
Noname manuscript No.
(will be inserted by the editor)

A Hierarchical Grid Index (HGI), Spatial Queries in
Wireless Data Broadcasting

Kwangjin Park and Patrick Valduriez

Received: date / Accepted: date

Abstract The main requirements for spatial query processing via mobile ter-
minals include rapid and accurate searching and low energy consumption.
Most location-based services (LBSs) are provided using an on-demand method,
which is suitable for light-loaded systems where contention for wireless chan-
nels and server processing is not severe. However, as the number of users of
LBSs increases, performance deteriorates rapidly since the servers’ capability
to process queries is limited. Furthermore, the response time of a query may
significantly increase with the concentration of users’ queries in a server at
the same time. That is because the server has to check the locations of users
and potential objects for the final result and then individually send answers
to clients via a point-to-point channel. At this time, an inefficient structure
of spatial index and searching algorithm may incur an extremely large access
latency.

To address this problem, we propose the Hierarchical Grid Index (HGI),
which provides a light-weight sequential location-based index structure for
efficient LBSs. We minimize the index size through the use of hierarchical
location-based identifications. And we support efficient query processing in
broadcasting environments through sequential data transfer and search based
on the object locations. We also propose Top-Down Search and Reduction-
Counter Search algorithms for efficient searching and query processing. HGI
has a simple structure through elimination of replication pointers and is there-
fore suitable for broadcasting environments with one-dimensional characteris-
tics, thus enabling rapid and accurate spatial search by reducing redundant
data. Our performance evaluation shows that our proposed index and algo-
rithms are accurate and fast and support efficient spatial query processing.
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1 Introduction

Location-based services (LBSs) refer to spatial query processing services and
include map services, augmented reality (AR) technology, and navigation.
These services determine the location of surrounding buildings using the Global
Positioning System (GPS) and the geographical location of individuals who
carry mobile devices such as smartphones. Because of the nature of mobile
phones, which feature mobility and portability, LBSs have been forecasted as
one of the “killer applications” since the beginning of mobile communication.
Despite such prospects, the predecessors to smartphones, known as feature
phones, failed to gain popularity for a number of reasons, including lack of
technical support over the platform, lack of resources such as mobile handset
batteries, communication speed and storage devices, and lack of infrastruc-
ture support for LBSs. However, feature phones have always been recognized
as potentially successful services. The recent explosive growth and popular-
ization of smartphones have made LBSs at the forefront of the market as one
of the ‘successful killer applications in the market’, rather than a ‘potential
killer application’. To provide LBS, 4 or more coordinates are obtained at the
receiving point using GPS, the most commonly used location-tracking device.
Typically, satellite-based approaches provide accuracy to the level of tens of
meters, while a Differential Global Positioning System (DGPS) provides accu-
racy to the level of a few meters. Meanwhile, approaches using communication
methods that were quickly popularized with the advent of ubiquitous eras, such
as Radio-frequency identification (RFID), Ultra-wide band (UWB), or Blue-
tooth, are also rapidly developing. Specifically, UWB is being used primarily
for real-time location tracking systems, where the accuracy of the location
is significant because of its advantage in providing high accuracy of up to a
few centimeters in indoor position tracking. With these remarkable location-
tracking technologies, a variety of application services involving the location of
the user has emerged. These services include providing the location of the taxi
drivers who are closest to the customers who called for a taxi cab, the so-called
‘peace of mind’ service that periodically reports children’s locations (for crime
prevention), and a service that locates friends who are within a 500-meter
radius, where the friends are drawn from a contact list in the smartphones.

Various studies have considered a broadcasting environment to handle the
recent explosive growth in smartphone users’ query congestion and to protect
users’ personal information, such as locations and interests [1,2,3,4,5,6,7].
Wireless data broadcasting transfers a large amount of information through
the push method without processing individual users’ query requests. Thus, we
can support high quality services even in environments that are concentrated
with many users, such as schools, parks, or train stations.

Additionally, to allow users to conduct desired query processing without
exposing their location to the server, privacy is provided. That is, the server pe-
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riodically transfers information on buildings located at a specific place or mov-
ing objects through wireless broadcasting channels. For example, customers
entering a large bookstore can use their smartphones to periodically find spe-
cific information regarding the books on their areas of interest, such as new
books on a certain topic and the locations, titles, and content of books. In
addition, a variety of services that consider the users’ locations can be offered
through wireless broadcasting environments, including weather information,
mobile advertisements, traffic information, and the local news. As an exam-
ple, mobile communications companies, such as AT&T and Verizon, provide
location tracking services to keep their family and friends safe by tracking
their real-time location to customer using any smart-phone by broadcasting
methods. Broadcast dissemination has also been adopted by Microsoft Smart
Personal Objects Technology (SPOT) to send timely, location-aware informa-
tion to customers via the DirectBand network[15].

A wireless data broadcast can be viewed as “storage on the air” and saves
power on the client side by avoiding power consuming uplink transmissions
[9,5,4]. However, one of the limitations of the broadcast model is that it re-
stricts data access to be sequential. Queries can only be fulfilled after all the
required on-air data arrives [10]. Therefore, various studies that strengthen
the advantages of broadcasting environments and support more efficient LBS
are necessary.

Indexes are used for efficient spatial query processing in LBS. Indexes can
be classified between ‘disk-based’ and ‘air’ indexes [10,11,12]. Generally, a
disk-based index is used in point-to-point methods, where the server receives
and processes the clients’ requests in an on-demand environment. In other
words, the server searches for the query position and objects that are requested
and then transfers the results to the requesting client. In contrast, an air-index
is used in the push method, where the server transfers the broadcast program-
ming information and the actual broadcast contents in sequence via wireless
broadcast channels and the clients use the received index data to selectively
tune to the necessary broadcast. Studies regarding spatial query processing in
an air-index environment that can simultaneously handle requests from many
users and also consider the privacy of the individual users are underway [11,
13,14,15,16,17]. Disk-based indexes have the following characteristics:

– An index search at the time of the query request begins at the index starting
point. Taking R-tree as an example, the index search always begins at the
root, which is the topmost node.

– Depending on the characteristics of the random-access media, the occur-
rence of backtracking during the index search does not have a significant
effect on the search time.

– A partial search of the index is possible. Taking R-tree as an example, a
selective search is possible, which is limited to the potential locations of
the query result.

Compared to disk-based indexes, air-indexes face three main issues:
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– Probe wait1 issue: Depending on the times of the query requests and the
index transfers, the starting time for the index search can vary. Typically,
the clients stand by at the index start point and then begin the index
search.

– Backtracking issue: Backtracking of the index search with a tree structure
has a significant impact on the query processing time. To hear again the
past index data in the broadcasting environment, it is necessary to wait
until the next period.

– Index search issue: Repeating the awake and sleep modes and waiting until
the desired data are transferred through the channel must be performed,
according to the sequential approach.

Therefore, novel indexed structures and search algorithms should be de-
vised to overcome the problems in wireless broadcasting environments and
process queries efficiently. This paper proposes a new hierarchical spatial in-
dex, called HGI (Hierarchical Grid Index), and a spatial query processing
algorithm that exploits the objects’ locations and distribution data.

We investigate the research problem of processing spatial queries in wireless
broadcasting environments, which is useful in heavy-loaded location based
service systems. HGI has a small cost in terms of tuning time and access
time by using object ID encoding instead of pointers from Hilbert Curve-
based indexing techniques. As a result, the data broadcast server transfers the
object ID according to the grid order, which can be used to further prune
unnecessary examinations of objects. HGI eliminates the partial replication
pointers in multiple places in the broadcast channel that may incur redundant
tuning time and access time, thus enabling rapid and accurate spatial search
by reducing redundant data.

Moreover, we try to optimize LBS users’ access time and tuning time with
two different approaches Top-Down Search (TDS) and Reduction-Counter
Search (RCS), respectively. TDS provides the optimum access time, whereas
RCS offers the optimum tuning time.

The main contribution of this paper is with respect to the three main issues
described above:

– Probe wait issue: The proposed index has the fully distributed non-redundant
light-weight structure in order to reduce the probe wait time and to support
the selective index search. Clients can determine the distance between the
objects or the objects’ locations through the object identifications, which
consist only of the location data of the objects. Therefore, an efficient data
search is supported by a quick index search and short information retrieval
cycle.

– Backtracking issue: our proposed index overcomes the problem of back-
tracking through the server, setting the broadcasting order with a consid-
eration for the object’s location. Our Top-Down Search algorithm (TDS)
provides fast query processing with minimum search costs by utilizing

1 The average duration for getting to the next index segment is called the probe wait [5].
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a location-based data transfer order that is transferred from the server.
Meanwhile, our Reduction-Counter Search algorithm (RCS) utilizes a hi-
erarchical structure of HGI to selectively tune to the desired data, providing
energy-efficient query processing.

– Partial index search issue: Our HGI utilizes the hierarchical object identi-
fication (oid) based on the location of the object so that the object’s geo-
graphical location can be determined just with partial index data. There-
fore, a fast spatial query processing is possible through the search of the
object’s location without the probe waiting regardless of when the client
awakes.

Furthermore, our performance evaluation shows the superiority of our solution
compared to previous work related to air indexing.

The remainder of the paper is organized as follows. Section 2 discusses re-
lated work. Section 3 discusses the motivations for our proposed solutions. Sec-
tion 4 introduces our system architecture. Section 5 describes our HGI spatial
index structure. Section 6 describes our spatial query processing algorithms.
Section 7 gives our performance evaluation. Finally, Section 8 concludes.

2 Related Work

In this section, we discuss existing techniques that can be used for support-
ing spatial queries in wireless broadcasting environments. We also point out
their limitations. First, we examine the indexing techniques for reducing query
response time and supporting efficient data search. Second, we discuss data
broadcasting methods. Third, we examine various spatial query processing
algorithms.

2.1 Indexing Techniques

There are two basic methods to deliver data to clients such as pull and push.
In the pull method, all requests are explicitly made to the server. The server is
responsible for processing the query and returning the answer directly to the
client. On the other hand, in the push method, the server periodically transfers
the data that a client requests through broadcasting channels. At each period,
the index can be inserted with the transferred data to support the client’s
selective data tuning. However, because the client is unable to process queries
during the time prior to tuning to the index data (i.e., the probe wait time),
a solution is required. The (1,m) index [5] proposes a method whereby the
index is broadcast m times during a single broadcast cycle, i.e., the broadcast
index is broadcast every fraction 1

m of the broadcast cycle. Selective tuning is
accomplished by multiplexing an index with the data items in the broadcast.
In general, the fastest access time2 in a broadcast cycle is obtained when there

2 Access time is the time elapsed from the time a client requests data to the point when
all the required data is downloaded by the client [4].
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is no index, since the size of the entire broadcast cycle is minimized at the
expense of tuning time3. In this case, the average latency time is N

2 +d, where
N denotes the size of the transferred data objects and d denotes the download
time for data objects. On the other hand, increasing the number of index
segments in a single broadcast cycle reduces the average probe wait time, but
increases access time because of the additional index information. In this case,
the probe wait time for the next index is equal to 1

2 × (i + N
m ) and the wait

time for the desired data object is equal to 1
2 × (N + i×m), where i denotes

the size of the index. Since the access time is the sum of the probe wait time
for the index and the wait time for the desired data object, the average access
time for the (1, m) index is equal to 1

2 × ((m+ 1)× i+ 1
m + 1×N) + d (see

[5] for the details).

However, the (1,m) index has a serious disadvantage. Although copying
multiple indexes and transferring to a single broadcast cycle reduces the probe
wait time, the entire broadcasting cycle increases because of the inserted in-
dex, thus increasing access time. In [5], the authors propose a distributed index
that improves over the (1,m) technique. Instead of transferring the complete
index for the entire transfer of data, only partial indexes are transferred, thus
saving data transfers. However, because the same information is still repeated
in the index structure, the broadcast cycle can increase and the time to start
query processing gets delayed. In [18], the authors address the issues of multi-
attribute based queries on wireless data broadcast channels. They propose
three different power conservative indexing techniques, such as index tree,
signature, and hybrid. They discuss two simple multi-attribute queries: con-
junction and disjunction. In [19], the authors also deal with broadcast-based
spatial index. In this paper, the authors propose techniques for scheduling a
spatial index tree for broadcast in a single and double channel environment.
The algorithms executed by the clients aim at minimizing latency and tuning
time. In [20], the authors address the trade-off between access latency and
tuning time. To improve the efficiency of energy consumption on mobile de-
vices, they present a parametrized index scheme, called exponential index, to
meet different application requirements in terms of access latency and tuning
time. The distributed property of the exponential index enables a search to
start quickly from an arbitrary index table in the broadcast. The access la-
tency and tuning time of the exponential index can be adjusted by two tuning
knobs: index base and chunk size.

The techniques discussed above still cause search delay resulting from the
probe wait time and additional index data. Therefore, a solution is required
that can reduce the size of the index and simultaneously perform query pro-
cessing as soon as the client awakes.

3 Tuning time is the amount of time spent by a client listening to the channel. This allows
determining the power consumed by the client to retrieve the required data [4].
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2.2 Wireless Data Broadcasting

Delivering data through a broadcast channel provides simultaneous access by
an arbitrary number of mobile users and thus allows efficient usage of scarce
bandwidth. In [1], the authors propose a system architecture, called Broadcast
Disks, that exploits the relative abundance of downstream communication ca-
pacity in asymmetric environments. The central idea is that the servers exploit
their advantage in bandwidth by broadcasting data to multiple clients. Groups
of pages, such as hot and cold groups, with different broadcast frequencies are
multiplexed on the same channel. Then, items stored on the faster disks are
broadcast more often than items on the slower disks. In [21], the authors
introduce the Broadcast on Demand (BoD) model to provide timely broad-
cast according to user requests. The goal is to maximize performance with
respect to satisfaction of deadline constraints and achieve efficient use of avail-
able bandwidth. In [22], the authors investigate how to efficiently generate the
broadcast schedule in a wireless environment. They consider the access pattern
formed by all the requests where the data dependency and access frequency
can be represented by a weighted directed acyclic graph. Then, they propose
heuristic methods that can be classified according to the underlying strategies:
level-oriented and greedy. In [23], the authors notice that in general, clients
are grouped based on location, with the members of each group having similar
demands. Then, they propose a mechanism that exploits locality of demand
in order to increase the performance of wireless data broadcast systems.

The techniques discussed above focus on efficient data transfer by analyzing
users’ requests. However, none of them consider LBS, as we do in this paper.

2.3 Location-based Spatial Query Processing

In this section, we describe the different methods for spatial query processing.

In [32], the authors introduce a new data structure, called SD-tree, to
preserve network connectivity and distance information for the duration of
a query. Then, the authors propose a Continuous Mobile Network-Distance-
based Range query algorithm to support continuous range query processing
with a large number of moving POIs in metro road networks. In [33], the au-
thors present a R-tree-based index and query processing method for supporting
geographic information systems. The authors introduce the multi-dimensional
index structure to support efficient query processing through the grid process-
ing of data. The proposed method reduces the spatial overlap and improves
query efficiency by using the cross-indexed file structure that is free from the
database system. In [24], the authors propose a branch and bound R-tree 4

traversal algorithm to support NN (Nearest Neighbor) queries. They discuss

4 The R-tree is a classical spatial index structure. The basic idea is to approximate a
spatial object with a minimal bounding rectangle (MBR) and to index the MBRs recursively
[25,26]
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metrics for optimistic and pessimistic search ordering schemes. They also ex-
tend their work to deal with kNN queries.

In [27], the authors propose a sharing-based nearest neighbor query model,
called MAPLE, which is designed for sharing of query results that are cached in
the local storage of mobile clients. In [14], the authors address the CkNN (Con-
tinuous k-NN) search problem in wireless broadcasting environments. They
discuss the issues in adopting a spatial air index in wireless data broadcast
systems and propose a search algorithm to support CkNN search based on
the Hilbert Curve index. The authors propose a query window partitioning
strategy to improve the spatial locality of the Hilbert curve and three in-
dex organizations to facilitate the processing of different queries. In [28], the
authors propose a spatial index, called Distributed Spatial Index (DSI) to
support location-based queries in wireless data broadcast systems. In [36], the
authors extend the previous work in [28] to develop indexing and query pro-
cessing algorithms to answer complex queries, such as window queries and NN
queries. The authors provide an analytical model to study the performance
of a primitive search algorithm, namely Energy Efficient Forwarding (EEF),
in both error-free and error-prone environments. DSI has a distributed struc-
ture that mixes multiple search paths into a linear index structure that is
distributed into the broadcast cycle. In DSI, a pointer of each data instance
is repeated as many times as the number of entries of an index in a broadcast
cycle to facilitate multiple search paths. However, DSI increases access time
because of the load from the duplicated pointers that contains the next upcom-
ing frame. Moreover, DSI increases the search cost since Hilbert Curve-based
indexing techniques require a mapping procedure (i.e., to map from Hilbert
Curve values to real coordinates of points) in order to obtain real locations of
the data objects. Indeed, the client suffers from probe wait time for referring
to exponential pointers in broadcasting environments.

In [29], the authors discuss the effects of different broadcast organizations
on search performance and challenge the traditional use of Depth-First orga-
nization. They address the problem of exact kNN search on R-trees in wire-
less broadcasting environments. They propose a technique that improves the
tune-in time of kNN search and discuss the tradeoffs involved in organizing
the index on the broadcast medium. In a previous paper [12], we proposed a
novel broadcast-based spatial data dissemination and selective tuning scheme,
namely ESS (Exponential Sequence Scheme), which provides clients with the
ability to perform selective tuning and assists in reducing the client’s tuning
time. The basic idea is to use exponential pointers from each data item. The
exponential pointer facilitates the index replication by sharing links in differ-
ent search trees and enables a search to start quickly from an arbitrary index
table in broadcasting environments [20].

With the exponential pointer, each data object contains pointers that con-
tain the IDs, locations, and arrival times of the data items that will subse-
quently be broadcast. Each client utilizes an exponential pointer from each
data item for the purpose of reducing energy consumption. In [30], we pro-
posed an algorithm to support dynamic, continuous nearest neighbor queries in
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wireless broadcasting environments. To enable clients to find the exact answer
for moving queries, we defined the GR (Guaranteed Region), which divides a
query line segment into disjoint lines where the nearest neighbor of any point
inside a GR is the same.

The works discussed above focus on spatial query processing to support
LBSs. However, they do not provide treatment of both the index structure
and the data transfer schemes to reduce the clients’ energy consumption and
improve query processing time.

3 Motivations

In this section, we discuss the influence of access time and tuning time with
an index structure and a broadcasting order in broadcasting environments.

Suppose that only data that are indexed are transferred through the single
broadcasting channels. Let N be the size of the transferred data. Then, the
access time and the tuning time for obtaining the desired information can
be expressed as access time= N

2 and tuning time=N
2 , respectively. In this

case, an ideal access time can be guaranteed because the time for waiting and
reading the index is not necessary. However, a substantial amount of energy is
consumed since the clients remain in awake mode until obtaining their desired
information. Therefore, selective tuning can be provided through transferring
the index along with the data, which allows for the identification of the data
type being requested and when the data will be transferred. As mentioned
before, we refer to the time taken to read and transfer the index and data
together as the ‘probe wait’. We also refer to the time taken to read the index
and obtain the desired data as ‘bcast wait’. Let the size of the transfer index
be ‘index’, the probe wait is then N+index

2 and the bcast wait is N+index
2 .

Because the access time for obtaining the desired data is probe wait+bcast
wait, access time becomes N+index. In this case, the most ideal tuning time
can be guaranteed because the client can understand the desired data by
reading the index so that the client needs to be awake and tuning only at the
time when the data are transferred. However, the probe wait and bcast wait
require too much time for the client to obtain the desired data.

Figure 1 illustrates this scenario with an example. In Figure 1(a), 7 ob-
jects are expressed as 3 minimal boundary rectangles (MBRs). Assume that
the client awakes at a random time for a Nearest Neighbor (NN) query and be-
gins tuning from the second index data. Assume that the tree-based approach
transfers the index in the order 1, 2, 3, 4, 5, 6, and 7, while the location-based
approach transfers the index in the order 3, 1, 4, 2, 6, 5, and 7, from top to
bottom, according to the location of the objects. Let x be the amount of data
transferred during a single broadcast cycle, x′ the amount of data from the
starting point of the data transfer to the point where the desired data arrive,
i the number of index entries, and j the number of data items. In Figure 1(b),
the tree-based index transfer technique requires tuning to all of the index data
(i.e. a complete index data) for accurate spatial query processing. Thus, an
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NN result of object 2 can be identified only after tuning to 6 index entries (i.e.
index entries 2, 3, 4, 5, 6, 7 ) and data items, and then tuning to index 1 in
the next cycle. Thereafter, the client converts to sleep mode and awakens at
the time when the data arrives, to finally obtain the desired data. Accordingly,
access time= i×13+x+x′ and tuning time=i×7+1×j. In contrast, in Figure
1(c), the location-based index misses the first index, which was 3. However,
even if the tuning began with index 1, we could confirm, after tuning to in-
dex 6, that the remaining data 5 and 7, which are more distant from the
Y-coordinate, are not the targets of the query result. This scenario results
from having an index structure that transfers sequentially according to the
object’s location. Thereafter, the client can be certain that the final NN result
is 2 even without tuning to the remaining index data in the next cycle. There-
fore, it converts to sleep mode until the time that the data arrives without
additional index data and is then awake when the data arrive, to receive the
desired data. Accordingly, access time=i×6+x′ and tuning time=i×4+1×j.

Therefore, to support rapid query processing using an index in a broadcast-
ing environment, the client should be able to perform spatial query processing
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solely by waking up at a random time and reading the partial index data.
In addition, the ideal spatial query processing index should support selective
tuning only through the data that are transferred without a probe wait. The
objective of this paper is to provide optimal access time and tuning time for
spatial query processing in broadcasting environments.

4 System Architecture

This section describes our basic system model, assumptions, and components
for spatial query processing.

The system model in Figure 2 distinguishes between three major entities:
server, client, and data.
Server: The server transfers the data to a random number of clients through
public channels that are allocated for data broadcasting. To perform this
task, the server gathers and analyzes the locations of the objects on the map
and transfers signals to the clients through wireless broadcasting channels. A
stream of data that is transferred through the broadcast is called the broad-
cast stream, and the server repeatedly broadcasts the broadcast stream. The
server identifies and analyzes the locations of the objects on the map, then
structures them into indexes. Thereafter, the data transfer program is formed
for transferring data to the clients through wireless broadcasting channels.
Client: The client selectively receives the desired data on the broadcast chan-
nels without any request made to the server for specific data. Then, the client
performs spatial query processing, using the received index. The client can be
classified according to the characteristics of the resources. For example, min-
imizing the limited battery consumption in LBSs may be an important issue
for mobile terminals such as smartphones, whereas energy consumption may
not be a significant issue for a navigation system installed on a vehicle. In this
case, rapid query processing is more important than anything else for accu-
rate query results, depending on the characteristics of the fast-moving users.
Based on the relevant resource characteristics, the clients are classified into
the following two groups:

– Limited Resource Device (LRD): awakes at the time when the desired data
arrive and tunes to the data but is asleep (sleep mode) the rest of the time.

– Adequate Resource Device (ARD): in a standby state to tune to the data
(awake mode).

In other words, LRD converts from a standby mode (sleep mode) to a
tuning mode (awake mode) for query processing to tune to the index that is
transferred from the server through the wireless broadcasting channels. After
using the index data to identify the time when the desired data will arrive,
it only awakes again when those data arrive and tunes to the data. ARD,
however, does not take into account the constraints of the battery limits and
continues to stay awake to tune to the data that are transferred from the
server until the desired data arrive through the broadcast channels. Thus,
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LRD tunes to the data with consideration for both access time and tuning
time simultaneously, while ARD tunes to the data with consideration only for
access time. In this paper, the client’s mobility pattern follows the Random
Waypoint Mobility Model [31], which is widely used.
Data: Data that are transferred from the server can generally be classified
into index data and user data, as follows.

– User data: Data that contain detailed information about the objects (e.g.,
the hotel name, the hotel image, a reservation status, or pricing information
with respect to information concerning other hotels).

– Index data: A directory that indicates the locations of spatial objects in a
hierarchical structure. Data that contain information such as the objects’
coordinate information, the amount of data, and the transfer time for the
user’s data.

The broadcast cycle is composed of N , the amount of the user data, and
m, the number of indexes. The lowest level (leaf level) of the index, which
has a hierarchical structure, is composed of pointer data that include the real
information for the specific object.

5 HGI Spatial Index Structure

In this section, we introduce HGI, a hierarchical index structure that considers
the broadcasting environment.We start by describing the basic structure of
HGI. Then, we introduce how to construct HGI based on the distribution of
the objects.

Unlike traditional indexes, HGI forms an index only with an identification
of the existing objects. Thus, it provides an efficient search environment by
removing unnecessary formation data. Additionally, it provides a linear order
of data objects for broadcasting while maintaining maximal locality among
nearby data objects [28]. To this end, HGI represents spatial objects in the
form of a grid according to the objects’ locations and distributions. The ob-
jects’ identification numbers, through grid division, are used as references for
the locations of the objects. The first region is the highest root grid. When
the entire region is considered as a square shape, it is quartered by a cross
shape and divided into root grids ‘R0, R1, R2, and R3’ while making a ‘z’
from the top left side as the basis (see Figure 3). Then, additional divisions
are made into child nodes through the repetition of a quadrisection, with the
same rule as that for the root grid, according to the objects’ distribution until
only the final object is included. The regional division is influenced by the
distribution of the objects. As can be seen in Figure 3, although grid 10 in
R1 and grid 33 in R3 both contain 2 objects, the grids are divided into 4 and
7 grids, respectively, to accurately display the objects’ locations according to
the locations of the objects and the distances between the objects. The object
information that corresponds to a leaf node represents the pointers to data
tuples containing information such as a physical location, name, and price,
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Fig. 4 HGI Basic Structure

etc. Each object is assigned a unique identification number according to the
location and distribution of the surrounding objects. For the entire set of data
of size N , Figure 4 shows the structure of HGI.

The size of the index can be expressed as the number of grid nodes with
respect to the entire region+the number of objects. Let pn the child node for
the root grid node Rn, k

n the number of grid nodes belonging to Rn, and pID
the grid identifier ID that is included in Rn. Let ℜnn denote the number of
objects included in grid nodes that belong to the root grid Rnn and k

′n the
number of nodes in Rn excluding the leaf grid. Then, we have the following
expression:

Index size = (
k0∑

p0=0

pID0 +
k
′0∑

p0=0

ℜn0) + (
k1∑

p1=0

pID1 +
k
′1∑

p1=0

ℜn1)

+(

k2∑
p2=0

pID2 +

k
′2∑

p2=0

ℜn2) + (

k3∑
p3=0

pID3 +

k
′3∑

p3=0

ℜn3)
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=

3∑
Rn=0

(

kn∑
pn=0

pID +

k
′n∑

pn=0

ℜ) (1)

Let us now give the division process of HGI, which depends on the dis-
tribution of the objects. In Figure 3, the root grid, R0, is order of grid 1, in
which one object is present; therefore, an additional division does not occur.
By contrast, an examination of R1 shows the order of grid 2 (grid ID 11, 12,
13) and 3 (shaded area of R1) to be such that a total of 7 divisions into child
nodes occur. The digits in the grid identification number represent the order
of the grid: 4 digits in the identification number mean a grid order of 4, with
a 4-level division from the highest root grid 0 to the leaf grid 3 (see objects
3330 and 3333 of R3 in Figure 3). As such, each of the regions can have dif-
ferent orders according to the distribution of the objects in the HGI, and the
clients can verify the exact location and distribution of the objects using only
the objects’ identification number during each object search. Furthermore, the
clients’ selective tuning is supported without additional information in a se-
quential index structure required to express the object’s location. We discuss
the hierarchical search algorithm in the next section. To further explain this
algorithm and using Figure 3 as an example, R1 and R3 were excluded from
the search range, while the query regions and non-overlapping regions (e.g.,
20, 22, and 23 from R2) were also excluded from the search range in R2 during
the range query processing.

Figure 5 hierarchically shows the sequential grid ID and the number of
objects included in the grid (see the grid structure of Figure 3).

The following defines the HGI data structure.

Definition 1 (Hierarchical Grid Index) In a given set of data regions, grid
Gi repeats the hierarchical division process until only 1 object is included. The
HGI tree has an unbalanced tree structure, and the leaf node grid contains a
single object.

The following defines the number of objects contained in Gi for an HGI.
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Definition 2 (Number of objects inside Gi) Let num obj Gi be the number
of objects inside Gi, which has child nodes and num obj Gi’ be the number
of objects inside Gi’, which has not child nodes. Then, num obj Gi ≥ 1 and
num obj Gi’ ≥ 0.

HGI provides a partial search of the index for spatial query processing via
wireless broadcast channels. With HGI, since the data objects broadcast by
the server are sequentially ordered based on their locations, it is not necessary
for the client to wait for the beginning of the next index segment. Even the
client starts to tune an index in the middle of a broadcast cycle, it is not
necessary for the client to wait for the beginning of the next broadcast cycle.
Therefore, HGI provides a fast spatial query processing without the probe
waiting regardless of when the client awakes.

6 Spatial Query Processing

This section presents our solution to spatial query processing using HGI, based
on two algorithms. The first algorithm is Top-Down Search (TDS), which is
targeted for ARD. TDS transfers the object data from the top to the bottom
according to its location, thereby minimizing the index size and reducing query
processing time. The second algorithm is Reduction-Counter Search (RCS),
which is targeted for LRD. Although there is an additional transfer of data
based on the number of objects contained in each grid, TDS supports the
clients’ selective data tuning, which in turn reduces tuning time. The specific
index search method is as follows.
1. TDS (provide the optimal access time): the client processes the queries
using the minimum identification information regarding the data objects.

– The server transfers the object identification numbers according to the
grid order rather than the objects’ coordinate information. The order of
the transfer is in top-bottom direction from the object location as the basis.
For example, in Figure 3, the information is transferred in the order 100,
0, 102, 13, 211, 212, 3330, 22, and 3333. In particular, if the heights are
equal, the object on the left is transferred first.

– Regardless of the hierarchical structure of the HGI grid, TDS transfers
the identification number of the lowest level grid that contains the objects
according to the objects’ location. Therefore, the data are not transferred
by the grid levels in the HGI; rather, the grid identification numbers at
various levels are transferred simultaneously according to the location and
distribution of the objects.

– Selective tuning is possible for the clients via the object identification num-
ber information that is received from the server. Consider Figure 3 for in-
stance. During a range query, the client is able to discover that the final
query result is 211 after tuning to the object data (up to 211), that is,
tuning the remaining object data to 212, 22, 3330, and/or 3333, which are
outside of the y-coordinate range (we note that the objects are sorted by
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y-coordinates or x-coordinates based on the analysis of the distribution of
the objects on the map), is unnecessary.

– Because TDI transfers data according to the location of the objects, the
data can be obtained quickly without additional index information. In con-
trast, this can incur unnecessary energy consumption because the client
must be in the awake mode until the object that can confirm the query
result arrives.

2. RCS (provide the optimal tuning time): the client processes the queries
using the information on identification number and the number of objects in
the grids with respect to the data objects.

– RCS includes the number of objects that are contained in each grid to
support the clients’ selective data tuning.

– According to the hierarchical structure of HGI, the server transfers the
grid identification number with the number of the objects included in each
grid’s ‘Z’ sequence.

– If the last digit of each level is 1, the child node does not remain, and search
can proceed until the end of the level reaches 1. This structure supports
selective choice. Consider Figure 5. Because the grid number 0 (R0) at
Level 1 had a value of 1 as the number of objects, we know that additional
objects will not be found at Level 2. In contrast, because the grid number
1 (R1) has objects in numbers 10 and 13, we know that additional data
are present at Level 2.

– The coordinate data of the objects are transferred in batches at the end,
after the Hierarchical sequential grid data.

– As for the search method, the search reaches the end when the number of
objects in the grid contained in the Minimum/Maximum/distance Circle
(MMC: generated by drawing an arc with Min max dist as its radius.
The Min max dist is the distance to the furthest point from the grid that
contains the objects based on the query point.) becomes 1 and satisfies the
threshold value, which is the sum of the grids that overlap with the MMC
(Tmin: the value of the predefined threshold for adjusting the selective
tuning tolerance boundary). For example, when Tmin ≤ 4, if the number
of objects in grid 102 that are included with the MMC becomes 1 and the
sum of the number of objects in grids 0, 100, and 102 that overlap with the
MMC is smaller or equal to 4, as shown in Figure 3, then the search ends.
Subsequently, the client finds the final query result within 0, 100, and 102.
Because the number of objects indicates that the objects are not present
in the remaining overlapping regions of 103 and 12, they are excluded from
the search targets.

6.1 Top-Down Search for ARD

In this section, we describe our spatial query processing algorithm for ARD.
The order of transfer for TDS is determined according to the location of the
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Fig. 6 The order of Transfer for TDS

objects, regardless of the hierarchical structure of the HGI grid. Depending on
the location of the objects, the transfer is sequential from the object located
at the highest region to the object located at the lowest region. For the objects
at the same height, the object located on the left is transferred first.

In Figure 6, the order of data transfer for TDS is as follows: 011, 111,
113, 012, 00, 0311, 0312, 132, 133 ... etc. The client identifies the object
ID numbers that are transferred from the server, to determine the location
and the size of the grid (grid level) that contains the objects. Then, a Mini-
mum/Maximum/distance Circle (MMC) is generated by drawing an arc with
Min max dist as its radius. The Min max dist is the distance to the furthest
point from the grid that contains the objects based on the query point. The
respective MMCs are shown when the grid levels are 3 and 4. Among the ob-
jects for transfer, the objects that are located at the bottom of the MMC (e.g.,
3110, 201, 211.., 3113..., when the MMC level is 4) or are not contained in the
MMC are excluded from the search target. As shown in Figure 6, the client
tunes the object information to 133, and because the coordinates for object
3110 that were transferred thereafter are located lower than the MMC (top-
down search), the client stops tuning and performs the final query processing.
After confirming the coordinate data of the objects that belong in grids 113,
0311, and 0312, which are included in or overlapped with the MMC, the final
query result is 0311.
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Definition 3 (Final NN decision for TDS) While the data objects are se-
quentially broadcast in horizontal order, that is, from the top coordinate to the
bottom coordinate, if the y-coordinate of the top of grid of Gi+n is lower than
MMC, then Gi+n and the rest of the broadcast data objects are located outside
of the NN range.

TDS can improve data access time by performing query processing with the
data according to the object location and hierarchy without using additional
information. The TDS NN search algorithm is the same as in Figure 7.

Algorithm for NN Search of TDS
Input: locations of query point and the ID number of grid Gi

Output: NN
1:At the initial stage, n=1, set of NN candidate={Gi}, and MMC be MMC of Gi. (Step 1)
2: for each object inside Gi ∈ S
3: read ID number of Gi+n

4: if y-coordinate of the top of grid of Gi+n is lower than MMC
5: stop tuning
6: if grid of Gi+n does not intersect or included in MMC of Gi (Step 3)
7: Gi+n cannot be NN-candidate (Step 5)
8: else
9: set of NN candidate ∪ Gi+n (Step 4)
10: if the radius of MMC of Gi+n is smaller than MMC (Step 7)
11: MMC <= MMC of Gi+n

12: increase the value of n
13: find NN from the set of NN candidate (Step 2 and Step 6)
14:return NN

Fig. 7 Pseudo-code of TDS

We now describe the steps taken by the client to process the NN query
with TDS.
Step (1): The ID number of object Gi is read, and the MMC is drawn with
the grid that contains Gi and the query point as the radius. At the initial
stage, n=1, NN candidate={Gi}, and MMC be MMC of Gi.
Step (2): Gi+n is read. If Gi+n is EOF, then the coordinates of the NN can-
didate objects are read, and the final query results are determined. Otherwise,
go to step (3).
Step (3): If the grid that contains object Gi+n is included in the MMC or is
overlapped with MMC , then go to step (4); otherwise, go to step (5).
Step (4): NN-candidate∪Gi+n (Gi+n can be the possible object for the final
result of NN). Go to step (7).
Step (5): Gi+n cannot be the final result of NN. If the grid that contains
object Gi+n is located at the coordinate below the MMC of the Gi, go to step
(6); otherwise, go to step (2).
Step (6): Stop tuning. In this case, Gi+n and all of the objects transferred
afterwards cannot be the final query result for NN. Read the coordinates of
the NN candidate objects, and determine the final query result.
Step (7): Draw the MMC of Gi+n. If the MMC of Gi+n is smaller than the
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MMC of Gi, then MMC <=MMC of Gi+n; otherwise, MMC <=MMC of Gi.
Increase the value of n. Go to step (2).

6.2 Reduction-Counter Search for LRD

We now describe our spatial query processing algorithm for LRD. TDS must
continuously tune to the data in awake mode until obtaining the final query
result for query processing. Therefore, although partial selective tuning is pos-
sible using MMC, a more effective search algorithm is necessary to optimize
energy efficiency. RCS supports the client’s selective data search using a prun-
ing algorithm through a hierarchical search. Furthermore, a selective spatial
query is handled using the number of objects present in each grid region.

NN query processing is as follows.
The variable Min max dist, which is the largest distance among the grids that
contain the objects that are closest to the query point, is used as the radius to
draw the MMC. Locations not included in the arc are excluded from the search
targets. In addition, selective tuning is performed using the HGI identification
numbers and the information on the number of objects that are transferred
hierarchically. Figure 3 shows an example of the selective NN query processing
using the MMC. The MMC is drawn at the third level with the query point
and the furthest point in Grid 102 as its radius. Objects 13, 212, 211, 22,
3330, and 3333, which are not included in the MMC, are excluded from the
search range. The NN query processing confirms the possibility of selective
tuning and draws the MMC by each level from Level 1 to Level m. Then, the
client attempts a selective search using the MMC and the HGI identification
numbers as well as the information on the number of objects in the grid. Figure
8 shows RCS’ tree structure.

Let us introduce the following definition used for selective tuning with RCS
during NN query processing.

Definition 4 (Selective tuning with RCS) Grid Gi that is neither contained
nor intersected with the MMC cannot contain an NN object.

The following definition ensures the earliest decision time that the client
stops tuning and identifies the nearest neighbor candidates.

Definition 5 (NN candidate for NN query with RCS) While the data objects
are sequentially broadcast according to HGI order, if the number of objects
inside Gi that are included in MMC is 1, Gi, which completely contains or
intersects in MMC, can be the final nearest neighbor candidate.

As observed in Definition 5, we introduce the following definition for selec-
tive tuning with HGI.

Definition 6 (Selective tuning with HGI) It is not necessary to check whether
Grid Gi is contained or intersected with the MMC if x-coordinate of rightmost
of Gi < x-coordinate of leftmost of MMC or x-coordinate of leftmost of Gi
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Fig. 8 RCS Tree Structure: Grid-based hierarchical search

> x-coordinate of rightmost of MMC or y-coordinate of bottom of Gi > y-
coordinate of top of MMC, or y-coordinate of top of Gi < y-coordinate of
bottom of MMC.

Figure 9 illustrates how NN search proceeds according to each level. The
MMC is used to divide a pruning region that does not need to be searched
(shaded area). Selective tuning is supported by excluding the pruning region
from the search range. The pruning process draws the MMC that has the ra-
dius of the most distant point within the grid box (where the object is present)
that is closest to the query point. Meanwhile, the objects that are out of the
MMC range are excluded from the query search target. At this time, the num-
ber of objects contained in the grid contributes to the selective tuning by the
client (to be discussed later). In Figure 9, 2 objects are assumed to be in grid
12, and 1 object is assumed to be in grid 122. The search comes to an end
when the number of objects in the grid contained in the MMC becomes 1 and
the sum of the objects in the grid that overlap with the MMC is below the
threshold value (Tmin: the value of the predefined threshold). We note that
the example in the figure shows the pruning process after a maximum of 28
objects. However, as the number of objects located on the map increases, the
search costs for the unnecessary objects can be reduced more effectively than
with the existing index structure.

Completing the search for the RCS occurs when the MMC has a grid that
contains only 1 object (Grid 102 in Figure 3). The RCS NN search algorithm
used is the same as in Figure 10.
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Fig. 9 Pruning Processing with the Minimum/Maximum/Distance Circle (MMC)

Algorithm for NN Search of RCS
Input: locations of query point, the ID number of grid and the number of objects inside the grid
Output: NN
1:At the initial stage, n=1, set of NN candidate={Gi+n}, and MMC be MMC of Gi+n. (Step 1)
2: for each level
3: for each grid Gi

4: read ID number of Gi+n and the number of object inside Gi+n

5: if the number of object inside of Gi which is included in MMC is 1
AND No. of objects drops below threshold Tmin, (Step 3)

6: find the final result according to the value of NN-candidate
7: if grid of Gi+n does not intersect or included in MMC of Gi+n (Step 4)
8: Gi+n cannot be NN candidate (Step 6)
9: else
10: set of NN candidate ∪ Gi+n (Step 5)
11: if the radius of MMC of Gi+n is smaller than MMC (Step 7)
12: MMC <= MMC of Gi+n

13: increase the value of n (Step 7)
14: find NN from the set of NN candidate (Step 3)
15:return NN (Step 3)

Fig. 10 Pseudo-code of RCS

We now describe the steps taken by the client to process the NN query
with RCS.

Step (1): At the initial stage, n=1, NN candidate=Gi+n, and MMC be MMC
of Gi+n.
Step (2): For the first level, read ID number of Gi+n, then draw MMC cen-
tered at query point q which completely contains Gi+n.
Step (3): For each level, read Gi+n, which is intersected or included in MMC.
Read the number of object inside Gi+n. If the number of objects inside Gi

that is completely located in MMC is 1 and the number of objects inside Gi

that are intersected in MMC drops below threshold Tmin, find the final result
according to the value of NN-candidate. Else, go to step (4).
Step (4): If the grid that contains object Gi+n is included in the MMC or
overlaps with MMC , go to step (5), else go to step (6).
Step (5): NN-candidate∪Gi+n (Gi+n can be the possible grid that contains
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the final result of NN). Go to step (7).
Step (6): Gi+n cannot be the final result of NN. Go to step (3).
Step (7): Draw the MMC of Gi+n. If the MMC of Gi+n is smaller than the
MMC of Gi+n−1, MMC <=MMC of Gi+n. Increase the value of n. Go to step
(3).

7 Performance Evaluation

In this section, we give a performance evaluation of our TDS and RCS algo-
rithms, based on analysis and experiments. We compare our algorithms with
Distributed Sequential Search (namely DSS, a new algorithm that combines
the characteristics of both DSI[28] and ESS[12]).

7.1 Performance Analysis

In this section, we analyze TDS, RCS and DSS5. We choose DSS that com-
bines the characteristics of both DSI[28] and ESS[12] and each index table has
exponential pointers as mentioned in Section 2.3. DSI and ESS are proposed
recently to decrease access time and tuning time in broadcasting environments.

DSS uses distributed exponential pointers from each data item. With the
exponential pointer, each data object contains pointers that contain the IDs,
locations, and arrival times of the data items that will subsequently be broad-
cast.

Each entry of the index table contains pointers to subsequent data. For
example, index no. 0 contains the pointers to subsequent data items 1, 2, 4, 8
as shown in Figure 11. These exponential pointers, from the first tuned index,
provide fast access to both nearby and distant data. To identify the object
with DSS, the client listens to the current data and follows the pointer to the
furthest data that does not exceed the target object.

DSS provides a fully distributed structure that allows query processing to
start quickly. However, performance degradation is caused by the redundant
structure of the pointers that represent the objects. In contrast, HGI uses a
hierarchical tree structure that is only composed of existing object information
and non-redundant pointers to reduce the index size and lessen the unnecessary
repeated tuning process by the clients.

7.1.1 Access Time for DSS, RCS, and TDS

We now compare the access time of DSS, RCS, and TDS. Because all three
algorithms have a distributed index structure, the probe wait time can be
ignored.

5 Even until recently, DSI and ESS have been a representative study of index for support-
ing spatial query processing in wireless broadcast environments. In this paper, performance
assessment was conducted on DSS that assumed the most similar environments as the pro-
posed technique.
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Fig. 11 Distributed exponential pointers for DSS

– DSS: e represents the exponent, N represents the total number of data,
and d represents the total number of the next pointer in each index table6,
HC represents the Hilbert Curve order, exp represents the total size of the
exponential pointer during a broadcast cycle, where exp=

∑N
d=1(logeN)

and oid represents the object ID. Then, the access time for DSS is as
follows:

DSS = ((HC + oid)×N + exp+ data×N)/2 (2)

ℜ denotes the number of objects that are contained in the grid nodes that
belong to the root grid R, pn represents the child node of the root grid node
Rn, k

n represents the number of grid nodes that belong to Rn, pID represents
the grid identifier included in Rn, and k

′n represents the number of grid-nodes
included in the Rn (because the number of leaf nodes in ℜ is 0, it is not
necessary to indicate it, and therefore, the lowest grid node is excluded from
the number). Then, the access time for RCS is

RCS = (

3∑
Rn=0

kn∑
pn=0

pID +

3∑
Rn=0

k
′n∑

pn=0

ℜ+ data×N)/2 (3)

where pn’ represents the leaf grid node of the root grid node Rn
7, kn

′

represents the number of leaf grid nodes that belong to Rn, and pID represents
the grid identifier contained in Rn. Then, the access time for TDS is

TDS = (
3∑

Rn=0

kn′∑
pn′=0

pID + data×N)/2 (4)

6 Each index table in the DSI and ESS has the next pointers that increase exponentially
within the range of N , the total r amount of data. For example, if N=1024, a single index
table has 9 next pointers of 1, 2, 4, 8, and up to 1024.

7 The leaf grid node refers to the node that is located at the lowest place in the tree
structure. That is, the node does not have any more child grid nodes
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– TDS eliminates the probe wait time and processes the spatial queries only
with a leaf grid ID.

7.1.2 Tuning Time for DSS, RCS, and TDS

We now compare the tuning time for DSS, RCS, and TDS to prove the energy
efficiency of our proposed algorithms during spatial query search. While DSS
uses the exponential pointer, which has a redundant structure, our algorithm
that uses HGI allows selective tuning with the ID and the number of objects
without the exponential pointer.

Let exp′ represent the number of indexes from j to N ′, which the client
wakes up and listens to until the desired data are obtained. We have the
following:

DSS = HC + exp′ + data (5)

, where exp′=
∑N ′

j=1(logeN).
Let Lm denote the number of grid nodes in Rn up to the grid level, m,

until the query processing is completed and Lm∗ the number of grid nodes
excluding the leaf grid node in the Rn up to the grid level, m, until the query
processing is completed. Thus, we have:

RCS =
3∑

Rn=0

Lm∑
pn=0

pID +
3∑

Rn=0

Lm∗∑
pn=0

ℜ+ data (6)

The tuning time for TDS is almost the same as the access time; however,
only one data point, which is the final query result, arrives through the indexed
data. This yields the following formula:

TDS = (
3∑

Rn=0

kn′∑
pn′=0

pID)/2 + data (7)

7.2 Performance Experiments

In this section, we evaluate the efficiency of our algorithms through their im-
plementation with a Pentium 3.16 GHz CPU. We assume that the client’s
mobility pattern follows the widely used random waypoint mobility model
[31]. A mobile client begins by staying in one location for a certain period of
time t. We assume two energy states: doze and active mode. In a processor, the
doze mode has extremely low power consumption. We assume that the broad-
cast channel has a bandwidth of 2 Mbps as the same applied in [34], [35]. We
use a real dataset (hereafter called D1 and D2) containing 39,231 data objects
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of MBRs for Montgomery County roads and containing the 5922 data objects
of cities and villages of Greece, and a uniform dataset (hereafter called D3)
with 10,000 points; the former was extracted from the dataset available at
www.rtreeportal.org (see Figures 12(a) and 12(b)).

(a) (b) (c)

Fig. 12 Datasets for Performance Evaluation. (a) REAL dataset1 (D1), (b) REAL dataset2
(D2), (c) UNIFORM dataset (D3).

For default setting, we assign the 10 bytes for each pointer which also
includes two dimensional coordinates. We assign 32 bytes for the spatial index
since it needs more space to maintain spatial information and pointers in
index. The default parameter setting in our synthetic data set test is: number
of objects = 10,000 (D3), Size of data = 128 bytes, exponential value e = 28,
and Tmin = 50.

The first experiment (Figures 13(a) and 13(b)) shows the tuning time re-
sults following an increase in the threshold value when processing the NN
queries and the range queries using Reduction-Counter Search (RCS) in D1.
The data size is assumed to be 128 bytes. The client-set threshold value has a

8 The exponential value allows indexing pointers to be exponentially increased at any
base value e. For example, if the number of objects and the value of e are set to 8 and 2,
respectively, a data item 0 has four forward pointers such as 1(20), 2(21), 4(22), and 8(23).
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Fig. 13 Tuning time results following an increase in the threshold value in D1. (a) NN
queries. (b) Range queries.



26 Kwangjin Park and Patrick Valduriez

50 100 150 200 250

180

190

200

210

220

230

240

250

260

270

280

290

T
u

n
in

g
 T

im
e

 (
m

se
c)

Threshold (No. of objects)

 NN
 Range

(a)

50 100 150 200 250

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

T
u

n
in

g
 T

im
e

 (
m

se
c)

Threshold (km)

 NN
 Range

(b)

Fig. 14 Tuning time results following an increase in the threshold value in D3. (a) NN
queries. (b) Range queries.

direct impact on the results of tuning time and access time. If the threshold
value is met while the client is tuning to the broadcast channels, then the
index does not require further selective tuning. The client awakes and con-
stantly tunes to the channels until the desired data comes. In other words,
the amount of search conducted for the index decreases as the threshold value
increases, whereas the amount of data that the client must awake and listen
to may increase. When the threshold value sets 1 for NN query processing, the
client continues to read the pointers and attempt to perform selective tuning
until 1 object is found in the closest proximity. Thus, adjusting the appro-
priate threshold value depending on the size or the number of data points or
records is significant. As the figure shows, the index search cost decreases as
the threshold value increases. The tuning time decreases to some extent.

The second experiment (Figures 14(a) and 14(b)) shows the tuning time
results following an increase in the threshold value when processing the NN
queries and the range queries using RCS in D3. Similar to the above ex-
periment, the tuning time decreases to some extent as the threshold value
increases.

The next experiment evaluates for each query the performance results ac-
cording to the changes in data size. First, the access time for the TDS, RCS,
DSS, and (1,m) index during NN query processing in D1 is measured (see
Figure 15(a)). Subsequently, we performed a comparative evaluation of tuning
time for RCS and DSS. Because RCS has better tuning time than TDS in
the tuning time experiment, TDS is excluded from the evaluation. The data
size is increased from 64 bytes to 1024 bytes. In Figure 15(a) (an horizontal
dash line represents HGI TDS, while an horizontal solid line represents HGI
RCS in the figure), TDS is found to exhibit the optimal access time. This is
because query processing is performed with only the location of the data and
without the index, thus reducing the data search time and broadcast cycle
to guarantee fast query processing. Although the difference in performance is
not shown significantly, TDS increasingly outperforms the others as the size of
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Fig. 15 Results according to the changes in data size in D1. (a) Access time for NN queries.
(b) Tuning time for NN queries. (c) Tuning time for range queries.

pointers increases because TDS allows query processing without an exponen-
tial pointer. We study this aspect in more details in the following experiment.
In Figures 15(b) and 15(c), RCS exhibits better tuning time than DSS in both
the NN and range queries. The reason is that, even without the additional
data, such as the exponential pointer in DSS, RCS supports selective tuning
through the sequential and hierarchical structure of the index. That is, RCS
supports the object search within a small data size by reducing the number
of the unnecessary index pointer data. In addition, RCS is not dominated by
specific index structures (e.g., R-tree and Hilbert curve) and expresses the
location and distribution of the spatial objects with numbers that have hier-
archical meaning.

In Figure 16(a), the access time for TDS, RCS, DSS, and (1,m) index dur-
ing NN query processing in D3 is measured (an horizontal dash line represents
HGI TDS, while an horizontal solid line represents HGI RCS in the figure). For
the same reasons as above, TDS exhibits the best access time in D3, as spatial
query processing is possible without depending on the index. Additionally, in
the case of tuning time, RCS exhibits the optimal tuning time for the same
reason as in the experiments in Figures 16(b) and 16(c).
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Fig. 16 Results according to the changes in data size in D3. (a) Access time for NN queries.
(b) Tuning time for NN queries. (c) Tuning time for range queries.

In Figure 17(a) (an horizontal dash line represents HGI TDS, while an hor-
izontal solid line represents HGI RCS in the figure), the access time for TDS,
RCS, DSS, and (1,m) index during NN query processing in D2 is measured.
For the same reasons as above, TDS exhibits the best access time in D2, while
RCS exhibits the optimal tuning time as in the experiments in Figures 17(b)
and 17(c).

Figures 18(a), 18(b), and 18(c) show the results of the access time and
tuning time following an increase in the amount of data during the NN queries
and the range queries in D3.

In Figure 18(a) the index size increases as the amount of data increases,
thus increasing the index search time. Therefore, TDS, which does not depend
on the index structure, exhibits the optimal performance. The data size in the
experiment was set at 128 bytes. However, the performance of TDS becomes
far superior as the difference between the pointer and data size get smaller.

Figures 18(b) and 18(c) show the experimental results following an increase
in the amount of data. RCS, which has a simpler and smaller index structure
and size, exhibits an enhanced performance compared to DSS.
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Fig. 17 Results according to the changes in data size in D2. (a) Access time for NN queries.
(b) Tuning time for NN queries. (c) Tuning time for range queries.

Figures 19(a) and 19(b) show the outcome of the experiments on D1 and
D3 for the tuning time results, following the increase in the region of the range
query during range query processing. RCS exhibits excellent performance in
both data sets, D1 and D3, through its efficient index structure and search
process. The figures show the experimental results regarding the outcome of
query processing following an increase in the pointer size.

The access time for the proposed technique is not affected significantly by
an increase in pointer size, which depends on the size and the number of the
data. In contrast, DSS is significantly influenced by an increase in pointer size
because it uses as many pointers as the size of the log for all of the data.
Furthermore, because the tuning time selectively tunes to the data, the size of
the pointer has a significant impact on the performance results. In particular,
when the data size is relatively small,TDS and RCS exhibit superior query
processing performance when compared to DSS.

Figure 20 shows the access time following an increase in pointer size for
NN query processing in D1, where TDS has the optimal access time.

Figures 21(a) and 21(b) show the tuning time for the NN and range queries
following an increase in pointer size in D1. RCS exhibits excellent tuning time
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Fig. 18 Access Time and Tuning Time Following an Increase in the Amount of Data in
D3. (a) Access time for NN queries. (b) Tuning time for NN queries. (c) Tuning time for
Range queries.
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Fig. 19 Result of the Experiments on D1 and D3. (a) Tuning Time in D1. (b) Tuning Time
in D3.
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Fig. 20 Access Time Following an Increase in Pointer Size for NN Query Processing in D1.
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Fig. 21 Tuning Time Following an Increase in Pointer Size in D1. (a) Tuning Time for NN
queries. (b) Tuning Time for Range Queries.
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Fig. 22 Access Time Following an Increase in Pointer Size for NN Query Processing in D3.

because the pointer size that was allocated to show the location of the spatial
objects has increased.

Figure 22 shows the access time following an increase in pointer size for
NN query processing in D3. For the same reason as in the D1 experiment,
TDS exhibits the optimal performance.
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Fig. 23 Tuning time for NN and range queries following an increase in pointer size in D3.
(a) NN queries. (b) Range queries.
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Fig. 24 Results of an experiment for increasing the exponent value of DSS in D1. (a) Access
time for NN query processing. (b) Tuning time for NN queries. (c) Tuning time for Range
queries.
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Fig. 25 Results of an experiment for performance evaluation following an exponential value
increase of DSS in D3. (a) Access time for NN query processing. (b) Tuning time for NN
queries. (c) Tuning time for Range queries.

Figures 23(a) and 23(b) demonstrate the tuning time for NN and range
queries following an increase in pointer size in D3. RCS exhibits superior
performance in this case, for the same reason as in the D1 experiment.

Next are the results of an experiment when increasing the exponent value
in DSS.

Figure 24(a) shows the access time for the NN query processing results fol-
lowing an exponential value increase of DSS in D1. TDS exhibits the optimal
access time. In contrast, RCS demonstrates superior tuning time in both the
NN queries and range queries (see Figures 24(b) and 24(c)). Through these
experimental results, following an increase in exponent size, DSS is more im-
pacted by the tuning time than by the access time. The reason is that as
the exponent increases in DSS, the number of the forward pointers for each
pointer decreases, whereas the number of times that the client has to perform
repeated waking and sleeping increases the tuning time.

Figure 25(a) shows the access time for NN query processing following an
exponential value increase of DSS in D3. Figures 25(b) and 25(c) show the
tuning time for NN and range query processing following an exponential value
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increase of DSS in D3. For the same reason as in the D1 experiment, TDS
exhibits the optimal access time. RCS also demonstrates superior performance
of the tuning time for the NN queries and range queries, for the same reason
as in the D1 experiment.

In conclusion, RCS and TDS exhibit superior access time and tuning time
compared to the existing techniques in various experimental environments.
TDS can minimize the access time that is required to obtain the data after the
request because it performs spatial query processing by the order of transfer
of the objects without the index data. Meanwhile, RCS can support energy-
efficient query processing because it uses the non-redundant light-weight index
structure that expresses the object location as numbers, which reduces the
index search time as well as the time that the client is awake.

8 Conclusion

In this paper, we proposed the Hierarchical Grid Index (HGI), a light-weight
sequential location-based index structure for broadcasting environments. HGI
analyzes the location and the distribution of the objects and then classifies the
spatial objects into a form of hierarchical grids. In HGI, the ID number and the
numbers of the objects contained in each grid are stored to support the clients’
selective data tuning. Furthermore, object identification is made possible with
minimum costs by granting a hierarchical identification number to each grid
region (because the number of digits in the identification increases, the object
is known to be located in the smaller grid) and expressing into grids only the
regions where the objects are present.

HGI has two main advantages of probe wait compared to conventional
spatial index. First, HGI provides a partial search of the index for spatial
query processing via wireless broadcast channels. Second, with HGI, since the
data objects broadcast by the server are sequentially ordered based on their
locations, even if the client starts to tune an index in the middle of a broadcast
cycle, it is not necessary for the client to wait for the beginning of next index
segment. Therefore, HGI provides fast spatial query processing without the
probe waiting regardless of when the client awakes.

We proposed two types of search algorithms to support spatial query pro-
cessing. First, TDS provides the optimum access time. In this case, the server
uses HGI to sequentially transfer the object identification number by the grid
number order according to the location of the objects. The client reads the
object identification data that are transferred from the server to identify the
desired spatial objects. Because only the objects’ location data are transferred
by the transfer order, the client can obtain the best access time. Second, RCS
offers the optimum tuning time. In this case, the server uses HGI to transfer
the objects’ identification number, the total number of objects contained in
the grids, and the arrival time. Through the data transferred from the server,
the client selectively wakes up only at the time when the necessary data arrive
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to obtain the desired data. The client can use light-weight index data to obtain
the desired information at a low search cost.

Finally, through performance analyses and experiments, we showed that
HGI and its algorithms support accurate, rapid, and energy-efficient spatial
query processing.
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