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Abstract— SUM queries are crucial for many applications that need to deal with uncertain data. In this paper, we are interested in the 
queries, called ALL_SUM, that return all possible sum values and their probabilities. In general, there is no efficient solution for the problem 
of evaluating ALL_SUM queries. But, for many practical applications, where aggregate values are small integers or real numbers with small 
precision, it is possible to develop efficient solutions. In this paper, based on a recursive approach, we propose a new solution for this 
problem. We implemented our solution and conducted an extensive experimental evaluation over synthetic and real-world data sets; the 
results show its effectiveness. 
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1 INTRODUCTION 
Aggregate (or aggr for short) queries, in particular SUM 
queries, are crucial for many applications that need to 
deal with uncertain data  [14] [20] [28]. Let us give two 
motivating examples from the medical and environ-
mental domains. 

Example 1: Reducing the usage of pesticides. Consider 
a plant monitoring application on which we are working 
with scientists in the field of agronomy. The objective is to 
observe the development of diseases and insect attacks in 
the agricultural farms by using sensors, aiming at using 
pesticides only when necessary. Sensors periodically send 
to a central system their data about different measures 
such as the plants contamination level (an integer in 
[0..10]), temperature, moisture level, etc. However, the 
data sent by sensors are not 100% certain. The main rea-
sons for the uncertainty are the effect of climate events on 
sensors, e.g. rain, unreliability of the data transmission 
media, etc. The people from the field of agronomy with 
which we had discussions use some rules to define a de-
gree of certainty for each received data. A decision sup-
port system will analyze the sent data, and trigger a pesti-
cide treatment when the sum of contamination since the 
last treatment is higher than a threshold with a high 
probability. An important query for the decision support 
system is “given a contamination threshold s, what is the 
cumulative probability that the contamination sum be 
higher than s?”. The treatment starts when the query 
result is higher than a predefined probability. 
 

Example 2: Remote health monitoring. As another ex-
ample, we can mention a medical center that monitors 
key biological parameters of remote patients at their 

* Work partially sponsored by the DataRing project of the Agence 

Nationale de la Recherche. 

Possible Worlds Prob. SUM 
w1={t 1,t2,t3} 0.16 3 
w2={t 1,t2} 0.16 1 
w3={t 1,t3} 0.24 3 
w4={t 2,t3} 0.04 2 
w5={t 1} 0.24 1 
w6={t 2} 0.04 0 
w7={t 3} 0.06 2 
w8={} 0.06 0 
Figure 2.  The possible worlds and the results of SUM 
query in each world, for the database of Figure 1. 

 

 

  
Figure 3. Cumulative distribution function for the SUM 
query results over the database shown in Figure 1. 

Tuple  
Patient Required 

nurses 
… 

Probability 

t1 PID1 1 … 0.8 
t2 PID2 0 … 0.4 
t3 PID3 2 … 0.5 

Figure 1. Motivating example 
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homes, e.g. using sensors in their bodies. The sensors 
periodically send to the center the patients’ health data, 
e.g. blood pressure, hydration levels, thermal signals, etc. 
For high availability, there are two or more sensors for 
each biological parameter. However, the data sent by 
sensors are uncertain, and the sensors that monitor the 
same parameter may send inconsistent values. There are 
approaches to estimate a confidence value for the data 
sent by each sensor, e.g. based on their precision  [15]. 
According to the data sent by the sensors, the medical 
application computes the number of required human 
resources, e.g. nurses, and equipments for each patient. 
Figure 1 shows an example table of this application. The 
table shows the number of required nurses for each pa-
tient. This system needs to have sufficient human re-
sources in order to assure its services with a high prob-
ability. One important query for the system is “given a 
threshold s, return the cumulative probability that the 
sum of required nurses be at most s”. 

Based on the data in Figure 1, we show in Figure 2 the 
possible worlds, i.e. the possible database instances, their 
probabilities, and the result of the SUM query in each 
world.  In this example, there are 8 possible worlds and 
four possible sum values, i.e. 0 to 3. 

In this paper, we are interested in the queries that re-
turn all possible sum values and their probabilities. This 
kind of query, which we call ALL_SUM, is also known as 
sum probability distribution. For instance, the result of 
ALL_SUM (required nurses) for the database shown in 
Figure 1 is {(3, 0.40), (2, 0.10), (1, 0.40), (0, 0.10)}, i.e. for 
each possible SUM result, we return the result and the 
probability of the worlds in which this result appears. For 
instance, the result sum=3 appears in the worlds w1 and 
w3, so its probability is equal to P(w1) + P(w3) = 0.16 + 0.24 
= 0.40. 

By using the results of ALL_SUM, we can generate the 
cumulative distribution functions, which are important 
for many domains, e.g. scientific studies. For example to 
answer the query stated in Erreur ! Argument de commu-
tateur inconnu., we need to be able to compute the cumu-
lative probability for possible contamination sums that 
are higher than the threshold s. Similarly, for the query 
described in Erreur ! Argument de commutateur incon-
nu., we should compute the cumulative probability when 
the sum value is lower than or equal to the threshold. In 

Figure 1, by using the results of ALL_SUM, the cumula-
tive distribution function of sum values over the data of 
Figure 1 is depicted. 

A naïve algorithm for evaluating ALL_SUM queries is 
to enumerate all possible worlds, compute sum in each 
world, and return the possible sum values and their ag-
gregated probability. However, this algorithm is expo-
nential in the number of uncertain tuples. 

In this paper, we deal with ALL_SUM queries and 
propose pseudo-polynomial algorithms that are efficient 
in many practical applications, e.g. when the aggr attrib-
ute values are small integers or real numbers with small 
precision, i.e. small number of digits after decimal point. 
These cases cover many practical aggregate attributes, e.g. 
temperature, blood pressure, needed human resources 
per patient in medical applications. To our knowledge, 
this is the first proposal of an efficient solution for return-
ing the exact results of ALL_SUM queries. 

1.1 Contributions 
In this paper, we propose a complete solution to the prob-
lem of evaluating SUM queries over probabilistic data: 
• We first propose a new recursive approach for evalu-

ating ALL_SUM queries, where we compute the sum 
probabilities in a database based on the probabilities 
in smaller databases. 

• Based on this recursive approach, we propose a 
pseudo-polynomial algorithm, called DP_PSUM that 
efficiently evaluates ALL_SUM queries for the appli-
cations where the aggr attribute values are small inte-
gers or real numbers with small precision. For exam-
ple, in the case of positive integer aggr values, the exe-
cution time of DP_PSUM is O(n2×avg) where n is the 
number of tuples and avg is the average of the aggr 
values.  

• Based on this recursive approach, we propose an algo-
rithm, called Q_PSUM, which is polynomial in the 
number of SUM results. 

• We validated our algorithms through implementation 
over synthetic and real-world data sets; the results 
show the effectiveness of our solution.  

The rest of the paper is organized as follows. In Section 
2, we present the probabilistic data models, which we 
consider and define formally the problem we address. In 
Sections 3 and 4, we describe our Q_PSUM and 
DP_PSUM algorithms for evaluating ALL_SUM queries 
under a simple and frequently used model. In Sections 5 
and 6, we extend our solution for a more complex model 
with some correlations. We also extend our solution for 
evaluating COUNT queries in Section 6. In Section 7, we 
report on our experimental validation over synthetic and 
real-world data sets. Section 8 discusses related work. 
Section 9 concludes and gives some directions for future 
work. 

2 PROBLEM DEFINITION 
In this section, we first introduce the probabilistic data 

Tuple  Probability  

t1 p1 

t2 p2 

… … 

(a) 

Tuple  Possible values of aggr attribute, 
and their probabilities 

t1 (v1,1, p1,1), (v1,2, p1,2), …, (v1,m1, p1,m1) 
t2 (v2,1, p2,1), (v2,2, p2,2), …, (v2, m2, p2,m2) 
… … 

(b) 
Figure 4. Probabilistic data models; a) Tuple-level; b) 
Attribute-level model   
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models that we consider. Then, we formally define the 
problem that we address. 

2.1 Probabilistic Models 
The two main models, which are frequently used in our 
community, are the tuple-level and attribute-level models 
 [9]. These models, which we consider in this paper, are 
defined as follows. 

Tuple-level model. In this model, each uncertain table 
T has an attribute that indicates the membership probability 
(also called existence probability) of each tuple in T, i.e. 
the probability that the tuple appears in a possible world. 
In this paper, the membership probability of a tuple ti is 
denoted by p(ti). Thus, the probability that ti does not 
appear in a random possible world is 1- p(ti). The data-
base shown in Figure 4.a is under tuple-level model. 

Attribute-level model. In this model, each uncertain 
tuple ti has at least one uncertain attribute, e.g. α, and the 
value of α in ti is chosen by a random variable X. We as-
sume that X has a discrete probability density function 
(pdf). This is a realistic assumption for many applications 
 [9], e.g. sensor readings  [12] [22]. The values of α in ti are m 
values vi,1, …, vi,m with probabilities pi,1, …, pi,m respec-
tively (see Figure 4.b). Note that for each tuple we may 
have a different pdf. 

The tuples of the database may be independent or cor-
related. In this paper, we first present our algorithms for 
databases in which tuples are independent. We extend 
our algorithms for correlated databases in Section  6.1. 

2.2 Problem Definition 
ALL_SUM query is defined as follows. 

Definition 1: ALL_SUM query. It returns all possible 
sum results together with their probability. In other 
words, for each possible sum value, ALL_SUM returns 
the cumulative probability of the worlds where the value 
appears as a result of the query.   

Let us now formally define ALL_SUM queries. Let D 
be a given uncertain database, W the set of its possible 
worlds, and P(w) the probability of a possible world 

w∈W. Let Q be a given aggr query, f the aggr function 
stated in Q (i.e. SUM), f(w) the result of executing Q in a 

world w∈W, and VD,f the set of all possible results of exe-

cuting Q over D, i.e. VD,f = {v ∃w∈W ∧ f(w)=v}. The cumu-
lative probability of having a value v as the result of Q 
over D, denoted as P(v, Q, D), is computed as follows:  

 
       

P(v,Q,D) = P(w)
w∈W and
f (w)=v

∑  

Our objective in this paper is to return the results of 
ALL_SUM as follows: 

         ALL_SUM (Q, D) = {(v, p)   v∈VD,f ∧ p= P(v, Q, D)} 

3 ALL_SUM UNDER TUPLE-LEVEL MODEL 
In this section, we propose an efficient solution for evalu-
ating ALL_SUM queries. We first propose a new recur-
sive approach for computing the results of ALL_SUM. 
Then, using the recursive approach we propose our 
Q_PSUM algorithm.   

We assume that the database is under the tuple-level 
model defined in the previous section. Our solution is 
extended for the attribute-level model in Section  5. We 
adapt our solution to process COUNT queries in Section 
 6.3. 

3.1 Recursive Approach 
We develop a recursive approach that produces the re-
sults of ALL_SUM queries in a database with n tuples 
based on the results in a database with n-1 tuples. The 
principle behind it is that the possible worlds of the data-
base with n tuples can be constructed by adding / not 
adding the nth tuple to the possible worlds of the data-
base with n-1 tuples.  

 Let DBn be a database involving the tuples t1, …, tn, 
and ps(i,n) be the probability of having sum = i in DBn, We 
develop a recursive approach for computing ps(i, n). 

SUM values and their probabilities in 
DBn-1, i.e. a db containing tuples t1, …, 
tn-1 : 

  
0 : ps(0, n-1) 
1 : ps(1, n-1) 
… 
i : ps(i, n-1) 
… 

 

DBn-1 

0 : ps(0, n-1) × (1 - p(tn)) 
1 : ps(1, n-1) × (1 - p(tn)) 
… 
i : ps(i, n-1)  × (1 - p(tn)) 
… 
 

0 : 0 
… 
val(tn) – 1 : 0 
val(tn) : ps(0, n-1) × p(tn) 
i : ps(i - val(tn), n-1) × p(tn), if i≥ val(tn) 
… 
 

SUM values and their probabilities in DBn 

DBn 

In W1
n, i.e. worlds not containing 

In W2
n, i.e. worlds containing tn 

Add tuple 
tn to the db 

 
 

Figure 5. Recursively computing the probabilities of SUM 
values by adding the nth tuple, i.e. tn, to a db containing n-1 
tuples, i.e. DBn-1. The function ps(i, n) denotes the probabil-
ity of having sum = i in DBn. The value val(tn) is the aggr 
value of tuple tn.  
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3.1.1 Base 
Let us first consider the recursion base. Consider DB1, i.e. 
the database that involves only tuple t1. Let p(t1) be the 
probability of t1, and val(t1) be the value of t1 in aggr at-
tribute. In DB1, there are two worlds: 1) w1={}, in which t1 
does not exist, so its probability is (1- p(t1)); 2) w2={t1}, in 
which t1 exists, so the probability is p(t1). In w1, we have 
sum=0, and in w2 we have sum=val(t1). If val(t1) = 0, then 
we always have sum=0 because in both w1 and w2, sum is 
zero. Thus, in DB1, ps(i, 1) can be written as follows: 
 

ps( i,1) =

p( t1) if i = val ( t1) and val( t1) ≠ 0

1 − p( t1) if i = 0 and val( t1) ≠ 0

1 if i = val ( t1) = 0 (1)

0 otherwise

 

 
 
 

 
 
 

 

3.1.2 Recursion Step 
Now consider DBn-1 , i.e. a database involving the tuples 
t1, …, tn-1. Let Wn-1 be the set of possible worlds in DBn-1.  

We construct DBn by adding tn to DBn-1. Notice that the 
set of possible worlds in DBn, denoted by Wn, is con-
structed by adding / not adding the tuple tn to each 
world of Wn-1. Thus, in Wn, there are two types of worlds 
(see Figure 5): 1) the worlds that do not contain tn, de 

noted as Wn
1; 2) the worlds that contain tn, denoted as 

Wn
2.  
For each world w∈ Wn

1, we have the same world in 
DBn-1, say w'. Let p(w) and p(w') be the probability of 
worlds w and w'. The probability of w, i.e. p(w), is equal to 
p(w')×(1 – p(tn)), because tn does not exist in w even 
though it is involved in the database. Thus, in Wn

1 the 

sum values are the same as in DBn-1, but the probability of 
sum=i in Wn

1 is equal to the probability of having sum=i in 
DBn-1 multiplied by the probability of non-existence of tn. 
In other words, we have: 

In Wn
1: (probability of sum=i) = ps(i, n-1)×(1 – p(tn))            

(2) 
Let us now consider Wn

2. The worlds involved in Wn
2 

are constructed by adding tn to each world of DBn-1. Thus, 
for each sum value equal to i in DBn-1 we have a sum 
value equal to (i + val(tn)) in Wn

2, where val(tn) is the value 
of aggr attribute in tn. Therefore, the probability of sum= i 
+ val(tn) in Wn

2 is equal to the probability of sum=i in DBn-1 
multiplied by the existence probability of tn. In other 
words, we have: 
In Wn

2: (probability of sum=i) = ps(i - val(tn), n-1)×p(tn)       
(3) 

The probability of sum=i in DBn is equal to the prob-
ability of sum=i in Wn

1 plus the probability of sum=i in 
Wn

2. Thus, using the Equations 2 and 3, and using the 
base of the recursion, i.e. Equation 1, we obtain the fol-
lowing recursive formula for the probability of sum=i in 
DBn, i.e. ps(i, n) : 

ps(i,n) =

ps(i,n−1)×(1− p(tn))+ ps(i −val(tn),n−1)× p(tn) if n >1

1− p(t1) if n =1and i=0and val(t1) ≠0

p(t1) if n =1and i=val(t1) and val(t1) ≠0

1 if n =1and i=val(t1)=0 (4)

0 otherwise

 

 

 
  

 

 
 
 

 

 
Based on the above recursive formula, we can develop 

a recursive algorithm for computing the probability of 
sum=i in a database containing tuples t1, …, tn (see the 
pseudocode in Figure 6). However, the execution time of 
the algorithm is exponential in the number of uncertain 
tuples, i.e. due to the two recursive calls in the body of the 
algorithm.  

3.2 Q_PSUM Algorithm 
In this section, based on our recursive definition, we pro-
pose an algorithm, called Q_PSUM, whose execution time 
is O(n × N) where n is the number of uncertain data, and 
N is the number of distinct sum values.  

Q_PSUM uses a list for maintaining the computed pos-
sible sum values and their probabilities. It fills the list by 
starting with DB1, i.e. a database containing only t1, and 
then it gradually adds other tuples to the database and 
updates the list.  

Let Q be a list of pairs (i, ps) such that i is a possible 
sum value and ps its probability. The Q_PSUM algorithm 
proceeds as follows (see the pseudocode in Appendix C). 
It first initializes Q for DB1 by using the base of the recur-
sive definition. If val(t1) = 0, then it inserts (0, 1) into Q, 
else it inserts (0, 1 - p(t1)) and (val(t1), p(t1)). By inserting a 
pair to a list, we mean adding the pair to the end of the 
list. 

Then, in a loop, for j=2 to n, the algorithm adds the tu-
ples t2 to tn to the database one by one, and updates the 
list by using two temporary lists Q1 and Q2 as follows. For 

Algorithm PS(i, n)  

Input: 

  n : number of tuples; 

  t1, …, tn : the tuples of the database; 

  p(t) : a function that returns the probability of tuple t; 

Output:  

  Probability of sum=i in a database containing t1, …, tn; 

Begin 

 If (n > 1) then  

    Return PS(i, n-1)×(1 – p(tn)) + PS(i - val(tn), n-1)×p(tn); 

 Else If ((n=1) and (i=val(t1)) and (val(t1) ≠0)) then  

    Return p(t1); 

 Else If ((n=1) and (i=0) and (val(t1) ≠0)) then 

    Return  1- p(t1); 

 Else  If ((n=1) and (i=val(t1)=0)) then 

    Return 1; 

 Else Return 0; 

End; 

Figure 6.  Recursive algorithm for computing the 
probability of sum=i in a database containing t1, …, 
tn. 
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each tuple tj, Q_PSUM removes the pairs involved in Q 
one by one from the head of the list, and for each pair (i, 
ps)∈Q, it inserts (i, ps×(1 – p(tj)) into Q1 and (i+val(tj), 
ps×p(tj)) into Q2. Then, it merges the pairs involved in Q1 
and Q2, and inserts the merged results into Q.  

The merging is done on the sum values of the pairs. 
That means that for each pair (i, ps1)∈Q1 if there is a pair 
(i, ps2) ∈Q2, i.e. with the same sum value, then Q_PSUM 
removes the pairs from Q1 and Q2 and inserts (i, ps1 + ps2) 
into Q. If there is (i, ps1)∈Q1 but there is no pair (i, ps2) 
∈Q2, then it simply removes the pair from Q1 and inserts 
it to Q.  

Let us now analyze the complexity of Q_PSUM. Let N 
be the number of possible (distinct) sum results. Suppose 
the lists are implemented using a structure such as linked 
list (with pointers to the head and tail of the list). The cost 
of inserting a pair to the list is O(1), and merging two lists 
is done in O(N)1. For each tuple, at most N pairs are in-
serted to the lists Q1 and Q2, and this is done in O(N). The 
merging is done in O(N). There are n tuples in the data-
base, thus the algorithm is executed in O(n × N). The 
space complexity of the algorithm is O(N), i.e. the space 
needed for the lists. 

4 DP_PSUM ALGORITHM 
In this section, using the dynamic programming tech-
nique, we propose an efficient algorithm, called 
DP_PSUM, designed for the applications where aggr 
values are integer or real numbers with small precisions. 
It is usually much more efficient than the Q_PSUM algo-
rithm (as shown by the performance evaluation results in 
Section  4.5).  

Let us assume, for the moment, that the values of aggr 
attribute are positive integer numbers. In Section  4.3, we 
adapt our algorithm for real numbers with small preci-
sions, and in Section  4.4, we deal with negative integer 
numbers. 

4.1 Basic Algorithm 
Let MaxSum be the maximum possible sum value, e.g. for 
positive aggr values MaxSum is the sum of all values. 
DP_PSUM uses a 2D matrix, say PS, with (MaxSum + 1) 
rows and n columns. DP_PSUM is executed on PS, and 
when it ends, each entry PS[i, j] contains the probability of 
sum=i in a database involving tuples t1, …, tj. 

DP_PSUM proceeds in two steps as follows (the pseu-
docode is shown in Appendix C). In the first step, it ini-
tializes the first column of the matrix. This column repre-
sents the probability of sum values for a database involv-
ing only the tuple t1. DP_PSUM initializes this column 
using the base of our recursive formula (described in 
Equation 1) as follows. If val(t1) = 0, then PS[0, 1] = 1. 
Otherwise, PS[0, 1] = (1 – p(t1)) and PS[val(t1), 1] = p(t1). 
The other entries of the first column should be set to zero, 
i.e. PS[i, 1] = 0 if i≠0 and i≠val(t1). 

In the second step, in a loop, DP_PSUM sets the values 

 
1 Notice that the pairs involved in Q1 and Q2 are systematically ordered 

according to sum values, because they follow the same order as the 
values in Q which is initially sorted. 

of each column j (for j=2 to n) by using our recursive 
definition (i.e. Equation 4) and based on the values in 
column j-1 as follows:  

PS[i, j] = PS[i, j-1]×(1 – p(tj)) + PS[i – val(tj), j-1] ×p(tj)  
Notice that if  (i < val(tj)), then for the positive aggr 

values we have PS[i – val(tj), j-1]=0, i.e. because there is no 
possible sum value lower than zero. This is why, in the 
algorithm only if (i ≥ val(tj)), we consider PS[i – val(tj), j-1] 
×p(tj) for computing PS[i, j]. 

Theorem 1. DP_PSUM works correctly if the database is under 
the tuple-level model, and the aggr attribute values are positive 
integers, and their sum is less than or equal to MaxSum.  

Proof. Implied by using the recursive formula in Equa-
tion 4. □ 

Let us now illustrate DB_PSUM using the following 
example. 

Example 3. Figure 7.b shows the execution of 
DP_PSUM over the database shown in Figure 7.a. In the 
first column, we set the probability of sum values for DB1, 
i.e. a database that only involves t1. Since the aggr value 
of t1 is equal to 1 (see Figure 7.a), in DB1 there are two 
possible sum values, sum=1 and sum=0 with probabilities 
0.3 and (1 – 0.3) = 0.7 respectively. The probabilities in 
other columns, i.e. in 2nd and 3rd, are computed using our 
recursive definition. After the execution of the algorithm, 
the 3rd column involves the probability of sum values in 
the entire database. If we compute ALL_SUM by enu-
merating the possible worlds, we obtain the same results. 

4.2 Complexity 
Let us now discuss the complexity of DP_PSUM. The first 
step of DP_PSUM is done in O(MaxSum), and its second 
step in O(n×MaxSum). Thus, the time complexity of 
DP_PSUM is O(n×MaxSum), where n is the number of 
uncertain tuples and MaxSum the sum of the aggr values 
of all tuples. Let avg be the average value of aggr values 
of tuples, then we have MaxSum = n×avg. Thus, the com-
plexity of DP_PSUM is O(n2×avg) where avg is the aver-
age of the aggr values in the database.  

Notice that if avg is a small number compared to n, 
then DP_PSUM is done in a time quadratic to the input. 
But, if avg is exponential in n, then the execution time 
becomes exponential. Therefore, DP_PSUM is a pseudo 
polynomial algorithm. 

The space requirement of DP_PSUM is equivalent to a 
matrix of (MaxSum + 1) × n, thus the space complexity is 
O(n2×avg). In Section  4.2.1, we reduce the space complex-
ity of DP_ PSUM to O(n×avg). 

4.2.1 Reducing space complexity  
In the basic algorithm of DP_PSUM, for computing 

each column of the matrix, we use only the data that are 
in the precedent column. This observation gave us the 
idea of using two arrays instead of a matrix for comput-
ing ALL_SUM results as follows. We use two arrays of 
size (MaxSum + 1), e.g. ar1 and ar2. First, we initialize ar1 
using the recursion base (like the first step of the basic 
version). Then, for i =2, …, n steps, DP_PSUM fills ar2 
using the probabilities in ar1, based on the recursion step, 
then it copies the data of ar2 into ar1, and starts the next 
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step. Instead of copying the data from ar2 into ar1, we can 
simply change the pointers of ar1 to that of ar2, and renew 
the memory of ar2.  

The space requirement of this version of DP_PSUM is 
O(MaxSum) which is equivalent to O(n×avg) where avg is 
the average value of aggr values. 

4.3 Supporting real attribute values with small 
precisions 

In many applications that work with real numbers, the 
precision of values, i.e. the number of digits after decimal 
point, is small. For example, in medical applications the 
temperature of patients requires real values with one 
digit of precision. DP_PSUM can be adapted to work for 
those applications as follows. Let DB be the input data-
base, and c be the number of precision digits in the aggr 
values. We generate a new database DB' as follows. For 
each tuple t in the input database DB, we insert a tuple t' 
to DB' such that the aggr value of t', say v', is equal to the 
aggr value of t, say v, multiplied by 10c, i.e. v' = v×10c. 
Now, we are sure that the aggr values in DB' are integer, 
and we can apply the DP_PSUM algorithm on it. Then, 
for each ALL_SUM result (v'i, p) over DB', we return (v'i 
/10c, p) as a result of ALL_SUM in DB. 

The correctness of the above solution can be implied 
by the fact that, if we multiply all aggr values of a DB by a 
constant k, then every possible sum result is multiplied by 
k.  

The time complexity of this version of DP_PSUM for 
aggr attribute values with c digits of precision is 
O(n×MaxSum×10c) which is equivalent to O(n2×avg×10c) 
where avg is the average of the aggr attribute values. The 
space complexity is O(n×avg×10c). 

4.4 Dealing with negative integer values 
The basic version of DP_PSUM assumes integer values 
that are positive, i.e. ≥ 0. This assumption can be relaxed 
as follows. Let MinNeg be the sum of all negative aggr 
values. Then, the possible sum values are integer values 
in [MinNeg … MaxSum] where MaxSum is the maximum 
possible sum value, i.e. the sum of positive aggr values.  
Thus, to support negative values, the size of the first di-
mension of the matrix should be modified to (MaxSum + 1 
+ MinNeg). In addition, the algorithm should scan the 
possible sum values from MinNeg to MaxSum, instead of 
0 to MaxSum. Morever, since the index in the matrix can-
not be negative, we should shift the index of the first 
dimension by MinNeg. 

4.5 Leveraging GCD 
For the case of integer aggr values, if the greatest common 
divisor (GDC) of the values is higher than 1, e.g. when the 
values are even, then we can significantly improve the 
performance of the DP_PSUM algorithm as follows. Let 
DB be the given database, and g be the GCD of the aggr 
values. We generate a new database DB' in which the 
tuples are the same as in DB except that the aggr values 
are divided by g. Then, we apply DP_PSUM on DB', and 
for each sum result (v'i, p), we return (v'i × g, p) to the 
user. 

In most cases, the GCD of aggr values is 1, so the above 

approach is not applicable. However, when we know that 
GCD is higher than one, using this approach can reduce 
the time and space complexities of DP_PSUM by an order 
of GCD, i.e. since the average of the aggr values in data-
base DB' is divided by GCD. For example, if the aggr 
values in DB are {10, 20, 30}, then in the database DB' the 
aggr values are {1, 2, 3}, i.e. GCD=10. Since the average of 
aggr values is reduced by 10, the space and time complex-
ity of the DP_SUM algorithm will be reduced by an order 
of 10. 

4.6 Skipping Zero Points 
During execution of the basic version of our DP_PSUM 
algorithm, there are many cells (of the matrix) with zero 
points, i.e. zero probability values. Obviously, we do not 
need to read zero points because they cannot contribute 
to non-zero probability values. We can avoid accessing 
zero points using the following approach. Let L be a list 
that is initially set to zero. During the execution of the 
algorithm we add the index of non zero points to L, and 
for filling each new column, we take into account only the 
cells whose indices are in L. 

This approach improves significantly the performance 
of DP_PSUM, in particular when the number of tuples is 
very small compared to the average of aggr values, i.e. 
avg. For example, if there are only two tuples and avg is 
equal to 10, then each column of the matrix has about 20 
cells. However, there are at most 6 non-zero cells in the 
matrix, i.e. 2 in the first and at most 4 in the 2nd. Thus, the 
above approach allows us to ignore almost 70% of the 
cells. 

5 ALL_SUM UNDER ATTRIBUTE-LEVEL MODEL 
Due to the significant differences between the tuple-level 
and the attribute-level models it is not trivial to adapt our 
yet proposed algorithms for the attribute-level model.  

 
 

 

 

 

 

 

 

(b) 

Figure 7.  a) A database example in tuple-level model; 
b)  Execution of DP_PSUM algorithm over these exam-
ple 

Tuples 
Aggr 

Attribute 
Value 

Membership 
Probability 

t1 1 0.3 
t2 3 0.4 
t3 2 0.5 

(a 

 
 
SUM 

 
DB1={t 1} 

 
DB2={t 1,t2} 

 
DB3={t 1,t2,t3} 

0 0.7 0.42 0.21 
1 0.3 0.18 0.09 
2 0 0 0.21 
3 0 0.28 0.23 
4 0 0.12 0.06 
5 0 0 0.14 
6 0 0 0.06 
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In this section, we propose our solution for computing 
ALL_SUM results under the attribute-level model.  

5.1 Recursive Approach 
We propose a recursive approach for computing 
ALL_SUM under the attribute-level model. This approach 
is the basis for a dynamic programming algorithm that 
we describe next. We assume that all tuples have the 
same number of possible aggr values, say m. This as-
sumption can be easily relaxed as we do in Appendix B. 
We also assume that, in each tuple ti, the sum of the prob-
abilities of possible aggr values is 1, i.e. pi,1 + pi,2 + … + pi,m 
= 1. In other words, we assume that there is no null value. 
However, this assumption can be relaxed as in Appendix 
A. 
 

5.1.1 Recursion Base 
Let us consider DB1, i.e. a database that only involves t1. 
Let v1,1, v1,2, …, v1,m be the possible values for the aggr 
attribute of t1, and p1,1, p1,2, …, p1,m their probabilities, re-
spectively. In this database, the possible sum values are 
the possible values of t1. Thus, we have: 

ps(i,1) =
p1,k if ∃k such that v1,k = i

0 otherwise

 
 
 

             (5) 

5.1.2 Recursion Step 
Now consider DBn-1, i.e. a database involving the tuples t1, 
…, tn-1. Let Wn-1 be the set of possible worlds for DBn-1. Let 
ps(i, n-1) be the probability of having sum=i in DBn-1, i.e. 
the aggregated probability of the DBn-1 worlds in which 
we have sum=i. Let vn,1, .. vn,m be the possible values of tn’s 
aggr attribute, and pn,1, .. pn,m their probabilities. We con-
struct DBn by adding tn to DBn-1. The worlds of DBn are 
constructed by adding to each w∈ Wn-1, each possible 
value of tn. Let Wn

k  ⊆Wn be the set of worlds which are 
constructed by adding the possible value vn,k of tn to the 
worlds of Wn-1. Indeed, for each world w∈Wn-1 there is a 
corresponding world w'∈Wn

k such that w' = w + {tn} 
where the possible aggr value of tn is equal to vn,k. This 
implies that for each possible sum=i with probability p in 
Wn-1, there is a possible sum = i + vn,k with probability p × 
pn,k in Wn

k. Recall that ps(i, n-1) is the aggregate probabil-
ity of the DBn-1 worlds in which sum = i. Then we have: 

 Probability of sum=i in Wn
k = ps(i – vn,k, n-1) × pn,k;         

for k=1, …, m                                                            (6) 
Let ps(i, n) be the probability of sum=i in DBn. Since we 

have Wn = Wn
1 ∪ Wn

2 ∪ … ∪ Wn
m, the probability of 

sum=i in Wn is equal to the sum of the probabilities of 
sum=i in Wn

1, Wn
2, … and Wn

m. Thus, using Equation 6 
and the recursion base of Equation 5, the probability of 
sum=i in DBn, i.e. ps(i, n), can be stated as follows: 

ps(i,n) =

ps(i −
k=1

m

∑ vn,k,n −1) × pn,k if n > 1

p1,k if n =1and ∃ k such that v1,k = i

0 otherwise (7)

 

 

 
  

 

 
 
 

 

 

5.2 Dynamic Programming Algorithm for Attribute-
level Model 

Now, we describe a dynamic programming algorithm, 
called DP_PSUM2, for computing ALL_SUM under the 
attribute-level model. Here, similar to the basic version of 
DP_PSUM algorithm, we assume integer values. How-
ever, in a way similar to that of DP_PSUM, this assump-
tion can be relaxed. Let PS be a 2D matrix with (MaxSum 
+ 1) rows and n columns, where n is the number of tuples 
and MaxSum is the maximum possible sum, i.e. the sum 
of the greatest values of aggr attribute in the tuples. At 
the end of DP_PSUM2 execution, PS[i,j] contains the 
probability of sum=i in a database involving tuples t1, …, 
tj. 

DP_PSUM2 works in two steps. In the first step, it ini-
tializes the first column of the matrix, by using the base of 
the recursive definition, as follows. For each possible aggr 
value of tuple t1, e.g. v1,k, it sets the corresponding entry 
equal to the probability of the possible value, i.e. it sets 
P[v1,k, 1]=p1,k for 1≤k≤m.  

In the second step, DP_PSUM2 sets the entry values of 
each column j (for 2≤j≤n) by using the recursion step of 
the recursive definition, and based on the values yet set in 
precedent column. Formally, for each column j and row i 
it sets PS[i, j] =  ∑ (PS[i - v1,k, j-1] × pj,k)  for 2≤k≤m such 
that i ≥ v1,k.  

Let us now analyze the complexity of the algorithm. 
Let avg=MaxSum/n, i.e. the average of the aggregate at-
tribute values. The space complexity of DP_PSUM2 is 
exactly the same as that of DP_PSUM, i.e. O(n2×avg). The 
time complexity of DP_PSUM2 is O(MaxSum×n×m). In 
other words its time complexity is O(m×n2×avg).  

Let us now illustrate the DB_PSUM2 algorithm using 

 

 

 

 

 

 

 

(b) 

       
             

 
SUM 

 
DB1={t 1} 

 
DB2={t 1,t2

} 

 
DB3={t 1,t2,t3} 

0 0 0 0 

1 0.3 0 0 

2 0.7 0 0 

3 0 0.18 0.09 

4 0 0.54 0.36 

5 0 0.28 0.41 

6 0 0 0.14 

Tuples Aggr attribute values and probabilities 

t1 (1, 0.3), (2, 0.7) 

t2 (3, 0.4), (2, 0.6) 

t3 (0, 0.5), (1, 0.5) 

(a) 

Figure 8. a) A database example in attribute-level model; 
b) Execution of DP_PSUM algorithm over these exam-
ples 

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 - 

20
 D

ec
 2

01
1



8  

 

an example.  
Example 4. Consider the database in Figure 8.a which 

is under attribute-level model. The execution of the 
DP_PSUM2 algorithm is shown in Figure 8.b. The first 
column of the matrix is filled using the probabilities of the 
possible aggr values of t1. Thus, we set 0.3 and 0.7 for sum 
values 1 and 2 respectively. The other columns are filled 
by using our recursive definition. After the execution of 
the algorithm, the 3rd column shows the probability of all 
sum results for our example database. 

6 EXTENSIONS 
In this section, we extend our algorithm to deal with the 
x-relation model, and correlated databases with mutual 
exclusions. We also show how our ALL_SUM algorithms 
can be used for computing the results of COUNT aggre-
gate queries. 

6.1 ALL_SUM in X-Relation Model 
In the X-Relation model  [1], a probabilistic table is com-
posed of a set of independent x-tuples, such that each x-
tuple consists of some mutually exclusive tuples, called 
alternatives. Each alternative is associated with a prob-
ability. If every x-tuple consists of only one alternative, 
then the x-relation is equivalent to our tuple-level model. 
In this case, ALL_SUM query processing can be done 
using the algorithms developed for tuple-level model.  

Let us deal with the problem of evaluating ALL_SUM 
queries for the case of multiple alternative x-tuples. This 
problem can be reduced to a problem in the attribute-
level model as follows. Let Q be the ALL_SUM query, 
and α be the aggr attribute. Let D be the given database in 
the x-relation model. We convert D to a database D' in the 
attribute-level model such that the result of the query Q 
in D’ be the same as that of D. The database D’ is con-
structed as follows. For each x-tuple x in D, we create a 
tuple t' in D' with an attribute α. Let T be the set of x’s 
alternative tuples. Let T’⊆T be the set of tuples in T that 
satisfy the Q’s predicates. The values of the attribute α in 
t’ will be the distinct values of this attribute in the tuples 
involved in T’, and probability of each value is computed 
in a similar way as a projection on α. In other words, if a 
value appears in only one alternative of x, then its prob-
ability is equal to the probability of the alternative. Oth-
erwise, i.e. when a value appears in multiple alternatives, 
its probability is equal to the probability that at least one 
of the alternatives exists. 

Now, the database D' is under the attribute-level 
model, and we can apply our ALL_SUM algorithms to 
evaluate ALL_SUM queries over it. 

6.2 ALL_SUM over Correlated Databases 
In previous sections, we assumed that the tuples of the 
database are independent. Here, we assume mutual ex-
clusion correlations, and show how to execute over 
ALL_SUM algorithms over databases that contain such 
correlation. Two tuples t1 and t2 are mutually exclusive, iff 
they cannot appear together in any instance of the database 
(i.e. possible world). But, there may be instances in which 
none of them appear. As an example of mutual exclusive 

tuples we can mention the tuples that are produced by 
two sensors that monitor the same object at the same 
time. In this example, at most one of the produced tuples 
can be correct, so they are mutually exclusive.   

It has been shown that the tuples of a correlated data-
base with mutual exclusions can be grouped to a set of 
blocks such that there is no dependency between any two 
tuples that belong to two different blocks, and there are 
closure dependencies between any two tuples of each 
block  [11]. These blocks are in fact x-tuples with multiple 
alternatives. Thus, to evaluate ALL_SUM queries on 
them, it is sufficient to convert the given database to a 
database D’ in the attribute-level model as shown in Sec-
tion  6.1, and then apply an ALL-SUM algorithm that 
works on the attribute-level model. 

6.3 Evaluating ALL_COUNT Queries Using ALL_SUM 
Algorithms 

We now show how we can evaluate ALL_COUNT que-
ries, i.e. all possible counts and their probabilities, using 
the algorithms that we proposed for ALL_SUM. Under 
the attribute-level model, all tuples are assumed to exist, 
thus the result of a count query is always equal to the 
number of tuples that satisfy the query.  However, under 
the tuple-level model, the problem of evaluating 
ALL_COUNT is harder because there may be (n+1) pos-
sible count results (i.e. from 0 to n) with different prob-
abilities, where n is the number of uncertain tuples. This 
is why we deal with ALL_COUNT only under the tuple-
level model.  

The problem of ALL_COUNT can be reduced to that of 
ALL_SUM in polynomial time as follows. Let D be the 
database on which we want to execute ALL_COUNT. We 
generate a new database D' as follows. For each tuple 
t∈D we generate a tuple t' in D' such that t' involves only 
one attribute, e.g. B, with two possible values: v1=1 and 
v2=0. We set p(v1) equal to the membership probability of 
t. We set p(v2)= 1 – p(v1). Now, if we apply one of our 
ALL_SUM algorithms over B as aggr attribute in D', the 
result is equivalent to applying an ALL_COUNT algo-
rithm over the aggr attribute in D. This is proven by the 
following theorem. 

Theorem 2. If the database D is under the tuple-level model, 
then the result of ALL_SUM over the attribute B in database D' is 
equivalent to the result of ALL_COUNT over the aggregate attrib-
ute of the database D.  

Proof. If the database D is under the tuple-level model, 
its membership probability in D is equal to the probabil-
ity of value v1=1 in attribute B of D'. Thus, the contribu-
tion of a tuple t to COUNT in the database D is equal to 
the contribution of its corresponding tuple t' to SUM in 
the database D'. In other words, the results of ALL_SUM 
over D' is equivalent to the results of ALL_COUNT over 
D. □ 

7 EXPERIMENTAL VALIDATION 
To validate our algorithms and investigate the impact of 
different parameters, we conducted a thorough experi-
mental evaluation. In Section  7.1, we describe our ex-
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perimental setup, and in Section  7.2, we report on the 
results of various experiments to evaluate the perform-
ance of the algorithms by varying different parameters. 

7.1 Experimental Setup 
We implemented our DP_PSUM and Q_PSUM algo-
rithms in Java, and we validated them over both real-
world and synthetic databases.  

As real-world database, like some previous works, e.g. 
 [18] [21], we used the data collected in the International 
Ice Patrol (IIP) Iceberg Sightings Database 
(http://nsidc.org/data/g00807.html) whose data is about 
the iceberg evolution sightings in North America. The 
database contains attributes such as iceberg, number, 
sighting date, shape of the iceberg, number of days 
drifted, etc. There is an attribute that shows the confi-
dence level about the source of sighting. In the dataset 
that we used, i.e. that of 2008, there are 6 confidence lev-
els: R/V (radar and visual), VIS (visual only), RAD (radar 
only), SAT-LOW (low orbit satellite), SAT-MED (medium 
orbit satellite) and SAT-HIGH (high orbit satellite). Like 
in  [18] and  [21], we quantified these confidence levels by 
0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 respectively. As aggr attribute, 
we used the number of drifted days that contains real 

numbers with one digit of precision in the interval of [0… 
365].  

As synthetic data, we generated databases under the 
attribute-level model that is more complete than the tu-
ple-level model. We generated two types of databases, 
Uniform and Gaussian, in which the values of attributes 
in tuples are generated using a random generator with 
the uniform and Gaussian distributions, respectively. The 
default database is Uniform, and the mean (average) of 
the generated values is 10. Unless otherwise specified, for 
the Gaussian database the variance is half of the mean. 
The default number of attribute values in each tuple of 
our attribute-value model is 2. 

In the experiments, we evaluated the performance of 
our DP_PSUM and Q_PSUM algorithms. We also com-
pared their performance with that of the naïve algorithm 
that enumerates the possible worlds, computes the sum in 
each world, and returns the possible sum values and the 
aggregated probability of the worlds where they appear 
as the result of sum. To manage the possible sum values, 
we used a B-tree structure.  

For the three algorithms, we measured their response  
time. We conducted our experiments on a machine 

with a 2.66 GHz Intel Core 2 Duo processor and 2GB 

 
 

 

 

Figure 9. Response time vs. number of 
uncertain tuples 

Figure 10. Performance results over 
real-world database  

Figure 11.  Performance over data-
bases with different distribution types 
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Figure 12.  Effect of the average of 
aggregate attribute values on per-
formance 

Figure 13. Effect of the number of at-
tribute values per tuple on performance 

Figure 14.  Effect of the precision of 
real aggr values on performance 
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memory.  

7.2 Performance Results 
In this section, we report the results of our experiments.  

Effect of the number of uncertain tuples. Using the 
synthetic data, Figure 9 shows the response time of the 
three algorithms vs. the number of uncertain tuples, i.e. n, 
and the other experimental parameters set as described in 
Section  7.1. The best algorithm is DP_PSUM, and the 
worst is the Naïve algorithm. For n>30, the response time 
of the Naïve algorithm is too long, such that we had to 
halt it. This is why we do not show its response time for 
n>30. The response time of DP_PSUM is at least four 
times lower than that of Q_PSUM (notice that the figure is 
in logarithmic scale). 

Over the IIP database, Figure 10 shows the response 
time of the three algorithms, with different samples of the 
IIP database. In each sample, we picked a set of n tuples, 
from the first to the nth tuple of the database. Overall, the 
results are qualitatively in accordance with those over 
synthetic data. However, the response time over the real 
database is higher than that of the synthetic database. The 
main reason is that the precision of the real data is 1, i.e. 
there is one digit after the decimal point. This increases 
the execution time of our algorithms significantly. For 
example, in the case of DP_PSUM, the execution time can 
increase up to ten times, and this confirms the complexity 
analysis of real value processing in Section  4.3. 

Effect of data distribution. Figure 11 shows the re-
sponse time of our algorithms over the Uniform and 
Gaussian databases. The response time of DP_PSUM over 
uniform distribution increases, but not significantly, i.e. 
less than 30%. The higher performance of DP_PSUM over 
the uniform distribution is due to the higher number of 
zero points, which can be skipped (see Table 1), thus less 
computation is needed. Another reason is the value of 
MaxSum, i.e. the maximum possible sum value, which is 
lower for the uniform dataset as shown in Table 1.  

The impact of the distribution on Q_PSUM is much 
more significant, i.e. about two times more than on the 
DP_PSUM. The reason is that the distribution of the at-
tribute values affects the number of possible sum results, 
i.e. with the Gaussian distribution the number of possible 
sum values is much more than that of the uniform distri-
bution.  

 
Effect of average. We performed tests to study the ef-

fect of the average of aggregate values in the database, i.e. 
avg, on performance. Using the synthetic data, Figure 12 
shows the response time of our DP_PSUM and Q_PSUM 

algorithms with avg increasing up to 50, and the other 
experimental parameters set as described in Section  7.1. 
The average of aggregate values has a linear impact on 
DP_PSUM, and this is in accordance with the complexity 
analysis done in Section  4. What was not expected is that 
the impact of avg on the performance of Q_PSUM is sig-
nificant, although avg is not a direct parameter in the 
complexity of Q_PSUM (see Section  3.2). The explanation 
is that the time complexity of Q_PSUM depends on the 
number of possible SUM results, and when we increase 
avg (i.e. mean) of the aggregate values, their range be-
come larger, thus the total number of possible sum values 
increases.  

Effect of the number of attribute values per tuple. We 
tested the effect of the number of attribute values in each 
tuple under the attribute-level model, i.e. m, on perform-
ance. Figure 13 shows the response time of our algorithms 
with increasing m up to 10, and other parameters set as in 
Table 1. This number has a slight impact on DP_PSUM, 
but a more considerable impact on Q_PSUM. 

Effect of precision. We studied the effect of the preci-
sion of real numbers, i.e. the number of digits after deci-
mal point, on the performance of the DP_PSUM algo-
rithm. Using the synthetic data, Figure 14 shows the re-
sponse time with increasing the precision of the aggr 
values. As shown, the precision has a significant impact 
on the response time of DP_PSUM, i.e. about ten times for 
each precision digit. This is in accordance with our theo-
retical analysis done in Section  4, and shows that our 
algorithm is not appropriate for the applications in which 
the aggr values are real numbers with many digits after 
the decimal point. 

8 RELATED WORK 
In the recent years, we have been witnessing much inter-
est in uncertain data management in many application 
areas such as data cleaning  [3], sensor networks  [12] [21], 
information extraction  [19], etc. Much research effort has 
been devoted to several aspects of uncertain data man-
agement, including data modeling  [4] [6] [10] [16] [17] [29], 
skyline queries [5] [26], top-k queries  [9] [13] [18] [30], near-
est neighbor search  [31] [33] [35], spatial queries  [34], XML 
documents  [1] [24] [25], etc. 

There has been some work dealing with aggregate 
query processing over uncertain data. Some of them were 
devoted to developing efficient algorithms for returning 
the expected value of aggregate values, e.g.  [7] [20]. For 
example in  [20], the authors study the problem of com-
puting aggregate operators on probabilistic data in an 
I/O efficient manner. With the expected value semantics, 
the evaluation of SUM queries is not very challenging. In 
 [10], Dalvi and Suciu consider both expected value and 
ALL_SUM, but they only propose an efficient approach 
for computing the expected value.  

Approximate algorithms have been proposed for 
probabilistic aggregate queries, e.g.  [8] and  [28]. The Cen-
tral Limit theorem  [27] can be used to approximately 
estimate the distribution of sums for sufficiently large 
numbers of probabilistic values. However, in the current 

Table 1. The value of MaxSum and the percentage 
of zero points during the execution of DP_PSUM 
algorithm on uniform and Gaussian datasets. 

 Uniform Gaussian 

MaxSum 2577 3123 

Rate of zero value 
cells  

0.73% 0.63% 
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paper, our objective is to return exact probability values, 
not approximations. 

In  [23] and  [32], aggregate queries over uncertain data 
streams have been studied. For example, Kanagal et al. 
 [23] deal with continuous queries over correlated uncer-
tain data streams. They assume correlated data which are 
Markovian and structured in nature. Their probabilistic 
model and the assumptions, and as a result the possible 
algorithms, are very different from ours. For example in 
their model, they propose algorithms that deal with 
MIN/MAX queries in a time complexity that does not 
depend on the number of tuples. However, in our model 
it is not possible to develop algorithms with such a com-
plexity. 

The work in  [11] studies the problem of HAVING ag-
gregate queries with predicates. The addressed problem 
is related to the #KNAPSACK problem which is NP-hard. 
The difference between HAVING-SUM queries in  [11] 
and our ALL_SUM queries is that in ALL_SUM we return 
all possible SUM values and their probabilities, but in 
HAVING-SUM the goal is to check a condition on an 
aggregate function, e.g. is it possible to have SUM equal 
to a given value. 

Overall, for the problem that we considered in this pa-
per, i.e. returning the exact results of ALL_SUM queries, 
there is no efficient solution in the related work.  In this 
paper, we proposed pseudo polynomial algorithms that 
allow us to efficiently evaluate ALL_SUM queries in 
many practical cases, e.g. where the aggregate attribute 
values are small integers, or real numbers with limited 
precisions. 

9 CONCLUSION 
SUM aggr queries are critical for many applications that 
need to deal with uncertain data. In this paper, we ad-
dressed the problem of evaluating ALL_SUM queries. 
After proposing a new recursive approach, we developed 
an algorithm, called Q_PSUM, which is polynomial in the 
number of SUM results. Then, we proposed a more effi-
cient algorithm, called DP_PSUM, which is very efficient 
in the cases where the aggr attribute values are small 
integers or real numbers with small precision. We vali-
dated our algorithms through implementation and ex-
perimentation over synthetic and real-world data sets. 
The results show the effectiveness of our solution. The 
performance of DP_PSUM is usually better than that of 
Q_PSUM. Only over special databases with small num-
bers of possible sum results and very large aggr value 
average, Q_PSUM is better than DP_PSUM. 
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Appendix A: Dealing with Null Values 
In classical (non probabilistic) databases, when proc-

essing SUM queries, the null (unknown) values are usu-
ally replaced by zero. Under the tuple level model, the 
null value has the same meaning as in classical databases. 
Thus, we simply replace the null values by zero without 
changing their probabilities. 

Under the attribute level model, the null values are 
taken into account as follows. Let ti be a tuple under this 
model, vi,1, vi,2, …, vi,m the possible values for the aggr 
attribute of ti, and pi,1, pi,2, …, pi,m their probabilities. Let p 

be the sum of the probability of possible values in ti, i.e. p 
= pi,1 + pi,2 + … + pi,m. If p<1, then there is the possibility of 
null value (i.e. unknown value) in tuple ti, and the prob-
ability of the null value is (1-p). We replace null values by 
zero as follows. If the zero value is among the possible 
values of ti, i.e. there is some vi,j =0 for 1≤j≤m, then we add 
(1-p) to its probability, i.e. we set pi,j= pi,j + 1 – p. Other-
wise, we add the zero value to the possible values of ti, 
and set its probability equal to (1-p). 
 

Appendix B: Dealing with Tuples with Different Possible 
Aggr Values 

Under the attribute level model, in our recursive ap-

Algorithm Q_PSUM()  

Input: 

  n : number of tuples; 

  t1, …, tn : the tuples of the database; 

  p(t) : a function that returns the probability of tuple t; 

Output:  

  Possible sum values and their probability; 

Begin 

//Step 1 : initialization 

   Q = {}; 

   If (val(t1) = 0) then  Q = Q + {(0, 1)}; 

   Else Begin  

      Q = Q + { (0, 1 - p(t1)) } ;  

      Q = Q + { (val(t1), p(t1)) } ; 

   End ; 

//Step2 : constructing Q for DB2 to DBn 

  For j=2 to n do Begin 

      Q1 = Q2 = {}; 

      // construct Q1 and Q2 

      For each pair (i, ps)∈Q do Begin 

          Q1 = Q1 + {(i, ps×(1 – p(tj))}; 

          Q2 = Q2 + (i+val(tj), ps×p(tj)); 

      End; 

      Q = Merge(Q1,  Q2); // the merge is done in such a way 

     //that if exists (i, ps1)∈Q1 and (i, ps2)∈Q2 then  

     // (i, ps1 + ps2) is inserted into Q. 

  End; 

  // returning the results to the user 

 While (Q.empty() == False) do Begin 

     (i, ps) = Q.removefirst(); 

     If (ps ≠ 0) then 

                 Return  i, ps; 

  End; 

End; 

Figure 15.  Pseudocode of Q_PSUM algorithm 

Algorithm DP_PSUM() {simplified version} 

Input: 

  n : number of tuples; 

  t1, …, tn : the tuples of the database; 

  MaxSum : maximum possible sum; 

  p(t) : a function that returns the probability of tuple t; 

Output:  

  Possible sum values and their probability; 

Begin 

Let PS [0..MaxSum, 1..n] be a 2 dimensional matrix;  

//Step 1 : initialization 

    For i=1 to MaxSum do 

       PS[i, 1] = 0; 

    If (val(t1) = 0) Then  

       PS[0, 1] = 1; 

    Else begin 

        PS[0, 1] = 1 - p(t1); 

        PS[val(t1), 1] = p(t1) ; 

    End ; 

//Step 2 : filling the columns 

    For j=2 to n do  

       For i=0 to MaxSum do begin 

           PS[i, j] = PS[i, j-1] × (1 – p(tj))  

           If ( i – val(tj) ≥ 0) then  

                If ( PS[i – val(tj), j - 1] > 0) then 

                    PS[i, j] =  PS[i, j] + PS[i – val(tj), j - 1]×p(tj); 

       End;     

// returning the results to the user 

  For i=0 to MaxSum do  

     If (PS[i, n] ≠ 0) then 

         Return  i, PS[i, n]; 

End; 

 

Figure 16.  Pseudocode of DP_PSUM algorithm 
for tuple-level model 

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 - 

20
 D

ec
 2

01
1



14  

 

proach for computing SUM we assumed that all tuples 
have the same number of possible aggr values. However, 
there may be cases where the number of possible aggr 
values in tuples is not the same. We deal with those cases 
as follows. Let t be the tuple with maximum number of 
possible aggr values. We set m to be equal to the number 
of possible values in t. For each other tuple t', let m' be 
the number of possible aggr values. If m'<m, we add (m - 
m') new distinct values to the set of possible values of t', 
and we set the probability of new values to zero. Obvi-
ously, the new added values have no impact on the re-
sults of ALL_SUM queries because their probability is 
zero. Thus, by this method, we make the number of pos-
sible aggr values in all tuples equal to m, without impact-
ing the results of ALL_SUM queries. 

Appendix C: Pseudocode of AL_SUM algorithms 
Figure 15 and Figure 16 show the pseudocode of the 
Q_PSUM and DP_PSUM algorithms. 
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