048 (2008)

http://www.postgresql.org
http://www.mysql.com/why-mysql/white-papers/cluster.php
http://pgcluster.projects.postgresql.org/

	Parallel OLAP query processing in database clusters with data replication
	Abstract
	Introduction
	Related work
	Query processing with virtual partitioning
	Virtual partitioning definition
	Using VP to process queries with aggregate functions
	Virtual partitioning requirements for obtaining high-performance
	Query requirements for using virtual partitioning

	Distributed database design for OLAP in database clusters
	Partitioning design
	Partition allocation through chained declustering

	Query processing with dynamic load balancing
	Query splitting
	Sub-query processing
	Dynamic load balancing

	Experimental validation
	Experimental setup
	Distributed database design for TPC-H
	QueCh performance evaluation
	Issues in distributed database design

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

