
 1

Efficient Evaluation of SUM Queries over
Probabilistic Data*

Reza Akbarinia1, Patrick Valduriez1, Guillaume Verger2

 INRIA and LIRMM, Montpellier, France
 1FirstName.LastName@inria.fr, 2Verger@lirmm.fr

Abstract— SUM queries are crucial for many applications that need to deal with uncertain data. In this paper, we are interested in the
queries, called ALL_SUM, that return all possible sum values and their probabilities. In general, there is no efficient solution for the problem
of evaluating ALL_SUM queries. But, for many practical applications, where aggregate values are small integers or real numbers with small
precision, it is possible to develop efficient solutions. In this paper, based on a recursive approach, we propose a new solution for this
problem. We implemented our solution and conducted an extensive experimental evaluation over synthetic and real-world data sets; the
results show its effectiveness.

Index Terms— Database Management, Systems, Query processing.

—————————— � ——————————

1 INTRODUCTION
Aggregate (or aggr for short) queries, in particular SUM
queries, are crucial for many applications that need to
deal with uncertain data [14] [20] [28]. Let us give two
motivating examples from the medical and environ-
mental domains.

Example 1: Reducing the usage of pesticides. Consider
a plant monitoring application on which we are working
with scientists in the field of agronomy. The objective is to
observe the development of diseases and insect attacks in
the agricultural farms by using sensors, aiming at using
pesticides only when necessary. Sensors periodically send
to a central system their data about different measures
such as the plants contamination level (an integer in
[0..10]), temperature, moisture level, etc. However, the
data sent by sensors are not 100% certain. The main rea-
sons for the uncertainty are the effect of climate events on
sensors, e.g. rain, unreliability of the data transmission
media, etc. The people from the field of agronomy with
which we had discussions use some rules to define a de-
gree of certainty for each received data. A decision sup-
port system will analyze the sent data, and trigger a pesti-
cide treatment when the sum of contamination since the
last treatment is higher than a threshold with a high
probability. An important query for the decision support
system is “given a contamination threshold s, what is the
cumulative probability that the contamination sum be
higher than s?”. The treatment starts when the query
result is higher than a predefined probability.

Example 2: Remote health monitoring. As another ex-
ample, we can mention a medical center that monitors
key biological parameters of remote patients at their

* Work partially sponsored by the DataRing project of the Agence

Nationale de la Recherche.

Possible Worlds Prob. SUM
w1={t 1,t2,t3} 0.16 3
w2={t 1,t2} 0.16 1
w3={t 1,t3} 0.24 3
w4={t 2,t3} 0.04 2
w5={t 1} 0.24 1
w6={t 2} 0.04 0
w7={t 3} 0.06 2
w8={} 0.06 0
Figure 2. The possible worlds and the results of SUM
query in each world, for the database of Figure 1.

Figure 3. Cumulative distribution function for the SUM
query results over the database shown in Figure 1.

Tuple
Patient Required

nurses
…

Probability

t1 PID1 1 … 0.8
t2 PID2 0 … 0.4
t3 PID3 2 … 0.5

Figure 1. Motivating example

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

Author manuscript, published in "IEEE Transactions on Knowledge and Data Engineering 25, 4 (2013) 764-775"

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00652293
http://hal.archives-ouvertes.fr

2

homes, e.g. using sensors in their bodies. The sensors
periodically send to the center the patients’ health data,
e.g. blood pressure, hydration levels, thermal signals, etc.
For high availability, there are two or more sensors for
each biological parameter. However, the data sent by
sensors are uncertain, and the sensors that monitor the
same parameter may send inconsistent values. There are
approaches to estimate a confidence value for the data
sent by each sensor, e.g. based on their precision [15].
According to the data sent by the sensors, the medical
application computes the number of required human
resources, e.g. nurses, and equipments for each patient.
Figure 1 shows an example table of this application. The
table shows the number of required nurses for each pa-
tient. This system needs to have sufficient human re-
sources in order to assure its services with a high prob-
ability. One important query for the system is “given a
threshold s, return the cumulative probability that the
sum of required nurses be at most s”.

Based on the data in Figure 1, we show in Figure 2 the
possible worlds, i.e. the possible database instances, their
probabilities, and the result of the SUM query in each
world. In this example, there are 8 possible worlds and
four possible sum values, i.e. 0 to 3.

In this paper, we are interested in the queries that re-
turn all possible sum values and their probabilities. This
kind of query, which we call ALL_SUM, is also known as
sum probability distribution. For instance, the result of
ALL_SUM (required nurses) for the database shown in
Figure 1 is {(3, 0.40), (2, 0.10), (1, 0.40), (0, 0.10)}, i.e. for
each possible SUM result, we return the result and the
probability of the worlds in which this result appears. For
instance, the result sum=3 appears in the worlds w1 and
w3, so its probability is equal to P(w1) + P(w3) = 0.16 + 0.24
= 0.40.

By using the results of ALL_SUM, we can generate the
cumulative distribution functions, which are important
for many domains, e.g. scientific studies. For example to
answer the query stated in Erreur ! Argument de commu-
tateur inconnu., we need to be able to compute the cumu-
lative probability for possible contamination sums that
are higher than the threshold s. Similarly, for the query
described in Erreur ! Argument de commutateur incon-
nu., we should compute the cumulative probability when
the sum value is lower than or equal to the threshold. In

Figure 1, by using the results of ALL_SUM, the cumula-
tive distribution function of sum values over the data of
Figure 1 is depicted.

A naïve algorithm for evaluating ALL_SUM queries is
to enumerate all possible worlds, compute sum in each
world, and return the possible sum values and their ag-
gregated probability. However, this algorithm is expo-
nential in the number of uncertain tuples.

In this paper, we deal with ALL_SUM queries and
propose pseudo-polynomial algorithms that are efficient
in many practical applications, e.g. when the aggr attrib-
ute values are small integers or real numbers with small
precision, i.e. small number of digits after decimal point.
These cases cover many practical aggregate attributes, e.g.
temperature, blood pressure, needed human resources
per patient in medical applications. To our knowledge,
this is the first proposal of an efficient solution for return-
ing the exact results of ALL_SUM queries.

1.1 Contributions
In this paper, we propose a complete solution to the prob-
lem of evaluating SUM queries over probabilistic data:
• We first propose a new recursive approach for evalu-

ating ALL_SUM queries, where we compute the sum
probabilities in a database based on the probabilities
in smaller databases.

• Based on this recursive approach, we propose a
pseudo-polynomial algorithm, called DP_PSUM that
efficiently evaluates ALL_SUM queries for the appli-
cations where the aggr attribute values are small inte-
gers or real numbers with small precision. For exam-
ple, in the case of positive integer aggr values, the exe-
cution time of DP_PSUM is O(n2×avg) where n is the
number of tuples and avg is the average of the aggr
values.

• Based on this recursive approach, we propose an algo-
rithm, called Q_PSUM, which is polynomial in the
number of SUM results.

• We validated our algorithms through implementation
over synthetic and real-world data sets; the results
show the effectiveness of our solution.

The rest of the paper is organized as follows. In Section
2, we present the probabilistic data models, which we
consider and define formally the problem we address. In
Sections 3 and 4, we describe our Q_PSUM and
DP_PSUM algorithms for evaluating ALL_SUM queries
under a simple and frequently used model. In Sections 5
and 6, we extend our solution for a more complex model
with some correlations. We also extend our solution for
evaluating COUNT queries in Section 6. In Section 7, we
report on our experimental validation over synthetic and
real-world data sets. Section 8 discusses related work.
Section 9 concludes and gives some directions for future
work.

2 PROBLEM DEFINITION
In this section, we first introduce the probabilistic data

Tuple Probability

t1 p1

t2 p2

… …

(a)

Tuple Possible values of aggr attribute,
and their probabilities

t1 (v1,1, p1,1), (v1,2, p1,2), …, (v1,m1, p1,m1)
t2 (v2,1, p2,1), (v2,2, p2,2), …, (v2, m2, p2,m2)
… …

(b)
Figure 4. Probabilistic data models; a) Tuple-level; b)
Attribute-level model

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

 3

models that we consider. Then, we formally define the
problem that we address.

2.1 Probabilistic Models
The two main models, which are frequently used in our
community, are the tuple-level and attribute-level models
 [9]. These models, which we consider in this paper, are
defined as follows.

Tuple-level model. In this model, each uncertain table
T has an attribute that indicates the membership probability
(also called existence probability) of each tuple in T, i.e.
the probability that the tuple appears in a possible world.
In this paper, the membership probability of a tuple ti is
denoted by p(ti). Thus, the probability that ti does not
appear in a random possible world is 1- p(ti). The data-
base shown in Figure 4.a is under tuple-level model.

Attribute-level model. In this model, each uncertain
tuple ti has at least one uncertain attribute, e.g. α, and the
value of α in ti is chosen by a random variable X. We as-
sume that X has a discrete probability density function
(pdf). This is a realistic assumption for many applications
 [9], e.g. sensor readings [12] [22]. The values of α in ti are m
values vi,1, …, vi,m with probabilities pi,1, …, pi,m respec-
tively (see Figure 4.b). Note that for each tuple we may
have a different pdf.

The tuples of the database may be independent or cor-
related. In this paper, we first present our algorithms for
databases in which tuples are independent. We extend
our algorithms for correlated databases in Section 6.1.

2.2 Problem Definition
ALL_SUM query is defined as follows.

Definition 1: ALL_SUM query. It returns all possible
sum results together with their probability. In other
words, for each possible sum value, ALL_SUM returns
the cumulative probability of the worlds where the value
appears as a result of the query.

Let us now formally define ALL_SUM queries. Let D
be a given uncertain database, W the set of its possible
worlds, and P(w) the probability of a possible world

w∈W. Let Q be a given aggr query, f the aggr function
stated in Q (i.e. SUM), f(w) the result of executing Q in a

world w∈W, and VD,f the set of all possible results of exe-

cuting Q over D, i.e. VD,f = {v ∃w∈W ∧ f(w)=v}. The cumu-
lative probability of having a value v as the result of Q
over D, denoted as P(v, Q, D), is computed as follows:

P(v,Q,D) = P(w)
w∈W and
f (w)=v

∑

Our objective in this paper is to return the results of
ALL_SUM as follows:

 ALL_SUM (Q, D) = {(v, p) v∈VD,f ∧ p= P(v, Q, D)}

3 ALL_SUM UNDER TUPLE-LEVEL MODEL
In this section, we propose an efficient solution for evalu-
ating ALL_SUM queries. We first propose a new recur-
sive approach for computing the results of ALL_SUM.
Then, using the recursive approach we propose our
Q_PSUM algorithm.

We assume that the database is under the tuple-level
model defined in the previous section. Our solution is
extended for the attribute-level model in Section 5. We
adapt our solution to process COUNT queries in Section
 6.3.

3.1 Recursive Approach
We develop a recursive approach that produces the re-
sults of ALL_SUM queries in a database with n tuples
based on the results in a database with n-1 tuples. The
principle behind it is that the possible worlds of the data-
base with n tuples can be constructed by adding / not
adding the nth tuple to the possible worlds of the data-
base with n-1 tuples.

 Let DBn be a database involving the tuples t1, …, tn,
and ps(i,n) be the probability of having sum = i in DBn, We
develop a recursive approach for computing ps(i, n).

SUM values and their probabilities in
DBn-1, i.e. a db containing tuples t1, …,
tn-1 :

0 : ps(0, n-1)
1 : ps(1, n-1)
…
i : ps(i, n-1)
…

DBn-1

0 : ps(0, n-1) × (1 - p(tn))
1 : ps(1, n-1) × (1 - p(tn))
…
i : ps(i, n-1) × (1 - p(tn))
…

0 : 0
…
val(tn) – 1 : 0
val(tn) : ps(0, n-1) × p(tn)
i : ps(i - val(tn), n-1) × p(tn), if i≥ val(tn)
…

SUM values and their probabilities in DBn

DBn

In W1
n, i.e. worlds not containing

In W2
n, i.e. worlds containing tn

Add tuple
tn to the db

Figure 5. Recursively computing the probabilities of SUM
values by adding the nth tuple, i.e. tn, to a db containing n-1
tuples, i.e. DBn-1. The function ps(i, n) denotes the probabil-
ity of having sum = i in DBn. The value val(tn) is the aggr
value of tuple tn.

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

4

3.1.1 Base
Let us first consider the recursion base. Consider DB1, i.e.
the database that involves only tuple t1. Let p(t1) be the
probability of t1, and val(t1) be the value of t1 in aggr at-
tribute. In DB1, there are two worlds: 1) w1={}, in which t1
does not exist, so its probability is (1- p(t1)); 2) w2={t1}, in
which t1 exists, so the probability is p(t1). In w1, we have
sum=0, and in w2 we have sum=val(t1). If val(t1) = 0, then
we always have sum=0 because in both w1 and w2, sum is
zero. Thus, in DB1, ps(i, 1) can be written as follows:

ps(i,1) =

p(t1) if i = val (t1) and val(t1) ≠ 0

1 − p(t1) if i = 0 and val(t1) ≠ 0

1 if i = val (t1) = 0 (1)

0 otherwise

3.1.2 Recursion Step
Now consider DBn-1 , i.e. a database involving the tuples
t1, …, tn-1. Let Wn-1 be the set of possible worlds in DBn-1.

We construct DBn by adding tn to DBn-1. Notice that the
set of possible worlds in DBn, denoted by Wn, is con-
structed by adding / not adding the tuple tn to each
world of Wn-1. Thus, in Wn, there are two types of worlds
(see Figure 5): 1) the worlds that do not contain tn, de

noted as Wn
1; 2) the worlds that contain tn, denoted as

Wn
2.
For each world w∈ Wn

1, we have the same world in
DBn-1, say w'. Let p(w) and p(w') be the probability of
worlds w and w'. The probability of w, i.e. p(w), is equal to
p(w')×(1 – p(tn)), because tn does not exist in w even
though it is involved in the database. Thus, in Wn

1 the

sum values are the same as in DBn-1, but the probability of
sum=i in Wn

1 is equal to the probability of having sum=i in
DBn-1 multiplied by the probability of non-existence of tn.
In other words, we have:

In Wn
1: (probability of sum=i) = ps(i, n-1)×(1 – p(tn))

(2)
Let us now consider Wn

2. The worlds involved in Wn
2

are constructed by adding tn to each world of DBn-1. Thus,
for each sum value equal to i in DBn-1 we have a sum
value equal to (i + val(tn)) in Wn

2, where val(tn) is the value
of aggr attribute in tn. Therefore, the probability of sum= i
+ val(tn) in Wn

2 is equal to the probability of sum=i in DBn-1
multiplied by the existence probability of tn. In other
words, we have:
In Wn

2: (probability of sum=i) = ps(i - val(tn), n-1)×p(tn)
(3)

The probability of sum=i in DBn is equal to the prob-
ability of sum=i in Wn

1 plus the probability of sum=i in
Wn

2. Thus, using the Equations 2 and 3, and using the
base of the recursion, i.e. Equation 1, we obtain the fol-
lowing recursive formula for the probability of sum=i in
DBn, i.e. ps(i, n) :

ps(i,n) =

ps(i,n−1)×(1− p(tn))+ ps(i −val(tn),n−1)× p(tn) if n >1

1− p(t1) if n =1and i=0and val(t1) ≠0

p(t1) if n =1and i=val(t1) and val(t1) ≠0

1 if n =1and i=val(t1)=0 (4)

0 otherwise

Based on the above recursive formula, we can develop

a recursive algorithm for computing the probability of
sum=i in a database containing tuples t1, …, tn (see the
pseudocode in Figure 6). However, the execution time of
the algorithm is exponential in the number of uncertain
tuples, i.e. due to the two recursive calls in the body of the
algorithm.

3.2 Q_PSUM Algorithm
In this section, based on our recursive definition, we pro-
pose an algorithm, called Q_PSUM, whose execution time
is O(n × N) where n is the number of uncertain data, and
N is the number of distinct sum values.

Q_PSUM uses a list for maintaining the computed pos-
sible sum values and their probabilities. It fills the list by
starting with DB1, i.e. a database containing only t1, and
then it gradually adds other tuples to the database and
updates the list.

Let Q be a list of pairs (i, ps) such that i is a possible
sum value and ps its probability. The Q_PSUM algorithm
proceeds as follows (see the pseudocode in Appendix C).
It first initializes Q for DB1 by using the base of the recur-
sive definition. If val(t1) = 0, then it inserts (0, 1) into Q,
else it inserts (0, 1 - p(t1)) and (val(t1), p(t1)). By inserting a
pair to a list, we mean adding the pair to the end of the
list.

Then, in a loop, for j=2 to n, the algorithm adds the tu-
ples t2 to tn to the database one by one, and updates the
list by using two temporary lists Q1 and Q2 as follows. For

Algorithm PS(i, n)

Input:

 n : number of tuples;

 t1, …, tn : the tuples of the database;

 p(t) : a function that returns the probability of tuple t;

Output:

 Probability of sum=i in a database containing t1, …, tn;

Begin

 If (n > 1) then

 Return PS(i, n-1)×(1 – p(tn)) + PS(i - val(tn), n-1)×p(tn);

 Else If ((n=1) and (i=val(t1)) and (val(t1) ≠0)) then

 Return p(t1);

 Else If ((n=1) and (i=0) and (val(t1) ≠0)) then

 Return 1- p(t1);

 Else If ((n=1) and (i=val(t1)=0)) then

 Return 1;

 Else Return 0;

End;

Figure 6. Recursive algorithm for computing the
probability of sum=i in a database containing t1, …,
tn.

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

 5

each tuple tj, Q_PSUM removes the pairs involved in Q
one by one from the head of the list, and for each pair (i,
ps)∈Q, it inserts (i, ps×(1 – p(tj)) into Q1 and (i+val(tj),
ps×p(tj)) into Q2. Then, it merges the pairs involved in Q1
and Q2, and inserts the merged results into Q.

The merging is done on the sum values of the pairs.
That means that for each pair (i, ps1)∈Q1 if there is a pair
(i, ps2) ∈Q2, i.e. with the same sum value, then Q_PSUM
removes the pairs from Q1 and Q2 and inserts (i, ps1 + ps2)
into Q. If there is (i, ps1)∈Q1 but there is no pair (i, ps2)
∈Q2, then it simply removes the pair from Q1 and inserts
it to Q.

Let us now analyze the complexity of Q_PSUM. Let N
be the number of possible (distinct) sum results. Suppose
the lists are implemented using a structure such as linked
list (with pointers to the head and tail of the list). The cost
of inserting a pair to the list is O(1), and merging two lists
is done in O(N)1. For each tuple, at most N pairs are in-
serted to the lists Q1 and Q2, and this is done in O(N). The
merging is done in O(N). There are n tuples in the data-
base, thus the algorithm is executed in O(n × N). The
space complexity of the algorithm is O(N), i.e. the space
needed for the lists.

4 DP_PSUM ALGORITHM
In this section, using the dynamic programming tech-
nique, we propose an efficient algorithm, called
DP_PSUM, designed for the applications where aggr
values are integer or real numbers with small precisions.
It is usually much more efficient than the Q_PSUM algo-
rithm (as shown by the performance evaluation results in
Section 4.5).

Let us assume, for the moment, that the values of aggr
attribute are positive integer numbers. In Section 4.3, we
adapt our algorithm for real numbers with small preci-
sions, and in Section 4.4, we deal with negative integer
numbers.

4.1 Basic Algorithm
Let MaxSum be the maximum possible sum value, e.g. for
positive aggr values MaxSum is the sum of all values.
DP_PSUM uses a 2D matrix, say PS, with (MaxSum + 1)
rows and n columns. DP_PSUM is executed on PS, and
when it ends, each entry PS[i, j] contains the probability of
sum=i in a database involving tuples t1, …, tj.

DP_PSUM proceeds in two steps as follows (the pseu-
docode is shown in Appendix C). In the first step, it ini-
tializes the first column of the matrix. This column repre-
sents the probability of sum values for a database involv-
ing only the tuple t1. DP_PSUM initializes this column
using the base of our recursive formula (described in
Equation 1) as follows. If val(t1) = 0, then PS[0, 1] = 1.
Otherwise, PS[0, 1] = (1 – p(t1)) and PS[val(t1), 1] = p(t1).
The other entries of the first column should be set to zero,
i.e. PS[i, 1] = 0 if i≠0 and i≠val(t1).

In the second step, in a loop, DP_PSUM sets the values

1 Notice that the pairs involved in Q1 and Q2 are systematically ordered

according to sum values, because they follow the same order as the
values in Q which is initially sorted.

of each column j (for j=2 to n) by using our recursive
definition (i.e. Equation 4) and based on the values in
column j-1 as follows:

PS[i, j] = PS[i, j-1]×(1 – p(tj)) + PS[i – val(tj), j-1] ×p(tj)
Notice that if (i < val(tj)), then for the positive aggr

values we have PS[i – val(tj), j-1]=0, i.e. because there is no
possible sum value lower than zero. This is why, in the
algorithm only if (i ≥ val(tj)), we consider PS[i – val(tj), j-1]
×p(tj) for computing PS[i, j].

Theorem 1. DP_PSUM works correctly if the database is under
the tuple-level model, and the aggr attribute values are positive
integers, and their sum is less than or equal to MaxSum.

Proof. Implied by using the recursive formula in Equa-
tion 4. □

Let us now illustrate DB_PSUM using the following
example.

Example 3. Figure 7.b shows the execution of
DP_PSUM over the database shown in Figure 7.a. In the
first column, we set the probability of sum values for DB1,
i.e. a database that only involves t1. Since the aggr value
of t1 is equal to 1 (see Figure 7.a), in DB1 there are two
possible sum values, sum=1 and sum=0 with probabilities
0.3 and (1 – 0.3) = 0.7 respectively. The probabilities in
other columns, i.e. in 2nd and 3rd, are computed using our
recursive definition. After the execution of the algorithm,
the 3rd column involves the probability of sum values in
the entire database. If we compute ALL_SUM by enu-
merating the possible worlds, we obtain the same results.

4.2 Complexity
Let us now discuss the complexity of DP_PSUM. The first
step of DP_PSUM is done in O(MaxSum), and its second
step in O(n×MaxSum). Thus, the time complexity of
DP_PSUM is O(n×MaxSum), where n is the number of
uncertain tuples and MaxSum the sum of the aggr values
of all tuples. Let avg be the average value of aggr values
of tuples, then we have MaxSum = n×avg. Thus, the com-
plexity of DP_PSUM is O(n2×avg) where avg is the aver-
age of the aggr values in the database.

Notice that if avg is a small number compared to n,
then DP_PSUM is done in a time quadratic to the input.
But, if avg is exponential in n, then the execution time
becomes exponential. Therefore, DP_PSUM is a pseudo
polynomial algorithm.

The space requirement of DP_PSUM is equivalent to a
matrix of (MaxSum + 1) × n, thus the space complexity is
O(n2×avg). In Section 4.2.1, we reduce the space complex-
ity of DP_ PSUM to O(n×avg).

4.2.1 Reducing space complexity
In the basic algorithm of DP_PSUM, for computing

each column of the matrix, we use only the data that are
in the precedent column. This observation gave us the
idea of using two arrays instead of a matrix for comput-
ing ALL_SUM results as follows. We use two arrays of
size (MaxSum + 1), e.g. ar1 and ar2. First, we initialize ar1
using the recursion base (like the first step of the basic
version). Then, for i =2, …, n steps, DP_PSUM fills ar2
using the probabilities in ar1, based on the recursion step,
then it copies the data of ar2 into ar1, and starts the next

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

6

step. Instead of copying the data from ar2 into ar1, we can
simply change the pointers of ar1 to that of ar2, and renew
the memory of ar2.

The space requirement of this version of DP_PSUM is
O(MaxSum) which is equivalent to O(n×avg) where avg is
the average value of aggr values.

4.3 Supporting real attribute values with small
precisions

In many applications that work with real numbers, the
precision of values, i.e. the number of digits after decimal
point, is small. For example, in medical applications the
temperature of patients requires real values with one
digit of precision. DP_PSUM can be adapted to work for
those applications as follows. Let DB be the input data-
base, and c be the number of precision digits in the aggr
values. We generate a new database DB' as follows. For
each tuple t in the input database DB, we insert a tuple t'
to DB' such that the aggr value of t', say v', is equal to the
aggr value of t, say v, multiplied by 10c, i.e. v' = v×10c.
Now, we are sure that the aggr values in DB' are integer,
and we can apply the DP_PSUM algorithm on it. Then,
for each ALL_SUM result (v'i, p) over DB', we return (v'i
/10c, p) as a result of ALL_SUM in DB.

The correctness of the above solution can be implied
by the fact that, if we multiply all aggr values of a DB by a
constant k, then every possible sum result is multiplied by
k.

The time complexity of this version of DP_PSUM for
aggr attribute values with c digits of precision is
O(n×MaxSum×10c) which is equivalent to O(n2×avg×10c)
where avg is the average of the aggr attribute values. The
space complexity is O(n×avg×10c).

4.4 Dealing with negative integer values
The basic version of DP_PSUM assumes integer values
that are positive, i.e. ≥ 0. This assumption can be relaxed
as follows. Let MinNeg be the sum of all negative aggr
values. Then, the possible sum values are integer values
in [MinNeg … MaxSum] where MaxSum is the maximum
possible sum value, i.e. the sum of positive aggr values.
Thus, to support negative values, the size of the first di-
mension of the matrix should be modified to (MaxSum + 1
+ MinNeg). In addition, the algorithm should scan the
possible sum values from MinNeg to MaxSum, instead of
0 to MaxSum. Morever, since the index in the matrix can-
not be negative, we should shift the index of the first
dimension by MinNeg.

4.5 Leveraging GCD
For the case of integer aggr values, if the greatest common
divisor (GDC) of the values is higher than 1, e.g. when the
values are even, then we can significantly improve the
performance of the DP_PSUM algorithm as follows. Let
DB be the given database, and g be the GCD of the aggr
values. We generate a new database DB' in which the
tuples are the same as in DB except that the aggr values
are divided by g. Then, we apply DP_PSUM on DB', and
for each sum result (v'i, p), we return (v'i × g, p) to the
user.

In most cases, the GCD of aggr values is 1, so the above

approach is not applicable. However, when we know that
GCD is higher than one, using this approach can reduce
the time and space complexities of DP_PSUM by an order
of GCD, i.e. since the average of the aggr values in data-
base DB' is divided by GCD. For example, if the aggr
values in DB are {10, 20, 30}, then in the database DB' the
aggr values are {1, 2, 3}, i.e. GCD=10. Since the average of
aggr values is reduced by 10, the space and time complex-
ity of the DP_SUM algorithm will be reduced by an order
of 10.

4.6 Skipping Zero Points
During execution of the basic version of our DP_PSUM
algorithm, there are many cells (of the matrix) with zero
points, i.e. zero probability values. Obviously, we do not
need to read zero points because they cannot contribute
to non-zero probability values. We can avoid accessing
zero points using the following approach. Let L be a list
that is initially set to zero. During the execution of the
algorithm we add the index of non zero points to L, and
for filling each new column, we take into account only the
cells whose indices are in L.

This approach improves significantly the performance
of DP_PSUM, in particular when the number of tuples is
very small compared to the average of aggr values, i.e.
avg. For example, if there are only two tuples and avg is
equal to 10, then each column of the matrix has about 20
cells. However, there are at most 6 non-zero cells in the
matrix, i.e. 2 in the first and at most 4 in the 2nd. Thus, the
above approach allows us to ignore almost 70% of the
cells.

5 ALL_SUM UNDER ATTRIBUTE-LEVEL MODEL
Due to the significant differences between the tuple-level
and the attribute-level models it is not trivial to adapt our
yet proposed algorithms for the attribute-level model.

(b)

Figure 7. a) A database example in tuple-level model;
b) Execution of DP_PSUM algorithm over these exam-
ple

Tuples
Aggr

Attribute
Value

Membership
Probability

t1 1 0.3
t2 3 0.4
t3 2 0.5

(a

SUM

DB1={t 1}

DB2={t 1,t2}

DB3={t 1,t2,t3}

0 0.7 0.42 0.21
1 0.3 0.18 0.09
2 0 0 0.21
3 0 0.28 0.23
4 0 0.12 0.06
5 0 0 0.14
6 0 0 0.06

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

 7

In this section, we propose our solution for computing
ALL_SUM results under the attribute-level model.

5.1 Recursive Approach
We propose a recursive approach for computing
ALL_SUM under the attribute-level model. This approach
is the basis for a dynamic programming algorithm that
we describe next. We assume that all tuples have the
same number of possible aggr values, say m. This as-
sumption can be easily relaxed as we do in Appendix B.
We also assume that, in each tuple ti, the sum of the prob-
abilities of possible aggr values is 1, i.e. pi,1 + pi,2 + … + pi,m
= 1. In other words, we assume that there is no null value.
However, this assumption can be relaxed as in Appendix
A.

5.1.1 Recursion Base
Let us consider DB1, i.e. a database that only involves t1.
Let v1,1, v1,2, …, v1,m be the possible values for the aggr
attribute of t1, and p1,1, p1,2, …, p1,m their probabilities, re-
spectively. In this database, the possible sum values are
the possible values of t1. Thus, we have:

ps(i,1) =
p1,k if ∃k such that v1,k = i

0 otherwise

 (5)

5.1.2 Recursion Step
Now consider DBn-1, i.e. a database involving the tuples t1,
…, tn-1. Let Wn-1 be the set of possible worlds for DBn-1. Let
ps(i, n-1) be the probability of having sum=i in DBn-1, i.e.
the aggregated probability of the DBn-1 worlds in which
we have sum=i. Let vn,1, .. vn,m be the possible values of tn’s
aggr attribute, and pn,1, .. pn,m their probabilities. We con-
struct DBn by adding tn to DBn-1. The worlds of DBn are
constructed by adding to each w∈ Wn-1, each possible
value of tn. Let Wn

k ⊆Wn be the set of worlds which are
constructed by adding the possible value vn,k of tn to the
worlds of Wn-1. Indeed, for each world w∈Wn-1 there is a
corresponding world w'∈Wn

k such that w' = w + {tn}
where the possible aggr value of tn is equal to vn,k. This
implies that for each possible sum=i with probability p in
Wn-1, there is a possible sum = i + vn,k with probability p ×
pn,k in Wn

k. Recall that ps(i, n-1) is the aggregate probabil-
ity of the DBn-1 worlds in which sum = i. Then we have:

 Probability of sum=i in Wn
k = ps(i – vn,k, n-1) × pn,k;

for k=1, …, m (6)
Let ps(i, n) be the probability of sum=i in DBn. Since we

have Wn = Wn
1 ∪ Wn

2 ∪ … ∪ Wn
m, the probability of

sum=i in Wn is equal to the sum of the probabilities of
sum=i in Wn

1, Wn
2, … and Wn

m. Thus, using Equation 6
and the recursion base of Equation 5, the probability of
sum=i in DBn, i.e. ps(i, n), can be stated as follows:

ps(i,n) =

ps(i −
k=1

m

∑ vn,k,n −1) × pn,k if n > 1

p1,k if n =1and ∃ k such that v1,k = i

0 otherwise (7)

5.2 Dynamic Programming Algorithm for Attribute-
level Model

Now, we describe a dynamic programming algorithm,
called DP_PSUM2, for computing ALL_SUM under the
attribute-level model. Here, similar to the basic version of
DP_PSUM algorithm, we assume integer values. How-
ever, in a way similar to that of DP_PSUM, this assump-
tion can be relaxed. Let PS be a 2D matrix with (MaxSum
+ 1) rows and n columns, where n is the number of tuples
and MaxSum is the maximum possible sum, i.e. the sum
of the greatest values of aggr attribute in the tuples. At
the end of DP_PSUM2 execution, PS[i,j] contains the
probability of sum=i in a database involving tuples t1, …,
tj.

DP_PSUM2 works in two steps. In the first step, it ini-
tializes the first column of the matrix, by using the base of
the recursive definition, as follows. For each possible aggr
value of tuple t1, e.g. v1,k, it sets the corresponding entry
equal to the probability of the possible value, i.e. it sets
P[v1,k, 1]=p1,k for 1≤k≤m.

In the second step, DP_PSUM2 sets the entry values of
each column j (for 2≤j≤n) by using the recursion step of
the recursive definition, and based on the values yet set in
precedent column. Formally, for each column j and row i
it sets PS[i, j] = ∑ (PS[i - v1,k, j-1] × pj,k) for 2≤k≤m such
that i ≥ v1,k.

Let us now analyze the complexity of the algorithm.
Let avg=MaxSum/n, i.e. the average of the aggregate at-
tribute values. The space complexity of DP_PSUM2 is
exactly the same as that of DP_PSUM, i.e. O(n2×avg). The
time complexity of DP_PSUM2 is O(MaxSum×n×m). In
other words its time complexity is O(m×n2×avg).

Let us now illustrate the DB_PSUM2 algorithm using

(b)

SUM

DB1={t 1}

DB2={t 1,t2

}

DB3={t 1,t2,t3}

0 0 0 0

1 0.3 0 0

2 0.7 0 0

3 0 0.18 0.09

4 0 0.54 0.36

5 0 0.28 0.41

6 0 0 0.14

Tuples Aggr attribute values and probabilities

t1 (1, 0.3), (2, 0.7)

t2 (3, 0.4), (2, 0.6)

t3 (0, 0.5), (1, 0.5)

(a)

Figure 8. a) A database example in attribute-level model;
b) Execution of DP_PSUM algorithm over these exam-
ples

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

8

an example.
Example 4. Consider the database in Figure 8.a which

is under attribute-level model. The execution of the
DP_PSUM2 algorithm is shown in Figure 8.b. The first
column of the matrix is filled using the probabilities of the
possible aggr values of t1. Thus, we set 0.3 and 0.7 for sum
values 1 and 2 respectively. The other columns are filled
by using our recursive definition. After the execution of
the algorithm, the 3rd column shows the probability of all
sum results for our example database.

6 EXTENSIONS
In this section, we extend our algorithm to deal with the
x-relation model, and correlated databases with mutual
exclusions. We also show how our ALL_SUM algorithms
can be used for computing the results of COUNT aggre-
gate queries.

6.1 ALL_SUM in X-Relation Model
In the X-Relation model [1], a probabilistic table is com-
posed of a set of independent x-tuples, such that each x-
tuple consists of some mutually exclusive tuples, called
alternatives. Each alternative is associated with a prob-
ability. If every x-tuple consists of only one alternative,
then the x-relation is equivalent to our tuple-level model.
In this case, ALL_SUM query processing can be done
using the algorithms developed for tuple-level model.

Let us deal with the problem of evaluating ALL_SUM
queries for the case of multiple alternative x-tuples. This
problem can be reduced to a problem in the attribute-
level model as follows. Let Q be the ALL_SUM query,
and α be the aggr attribute. Let D be the given database in
the x-relation model. We convert D to a database D' in the
attribute-level model such that the result of the query Q
in D’ be the same as that of D. The database D’ is con-
structed as follows. For each x-tuple x in D, we create a
tuple t' in D' with an attribute α. Let T be the set of x’s
alternative tuples. Let T’⊆T be the set of tuples in T that
satisfy the Q’s predicates. The values of the attribute α in
t’ will be the distinct values of this attribute in the tuples
involved in T’, and probability of each value is computed
in a similar way as a projection on α. In other words, if a
value appears in only one alternative of x, then its prob-
ability is equal to the probability of the alternative. Oth-
erwise, i.e. when a value appears in multiple alternatives,
its probability is equal to the probability that at least one
of the alternatives exists.

Now, the database D' is under the attribute-level
model, and we can apply our ALL_SUM algorithms to
evaluate ALL_SUM queries over it.

6.2 ALL_SUM over Correlated Databases
In previous sections, we assumed that the tuples of the
database are independent. Here, we assume mutual ex-
clusion correlations, and show how to execute over
ALL_SUM algorithms over databases that contain such
correlation. Two tuples t1 and t2 are mutually exclusive, iff
they cannot appear together in any instance of the database
(i.e. possible world). But, there may be instances in which
none of them appear. As an example of mutual exclusive

tuples we can mention the tuples that are produced by
two sensors that monitor the same object at the same
time. In this example, at most one of the produced tuples
can be correct, so they are mutually exclusive.

It has been shown that the tuples of a correlated data-
base with mutual exclusions can be grouped to a set of
blocks such that there is no dependency between any two
tuples that belong to two different blocks, and there are
closure dependencies between any two tuples of each
block [11]. These blocks are in fact x-tuples with multiple
alternatives. Thus, to evaluate ALL_SUM queries on
them, it is sufficient to convert the given database to a
database D’ in the attribute-level model as shown in Sec-
tion 6.1, and then apply an ALL-SUM algorithm that
works on the attribute-level model.

6.3 Evaluating ALL_COUNT Queries Using ALL_SUM
Algorithms

We now show how we can evaluate ALL_COUNT que-
ries, i.e. all possible counts and their probabilities, using
the algorithms that we proposed for ALL_SUM. Under
the attribute-level model, all tuples are assumed to exist,
thus the result of a count query is always equal to the
number of tuples that satisfy the query. However, under
the tuple-level model, the problem of evaluating
ALL_COUNT is harder because there may be (n+1) pos-
sible count results (i.e. from 0 to n) with different prob-
abilities, where n is the number of uncertain tuples. This
is why we deal with ALL_COUNT only under the tuple-
level model.

The problem of ALL_COUNT can be reduced to that of
ALL_SUM in polynomial time as follows. Let D be the
database on which we want to execute ALL_COUNT. We
generate a new database D' as follows. For each tuple
t∈D we generate a tuple t' in D' such that t' involves only
one attribute, e.g. B, with two possible values: v1=1 and
v2=0. We set p(v1) equal to the membership probability of
t. We set p(v2)= 1 – p(v1). Now, if we apply one of our
ALL_SUM algorithms over B as aggr attribute in D', the
result is equivalent to applying an ALL_COUNT algo-
rithm over the aggr attribute in D. This is proven by the
following theorem.

Theorem 2. If the database D is under the tuple-level model,
then the result of ALL_SUM over the attribute B in database D' is
equivalent to the result of ALL_COUNT over the aggregate attrib-
ute of the database D.

Proof. If the database D is under the tuple-level model,
its membership probability in D is equal to the probabil-
ity of value v1=1 in attribute B of D'. Thus, the contribu-
tion of a tuple t to COUNT in the database D is equal to
the contribution of its corresponding tuple t' to SUM in
the database D'. In other words, the results of ALL_SUM
over D' is equivalent to the results of ALL_COUNT over
D. □

7 EXPERIMENTAL VALIDATION
To validate our algorithms and investigate the impact of
different parameters, we conducted a thorough experi-
mental evaluation. In Section 7.1, we describe our ex-

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

 9

perimental setup, and in Section 7.2, we report on the
results of various experiments to evaluate the perform-
ance of the algorithms by varying different parameters.

7.1 Experimental Setup
We implemented our DP_PSUM and Q_PSUM algo-
rithms in Java, and we validated them over both real-
world and synthetic databases.

As real-world database, like some previous works, e.g.
 [18] [21], we used the data collected in the International
Ice Patrol (IIP) Iceberg Sightings Database
(http://nsidc.org/data/g00807.html) whose data is about
the iceberg evolution sightings in North America. The
database contains attributes such as iceberg, number,
sighting date, shape of the iceberg, number of days
drifted, etc. There is an attribute that shows the confi-
dence level about the source of sighting. In the dataset
that we used, i.e. that of 2008, there are 6 confidence lev-
els: R/V (radar and visual), VIS (visual only), RAD (radar
only), SAT-LOW (low orbit satellite), SAT-MED (medium
orbit satellite) and SAT-HIGH (high orbit satellite). Like
in [18] and [21], we quantified these confidence levels by
0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 respectively. As aggr attribute,
we used the number of drifted days that contains real

numbers with one digit of precision in the interval of [0…
365].

As synthetic data, we generated databases under the
attribute-level model that is more complete than the tu-
ple-level model. We generated two types of databases,
Uniform and Gaussian, in which the values of attributes
in tuples are generated using a random generator with
the uniform and Gaussian distributions, respectively. The
default database is Uniform, and the mean (average) of
the generated values is 10. Unless otherwise specified, for
the Gaussian database the variance is half of the mean.
The default number of attribute values in each tuple of
our attribute-value model is 2.

In the experiments, we evaluated the performance of
our DP_PSUM and Q_PSUM algorithms. We also com-
pared their performance with that of the naïve algorithm
that enumerates the possible worlds, computes the sum in
each world, and returns the possible sum values and the
aggregated probability of the worlds where they appear
as the result of sum. To manage the possible sum values,
we used a B-tree structure.

For the three algorithms, we measured their response
time. We conducted our experiments on a machine

with a 2.66 GHz Intel Core 2 Duo processor and 2GB

Figure 9. Response time vs. number of
uncertain tuples

Figure 10. Performance results over
real-world database

Figure 11. Performance over data-
bases with different distribution types

DP_PSUM

1

10

100

1000

10000

100000

0 1 2 3

Attribute value precision

R
e
p
o
ns

e
tim

e
 (

m
s)

DP_PSUM

Figure 12. Effect of the average of
aggregate attribute values on per-
formance

Figure 13. Effect of the number of at-
tribute values per tuple on performance

Figure 14. Effect of the precision of
real aggr values on performance

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

10

memory.

7.2 Performance Results
In this section, we report the results of our experiments.

Effect of the number of uncertain tuples. Using the
synthetic data, Figure 9 shows the response time of the
three algorithms vs. the number of uncertain tuples, i.e. n,
and the other experimental parameters set as described in
Section 7.1. The best algorithm is DP_PSUM, and the
worst is the Naïve algorithm. For n>30, the response time
of the Naïve algorithm is too long, such that we had to
halt it. This is why we do not show its response time for
n>30. The response time of DP_PSUM is at least four
times lower than that of Q_PSUM (notice that the figure is
in logarithmic scale).

Over the IIP database, Figure 10 shows the response
time of the three algorithms, with different samples of the
IIP database. In each sample, we picked a set of n tuples,
from the first to the nth tuple of the database. Overall, the
results are qualitatively in accordance with those over
synthetic data. However, the response time over the real
database is higher than that of the synthetic database. The
main reason is that the precision of the real data is 1, i.e.
there is one digit after the decimal point. This increases
the execution time of our algorithms significantly. For
example, in the case of DP_PSUM, the execution time can
increase up to ten times, and this confirms the complexity
analysis of real value processing in Section 4.3.

Effect of data distribution. Figure 11 shows the re-
sponse time of our algorithms over the Uniform and
Gaussian databases. The response time of DP_PSUM over
uniform distribution increases, but not significantly, i.e.
less than 30%. The higher performance of DP_PSUM over
the uniform distribution is due to the higher number of
zero points, which can be skipped (see Table 1), thus less
computation is needed. Another reason is the value of
MaxSum, i.e. the maximum possible sum value, which is
lower for the uniform dataset as shown in Table 1.

The impact of the distribution on Q_PSUM is much
more significant, i.e. about two times more than on the
DP_PSUM. The reason is that the distribution of the at-
tribute values affects the number of possible sum results,
i.e. with the Gaussian distribution the number of possible
sum values is much more than that of the uniform distri-
bution.

Effect of average. We performed tests to study the ef-

fect of the average of aggregate values in the database, i.e.
avg, on performance. Using the synthetic data, Figure 12
shows the response time of our DP_PSUM and Q_PSUM

algorithms with avg increasing up to 50, and the other
experimental parameters set as described in Section 7.1.
The average of aggregate values has a linear impact on
DP_PSUM, and this is in accordance with the complexity
analysis done in Section 4. What was not expected is that
the impact of avg on the performance of Q_PSUM is sig-
nificant, although avg is not a direct parameter in the
complexity of Q_PSUM (see Section 3.2). The explanation
is that the time complexity of Q_PSUM depends on the
number of possible SUM results, and when we increase
avg (i.e. mean) of the aggregate values, their range be-
come larger, thus the total number of possible sum values
increases.

Effect of the number of attribute values per tuple. We
tested the effect of the number of attribute values in each
tuple under the attribute-level model, i.e. m, on perform-
ance. Figure 13 shows the response time of our algorithms
with increasing m up to 10, and other parameters set as in
Table 1. This number has a slight impact on DP_PSUM,
but a more considerable impact on Q_PSUM.

Effect of precision. We studied the effect of the preci-
sion of real numbers, i.e. the number of digits after deci-
mal point, on the performance of the DP_PSUM algo-
rithm. Using the synthetic data, Figure 14 shows the re-
sponse time with increasing the precision of the aggr
values. As shown, the precision has a significant impact
on the response time of DP_PSUM, i.e. about ten times for
each precision digit. This is in accordance with our theo-
retical analysis done in Section 4, and shows that our
algorithm is not appropriate for the applications in which
the aggr values are real numbers with many digits after
the decimal point.

8 RELATED WORK
In the recent years, we have been witnessing much inter-
est in uncertain data management in many application
areas such as data cleaning [3], sensor networks [12] [21],
information extraction [19], etc. Much research effort has
been devoted to several aspects of uncertain data man-
agement, including data modeling [4] [6] [10] [16] [17] [29],
skyline queries [5] [26], top-k queries [9] [13] [18] [30], near-
est neighbor search [31] [33] [35], spatial queries [34], XML
documents [1] [24] [25], etc.

There has been some work dealing with aggregate
query processing over uncertain data. Some of them were
devoted to developing efficient algorithms for returning
the expected value of aggregate values, e.g. [7] [20]. For
example in [20], the authors study the problem of com-
puting aggregate operators on probabilistic data in an
I/O efficient manner. With the expected value semantics,
the evaluation of SUM queries is not very challenging. In
 [10], Dalvi and Suciu consider both expected value and
ALL_SUM, but they only propose an efficient approach
for computing the expected value.

Approximate algorithms have been proposed for
probabilistic aggregate queries, e.g. [8] and [28]. The Cen-
tral Limit theorem [27] can be used to approximately
estimate the distribution of sums for sufficiently large
numbers of probabilistic values. However, in the current

Table 1. The value of MaxSum and the percentage
of zero points during the execution of DP_PSUM
algorithm on uniform and Gaussian datasets.

 Uniform Gaussian

MaxSum 2577 3123

Rate of zero value
cells

0.73% 0.63%

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

 11

paper, our objective is to return exact probability values,
not approximations.

In [23] and [32], aggregate queries over uncertain data
streams have been studied. For example, Kanagal et al.
 [23] deal with continuous queries over correlated uncer-
tain data streams. They assume correlated data which are
Markovian and structured in nature. Their probabilistic
model and the assumptions, and as a result the possible
algorithms, are very different from ours. For example in
their model, they propose algorithms that deal with
MIN/MAX queries in a time complexity that does not
depend on the number of tuples. However, in our model
it is not possible to develop algorithms with such a com-
plexity.

The work in [11] studies the problem of HAVING ag-
gregate queries with predicates. The addressed problem
is related to the #KNAPSACK problem which is NP-hard.
The difference between HAVING-SUM queries in [11]
and our ALL_SUM queries is that in ALL_SUM we return
all possible SUM values and their probabilities, but in
HAVING-SUM the goal is to check a condition on an
aggregate function, e.g. is it possible to have SUM equal
to a given value.

Overall, for the problem that we considered in this pa-
per, i.e. returning the exact results of ALL_SUM queries,
there is no efficient solution in the related work. In this
paper, we proposed pseudo polynomial algorithms that
allow us to efficiently evaluate ALL_SUM queries in
many practical cases, e.g. where the aggregate attribute
values are small integers, or real numbers with limited
precisions.

9 CONCLUSION
SUM aggr queries are critical for many applications that
need to deal with uncertain data. In this paper, we ad-
dressed the problem of evaluating ALL_SUM queries.
After proposing a new recursive approach, we developed
an algorithm, called Q_PSUM, which is polynomial in the
number of SUM results. Then, we proposed a more effi-
cient algorithm, called DP_PSUM, which is very efficient
in the cases where the aggr attribute values are small
integers or real numbers with small precision. We vali-
dated our algorithms through implementation and ex-
perimentation over synthetic and real-world data sets.
The results show the effectiveness of our solution. The
performance of DP_PSUM is usually better than that of
Q_PSUM. Only over special databases with small num-
bers of possible sum results and very large aggr value
average, Q_PSUM is better than DP_PSUM.

REFERENCES
[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv and P. Senellart.

On the expressiveness of probabilistic XML models.
In VLDB Journal, 18(5), 2009.

[2] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom, Trio: A System
for Data, Uncertainty, and Lineage. Proc. In VLDB

Conf., 2006.

[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean an-
swers over dirty databases. In ICDE Conf., 2006.

[4] L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast and
Simple Relational Processing of Uncertain Data. In
ICDE Conf., 2008.

[5] M. J. Atallah and Y. Qi. Computing all skyline prob-
abilities for uncertain data. In PODS Conf., 2009.

[6] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom.
ULDBs: databases with uncertainty and lineage. In
VLDB Conf., 2006.

[7] D. Burdick, P. Deshpande, T.S. Jayram, R. Ramakrish-
nan, S. Vaithyanathan. OLAP Over Uncertain and
Imprecise Data. In VLDB Conf., 2005.

[8] G. Cormode and M. N. Garofalakis. Sketching prob-
abilistic data streams. In SIGMOD Conf., 2007.

[9] G. Cormode, F. Li, K. Yi. Semantics of Ranking Que-
ries for Probabilistic Data and Expected Ranks. In
ICDE Conf., 2009.

[10] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB Journal, 16(4), 2007.

[11] C. Ré and D. Suciu. The trichotomy of HAVING que-
ries on a probabilistic database. In VLDB Journal,
18(5), 1091-1116, 2009.

[12] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sen-
sor networks. In VLDB Conf., 2004.

[13] D. Deutch and T. Milo. TOP-K projection queries for
probabilistic business processes. In ICDT Conf., 2009.

[14] A. Gal, M.V. Martinez, G.I. Simari and V. Subrahma-
nian. Aggregate Query Answering under Uncertain
Schema Mappings. In ICDE Conf., 2009.

[15] T. Ge, S.B. Zdonik and S. Madden. Top-k queries on
uncertain data: on score distribution and typical an-
swers. In SIGMOD Conf., 2009.

[16] T. J. Green and V. Tannen. Models for Incomplete
and Probabilistic Information. In IEEE Data Eng. Bull.
29(1), 2006.

[17] R. Gupta, S. Sarawagi. Creating Probabilistic Data-
bases from Information Extraction Models. In VLDB
Conf., 2006.

[18] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries
on uncertain data: A probabilistic threshold ap-
proach. In SIGMOD Conf., 2008.

[19] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S.
Vaithyanathan, and H. Zhu. Avatar information ex-
traction system. IEEE Data Eng. Bull., 29(1), 2006.

[20] T.S. Jayram, A. McGregor, S. Muthukrishnan, E. Vee.
Estimating statistical aggregates on probabilistic
data streams. In PODS Conf., 2007.

[21] C. Jin, K. Yi, L. Chen, J. X. Yu, X. Lin. SlidingWindow
Topk Queries on Uncertain Streams. In VLDB Conf.,

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

12

2008.

[22] B. Kanagal and A. Deshpande. Online filtering,
smoothing and probabilistic modeling of streaming
data. In ICDE Conf., 2008.

[23] B. Kanagal and A. Deshpande. Efficient Query
Evaluation over Temporally Correlated Probabilistic
Streams. In ICDE Conf., 2009.

[24] B. Kimelfeld, Y. Kosharovsky and Yehoshua Sagiv.
Query evaluation over probabilistic XML. In VLDB
Journal, 18(5), 2009.

[25] A. Nierman, H.V. Jagadish. ProTDB: Probabilistic
Data in XML. In VLDB Conf., 2002.

[26] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic sky-
lines on uncertain data. In VLDB Conf., 2007.

[27] G. Rempala and J. Wesolowski. Asymptotics of
products of sums and U-statistics. Electronic Commu-
nications in Probability, vol. 7, 47–54, 2002.

[28] R.B. Ross, V.S. Subrahmanian and J. Grant. Aggregate
operators in probabilistic databases. J. ACM, 52(1).
pp. 54-101, 2005.

[29] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE Conf.,
2006.

[30] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k
query processing in uncertain databases. In ICDE
Conf., 2007.

[31] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann,
I.F. Cruz. Continuous probabilistic nearest-neighbor
queries for uncertain trajectories. In EDBT Conf.,
2009.

[32] T. Tran, A. McGregor, Y. Diao, L. Peng, A. Liu. Con-
ditioning and Aggregating Uncertain Data Streams:
Going Beyond Expectations. In VLDB Conf., 2010.

[33] B. Yang, H. Lu, C.S. Jensen. Probabilistic threshold k
nearest neighbor queries over moving objects in
symbolic indoor space. In EDBT Conf., 2010.

[34] M. L. Yiu, N. Mamoulis, X. Dai, Y. Tao, M. Vaitis.
Efficient Evaluation of Probabilistic Advanced Spa-
tial Queries on Existentially Uncertain Data. IEEE
Trans. Knowl. Data Eng., 21(1), 2009.

[35] S.M. Yuen, Y. Tao, X. Xiao, J. Pei, D. Zhang. Super-
seding Nearest Neighbor Search on Uncertain Spa-
tial Databases. IEEE Trans. Knowl. Data Eng., 22(7),
2010.

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

 13

Appendix A: Dealing with Null Values
In classical (non probabilistic) databases, when proc-

essing SUM queries, the null (unknown) values are usu-
ally replaced by zero. Under the tuple level model, the
null value has the same meaning as in classical databases.
Thus, we simply replace the null values by zero without
changing their probabilities.

Under the attribute level model, the null values are
taken into account as follows. Let ti be a tuple under this
model, vi,1, vi,2, …, vi,m the possible values for the aggr
attribute of ti, and pi,1, pi,2, …, pi,m their probabilities. Let p

be the sum of the probability of possible values in ti, i.e. p
= pi,1 + pi,2 + … + pi,m. If p<1, then there is the possibility of
null value (i.e. unknown value) in tuple ti, and the prob-
ability of the null value is (1-p). We replace null values by
zero as follows. If the zero value is among the possible
values of ti, i.e. there is some vi,j =0 for 1≤j≤m, then we add
(1-p) to its probability, i.e. we set pi,j= pi,j + 1 – p. Other-
wise, we add the zero value to the possible values of ti,
and set its probability equal to (1-p).

Appendix B: Dealing with Tuples with Different Possible
Aggr Values

Under the attribute level model, in our recursive ap-

Algorithm Q_PSUM()

Input:

 n : number of tuples;

 t1, …, tn : the tuples of the database;

 p(t) : a function that returns the probability of tuple t;

Output:

 Possible sum values and their probability;

Begin

//Step 1 : initialization

 Q = {};

 If (val(t1) = 0) then Q = Q + {(0, 1)};

 Else Begin

 Q = Q + { (0, 1 - p(t1)) } ;

 Q = Q + { (val(t1), p(t1)) } ;

 End ;

//Step2 : constructing Q for DB2 to DBn

 For j=2 to n do Begin

 Q1 = Q2 = {};

 // construct Q1 and Q2

 For each pair (i, ps)∈Q do Begin

 Q1 = Q1 + {(i, ps×(1 – p(tj))};

 Q2 = Q2 + (i+val(tj), ps×p(tj));

 End;

 Q = Merge(Q1, Q2); // the merge is done in such a way

 //that if exists (i, ps1)∈Q1 and (i, ps2)∈Q2 then

 // (i, ps1 + ps2) is inserted into Q.

 End;

 // returning the results to the user

 While (Q.empty() == False) do Begin

 (i, ps) = Q.removefirst();

 If (ps ≠ 0) then

 Return i, ps;

 End;

End;

Figure 15. Pseudocode of Q_PSUM algorithm

Algorithm DP_PSUM() {simplified version}

Input:

 n : number of tuples;

 t1, …, tn : the tuples of the database;

 MaxSum : maximum possible sum;

 p(t) : a function that returns the probability of tuple t;

Output:

 Possible sum values and their probability;

Begin

Let PS [0..MaxSum, 1..n] be a 2 dimensional matrix;

//Step 1 : initialization

 For i=1 to MaxSum do

 PS[i, 1] = 0;

 If (val(t1) = 0) Then

 PS[0, 1] = 1;

 Else begin

 PS[0, 1] = 1 - p(t1);

 PS[val(t1), 1] = p(t1) ;

 End ;

//Step 2 : filling the columns

 For j=2 to n do

 For i=0 to MaxSum do begin

 PS[i, j] = PS[i, j-1] × (1 – p(tj))

 If (i – val(tj) ≥ 0) then

 If (PS[i – val(tj), j - 1] > 0) then

 PS[i, j] = PS[i, j] + PS[i – val(tj), j - 1]×p(tj);

 End;

// returning the results to the user

 For i=0 to MaxSum do

 If (PS[i, n] ≠ 0) then

 Return i, PS[i, n];

End;

Figure 16. Pseudocode of DP_PSUM algorithm
for tuple-level model

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

14

proach for computing SUM we assumed that all tuples
have the same number of possible aggr values. However,
there may be cases where the number of possible aggr
values in tuples is not the same. We deal with those cases
as follows. Let t be the tuple with maximum number of
possible aggr values. We set m to be equal to the number
of possible values in t. For each other tuple t', let m' be
the number of possible aggr values. If m'<m, we add (m -
m') new distinct values to the set of possible values of t',
and we set the probability of new values to zero. Obvi-
ously, the new added values have no impact on the re-
sults of ALL_SUM queries because their probability is
zero. Thus, by this method, we make the number of pos-
sible aggr values in all tuples equal to m, without impact-
ing the results of ALL_SUM queries.

Appendix C: Pseudocode of AL_SUM algorithms
Figure 15 and Figure 16 show the pseudocode of the
Q_PSUM and DP_PSUM algorithms.

lir
m

m
-0

06
52

29
3,

 v
er

si
on

 1
 -

20
 D

ec
 2

01
1

