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Abstract In large-scale Internet-based distributed systems, participants (consumers
and providers) are typically autonomous, i.e. they may have special interests towards
queries and other participants. In this context, a way to avoid a participant to volun-
tarily leave the system is satisfying its interests when allocating queries. However,
participants satisfaction may also be negatively affected by the failures of other par-
ticipants. Query replication is a solution to deal with providers failures, but, it is chal-
lenging because of autonomy: it cannot only quickly overload the system, but also it
can dissatisfy participants with uninteresting queries. Thus, a natural question arises:
should queries be replicated? If so, which ones? and how many times? In this pa-
per, we answer these questions by revisiting query replication from a satisfaction and
probabilistic point of view. We propose a new algorithm, called S, OR, that decides
on-the-fly whether a query should be replicated and at which rate. As replicating a
large number of queries might overload the system, we propose a variant of our al-
gorithm, called S, QR+. The idea is to voluntarily fail to allocate as many replicas
as required by consumers for low critical queries so as to keep resources for high
critical queries during query-intensive periods. Our experimental results demonstrate
that our algorithms significantly outperform the baseline algorithms from both the
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performance and satisfaction points of view. We also show that our algorithms auto-
matically adapt to the criticality of queries and different rates of participant failures.

Keywords Fault-tolerance - Query replication - Participants satisfaction -
Autonomous participants - Self-adaptation - Query criticality

1 Introduction

In the last decade there has been a considerable increase in computing resources re-
quirements in different research fields as well as in the industry. These needs have
motivated the development of new distributed systems allowing users to share data,
services, or computing resources using Internet as a large virtual computer. Volun-
teer computing (such as BOINC and distributed.net) is only one example of these
large-scale distributed systems. A particularity of such large-scale systems is that
participants—consumers and providers—are autonomous in the sense that they may
leave and join the system at will, but also, that they may have special interests (inten-
tions) for some queries! and other participants. For example in BOINC, a system that
allows scientific communities to create applications by using computing resources of
thousands of volunteers across the world, a consumer may desire to receive results
from highly reputed providers while a provider may desire to perform queries for
some preferred projects.

In this context, satisfying participants, i.e., to fill their intentions, is quite impor-
tant when allocating queries. This is because dissatisfaction might lead participants
to leave the system, which in turn causes some loss of system functionality and ca-
pacity to perform queries. But also, the departure of a participant may yield other
participants to leave the system in a domino effect [18]. As a result, many solutions
have been proposed to deal with different query processing problems in the presence
of autonomous participants, e.g., [12, 14, 18, 24]. However, participants availability
is usually not addressed, which is crucial because provider failures can significantly
dissatisfy consumers with no results for their queries and consumer failures can dis-
satisfy providers as their results cannot be returned to failed consumers. Therefore, as
participant failures are the rule in large-scale distributed systems [4], the responsive-
ness of applications built on top of autonomous participants is increasingly limited
by the availability of participants rather than performance.

A basic solution to deal with provider failures is to re-allocate, after detection of a
provider failure, the query to another provider. This approach, however, can signifi-
cantly increase response times. An alternative solution is then query replication [1-3,
9, 10, 25]. Notice that query replication can be done by users or the system. Each of
them with different goals in mind. On the one hand, users usually replicate queries
in order to deal with byzantine providers. On the other hand, the system can decide
to replicate queries in order to guarantee the number of results asked by users under
participant failures.

IWe use the word “query” in the general sense of service request in information systems, thus with a more
general meaning than query in databases.
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In this paper, we focus on query replication for dealing with participant failures
(i.e. done by the system), which can be passive or active. Passive query replication
(which is based on checkpointing or logging techniques [7, 8]) is not appropriate
for dealing with autonomous participants. This is because passive replication inher-
ently assumes (because of checkpointing techniques) that providers store exactly the
same information and process such information in the same way to produce results.
Furthermore, passive replication can significantly increase response times, because
there is a system overhead for detecting provider failures, determining which queries
have been stopped, and rescheduling stopped queries. On the other hand, active query
replication [9] is more adequate in this context as it does not make this assumption. It
allocates queries to the number of providers required by a consumer (called primary
providers) plus some other providers (called backup providers). In this way, the re-
sults produced by backup providers can be returned to consumers in case of failure
of primary providers. Nevertheless, most of them support a fixed number of provider
failures and none considers either consumer failures nor participants satisfaction.

1.1 Motivating example

Applications of different domains need to deal, in an automated way, with partici-
pant failures in order to operate correctly. Volunteer computing, Web services, and
grid computing are some examples of these systems. However, a discussion on how
one can apply our proposal to each of them would be too long and beyond the scope
of this paper. For this reason, we illustrate query replication in the presence of au-
tonomous participants only with an application from volunteer computing. We use
BOINC as example, a system that allows scientific communities to create applica-
tions by using computing resources of thousands of volunteers across the world. The
query processing principle is as follows. Applications (the consumers) submit their
queries to BOINC by providing the number of providers from which they want re-
sults. Volunteers (the providers) get queries from BOINC and return their results to
BOINC, which in turn returns them to consumers.

Consider now a simple scenario where a given research project running on BOINC
(a consumer in the BOINC system) sends a query, with a very high criticality, re-
quiring results from a single provider. Suppose that, when the query arrives into the
system, the relevant providers (those which can treat the query) have low query load,
high intentions to perform the incoming query, and high failure probability. In this
case, replicating the query seems a good idea. In contrast, consider now a scenario
where a consumer sends a query with low criticality requiring results from several
providers. Suppose that, when the query comes in, the relevant providers have high
query load, low failure probability, and low intentions to perform the incoming query.
In this case, it is better to not replicate the query so as to avoid overloading and dis-
satisfying providers. Furthermore, by not replicating this query one can prioritize
queries with high criticality.

However, in most of the cases it is not that simple and one needs to answer the
following simple question: should queries be replicated? If so, which queries should
be replicated? how many query replicas should be created? and which information
must be used to decide on query replication? This paper answers these questions by
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revisiting active query replication from a satisfaction and probabilistic point of view.
To the best of our knowledge, this is the first work that deals with participants failures
by considering the satisfaction of participants as well as the failure probability of
participants at the same time.

1.2 Research challenge

For low query loads, it is easy to answer these questions since there are enough com-
puting resources to perform queries, including backup queries. In these cases, we can
thus replicate queries without fearing the consequences (except if such replication
hurts participants satisfaction). However, the difficulty increases as the query load
gets higher, because the load due to backup queries may induce even more significant
problems than initial queries. This is because overloading the system impacts the sys-
tem performance with longer response times, which in turn increases the probability
that a participant fails before performing a query. Additionally, one must consider
participants satisfaction as dissatisfaction might cause a massive number of volun-
tarily departure of participants [18]. Therefore, supporting query replication in the
presence of autonomous participants is challenging for several reasons:

— The overhead of query replication may outweigh its benefits, by over-utilizing the
computing resources of the system or requiring either more powerful providers or
additional providers.

— A provider might not have the same satisfaction of being utilized as primary or
backup provider. This is because the query results produced by a backup provider
are returned to the consumer only in case the primary providers fails. Furthermore,
we assume they are aware of the destination of their results. One could think that
one can avoid to give this information to providers. However, this is not only un-
fair but also not always possible, e.g. where providers get paid for their produced
results.

— On the other hand, providers also consume their computing resources for nothing
in case of consumer failures.

1.3 Contributions

In summary, the proposals of this paper are as follows.

— We formalize the query allocation problem and make precise query replication in
the presence of autonomous participants (Sect. 2).

— We extend the satisfaction model we presented in [18] so as to consider the criti-
cality of queries and the potential participants failures (Sect. 3).

— We introduce a global satisfaction notion to characterize the fact that (i) queries
have different criticality for consumers; (ii) a consumer may receive less results
than it expects; and (iii) a provider may perform queries for nothing (Sect. 4).

— We propose two automatic query replication algorithms, S, QR and S, QR+, that
consider global satisfaction as the basis of their functionality to decide on-the-fly
(i) which queries should be replicated and (ii) how many query replicas should be
created (Sect. 5).
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— We experimentally demonstrate that our algorithms: (i) significantly outperform
popular baseline algorithms and (ii) automatically adapt to the workload and the
criticality of queries (Sect. 6).

2 Problem definition
2.1 System model

We adopt the usual architecture of a mediator m, and of a set / of autonomous partici-
pants.? The role of mediator m is to do all the necessary computations so as to decide
which providers allocate a query. Participants may play two different roles: consumer
and provider. The set of consumers and providers are denoted by C (C <) and P
(P C 1), respectively. Besides autonomy, we assume that participants perform queries
when they are required for and assume that they can fail, but only for network failure
or a software dysfunction. To formalize this aspect, we assume that each participant
i €I has a probability f; to fail per time unit. Many research works have addressed
this problem of estimating this failure probability [6, 13]. Thus, in this paper, we
simply assume that the mediator is able to estimate this probability. Mediator m may
also fail, but this is orthogonal to the focus of this paper. Replicating mediators is a
solution to deal with this, but for the sake of simplicity we assume in this paper that
m never fails.

Providers in P are potentially heterogeneous in terms of capability and capacity.
Heterogeneous capability means that providers usually do not provide the same func-
tionalities and thus cannot deal with the same queries. Heterogeneous capacity means
that some providers may perform more queries per time unit than others. We denote
those providers that can deal with a query ¢ (the relevant providers) as P;, with
P, € P. A consumer ¢ € C submits a query to mediator m in a format abstracted as
a4-tuple g = (c,d, y, n), where: q.c € C is the identifier of the consumer that has is-
sued the query; g.d is the description of the task to be done; g.y € [0..1] denotes the
criticality of the query. Indeed, it may be crucial for a consumer to receive as many re-
sults as required for some queries while it may tolerate to receive no results for other
queries. Notice that as in practice consumers exactly knows what they are querying
for, it is easy for them to specify the criticality of their queries. The greater the value
is, the more critical the query is; g.n € N* is the number of providers from which a
consumer desires to fetch results. Among others, a consumer may desire to allocate a
query g to various providers for two reasons. First, to avoid Byzantine providers by
comparing their results (in this case g.n is in [3..5]). Second, to compare results so as
to get the result that best fits its intentions, such as in flight booking systems (in this
case g.n is usually greater than 5). Hereafter, we simply use c, d, n, or y when there
is no ambiguity on q.

Because of their autonomy, participants are interested in performing some queries
and in the way their queries are treated. This is why, given a query g, consumer q.c

2Notice that, scaling up to several mediators is orthogonal to the problem we consider in this paper. We
recently addressed this scaling up problem in [17].
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(respectively, each provider that is able to perform ¢g) gives its intentions, for getting
results from each provider p in set P, (resp., for performing ¢), to m. In [18], we
presented a strategy for participants to compute their intentions. Hence, in this paper,
we assume participants provide their intentions, in the interval [—1..1], to mediator
m as specified in [18]. The greater the intention value is, the greater the desire of a
consumer (resp., provider) to see its query be treated by a given provider (to perform a
given query) is. Mediator m stores consumer’s intentions in vector Ei, and providers’
intention in vector F}q . For example, Z)Iq [p] denotes the intention of consumer ¢q.c to

see its query ¢ be treated by provider p and F}q [p] denotes the intention of provider
p to perform query q.

Finally, notice that failures of participants may dissatisfy other participants with
no results for their queries or with results that are not returned to consumers. This
is why providers also express the cost of performing a query g and that consumers
indicate how critical their queries are. Providers’ costs are in the interval [0.. 4+ oo
and stored by m in vector }Téq. For example, a cost P_C)'q[ p] = 100 could mean the
number of milliseconds that provider p needs to perform a query ¢.

2.2 Query allocation problem

Generally speaking, the goal of mediator m is to allocate each incoming query g to
a set of providers so that good system performance, high participants’ satisfaction,
and results for queries with high criticality are ensured. We can divide this general
problem into the two following independent subproblems.

RANKING RELEVANT PROVIDERS. To allocate a given incoming query ¢, the me-
diator first ranks providers in P, according to a policy based on the challenges the
system wants to solve. For example, the mediator may score providers by consider-
ing: providers’ utilization for applications requiring query load balancing [19, 20];
participants’ intentions for volunteer computing applications [18]. Thus, it might ex-
ist as many scoring functions as types of applications. We assume that the mediator
can provide a vector R ; of ranked providers so that R ,[1] is the best scored provider

and 7€>q [l P41l] is the worst scored provider. Once more again, mediator m can rank
providers by applying the techniques we proposed in [18].

SELECTING RELEVANT PROVIDERS. The problem here is that of deciding the num-
ber of providers to which to allocate a query. Formally, given an incoming query g

ﬁ
and vector R ;, the mediator must choose r best ranked providers in R ; to which to

allocate ¢g. Set 13;’ denotes such a set of r best ranked providers, i.e., ﬁq’ = ?q [1..r].
In this paper, we focus on the problem of selecting relevant providers. It is worth
noting that a simple solution to this problem is to allocate a query g to the number
of providers required by the consumer (which leads to have r = g.n). However, this
approach inherently assumes that either participants cannot fail or failures are treated
after detection. In the presence of autonomous participants, it is possible that only a
set 7’; (with E C I/’\q’ ) of providers returns results for a query ¢, instead of set I”\q’ .
We formalize this problem in the presence of autonomous participants as follows.
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—
PROBLEM STATEMENT. Given an incoming query ¢ and ranked vector R, of
providers, each p € R, with a failure probability f,, mediator m must determine

r to allocate g to R 4[1..r] providers so that participants are satisfied and that con-
sumers receive as many results as required for their critical queries.

3 A satisfaction model for faulty participants

In this section, we extend the satisfaction model we proposed in [18] so as to consider
query criticality and faulty participants.

3.1 Consumer satisfaction

A consumer can evaluate by means of its satisfaction if it gets the results it expects
from the mediator. There are two kinds of satisfaction: one with respect to what a con-
sumer expects as results from providers and another one with respect to what a con-
sumer expects from the mediator (i.e., query allocations to its preferred providers).
[16] proposes a satisfaction definition that is of the first kind. The authors define con-
sumer’s satisfaction as the average of the consumer’s satisfaction in each query it has
issued. Satisfaction is computed by a consumer by evaluating results with respect to
response times and information freshness. [18] proposes a satisfaction definition with
regards to what a consumer expects from the mediator (the second kind of satisfac-
tion) as the average of the consumer’s intentions in each query it has issued. Both
satisfaction definitions use the same maths and are quite important for a consumer.
However, when replicating queries, the mediator is interested in what a consumer ex-
pects from query allocations. This is why we consider the latter kind of satisfaction.
Generally speaking, we define the satisfaction of a consumer as in [18]. But, we also
take queries’ criticality and providers’ failures into consideration. Intuitively, an in-
coming query with y =1 (respectively y = 0) means that the consumer would not
be satisfied at all if it did not receive all the results it requires (resp. means that the
satisfaction of the consumer strongly depends on the number of results it receives).
To consider this, given a query g, we introduce the consumer’s satisfaction coeffi-
cient w.r.t. g (denoted by A), which we define as the importance of the number of
providers that return results. The role of this coefficient is to weight the average of
consumer’s intentions. We formally define this satisfaction coefficient as follows.

Definition 1 (CONSUMER SATISFACTION COEFFICIENT) Let x denote the number
of providers that return results for a query (x = || P ||), the satisfaction coefficient
concerning the allocation of a query g is defined as follows,

1—
X _ n
A 1 ify=1Ax=n

0 if(y=1Arx#n)vx=0
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Fig. 1 Number of providers
returning results vs. query
criticality, when a consumer
requires 6 providers

satisfaction coefficient

4
6 criticality

It is worth noting in (1) that when the criticality of a query takes the value of
1 and the number of providers returning results is the same as that required by the
consumer, the satisfaction coefficient takes 1. In contrast, if y = 1 and the number
of results is smaller than that required by the consumer, the satisfaction coefficient
always takes zero. We illustrate the behavior of the satisfaction coefficient in Fig. 1.
Observe that as the query criticality increases and the number providers producing
results decreases, the satisfaction coefficient decreases. This leads to a decrease of
consumer’s satisfaction, which is defined as the average of the consumer’s intentions
concerning the set of providers that return results times the satisfaction coefficient
(see Definition 2)

Definition 2 (CONSUMER SATISFACTION FOR A SINGLE QUERY) Given an incom-
ing query ¢, the satisfaction of g.c concerning the allocation of ¢ is given by,

= a1
e Py =28y~ 3 (@ylpl+1)/2

peEP,;

The 8, (c, f’;) values are between 0 and 1. The closer the value from 1 is, the
greater the satisfaction of a consumer is.

3.2 Provider satisfaction

A provider that has not failed can evaluate, by means of its satisfaction, if the mediator
allocates queries according to its intentions. Conversely to a consumer, the fact that a
query has high criticality, or not, does not influence the satisfaction of a provider. In
turn, the fact that a provider performs a query and its results are not returned to the
consumer may hurt its satisfaction (depending on its cost). What can hurt a provider’s
satisfaction is: (1) to be required to treat a query it does not desire to perform; (2) to be
rejected for the treatment of an interesting query. Notice that showing its unhappiness
for these cases is crucial for a provider so that it can be prioritized in the near future
to get what it prefers; (3) to perform a query as backup for nothing. This is because
a provider is usually selfish. Thus, spending computing resources to perform queries
from which it obtains no benefit does not meet its intentions at all. As a consequent, a
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relevant provider may have one of three possible states after the allocation of a given
query. We formalize this in the following definition.

Definition 3 (PROVIDER SATISFACTION FOR A SINGLE QUERY) Given an incom-
ing query g, let P;k denote the set of providers that did not fail in the time interval

required to perform g and p be a provider in P, N P;k. The satisfaction of p con-
cerning ¢ is given by,

— . =
(PI4lpl+1)/2  ifpep,
~ = — . o~
8s(p, Py, Py) = (—qu[_p>]+1)/2 lfpe(Pq\fir)mP;k
1/(2+PCylpl)  if pe(P)\P;) N PF

Each line of the above definition corresponds to one of the three possible cases
discussed early. Notice that the third line translates the cost values into the interval
10..0.5], which means that a provider always has low satisfaction when working for
nothing. The provider’s satisfaction values are in the interval [0..1] and the greater
the value, the greater the satisfaction.

4 Global satisfaction

The main goal of replicating queries is to meet consumers demand and hence sat-
isfy consumers. This is clearly a positive aspect of query replication. However, in the
presence of autonomous participants, backup providers (those running query repli-
cas) can see their results not be returned to the consumer if no primary provider fails.
This means that backup providers utilize their resources for nothing, which may sig-
nificantly dissatisfy them. This is the negative aspect of replicating queries when
participants are autonomous. This is why we introduce the global satisfaction no-
tion, whose goal is to compare both aspects so as to determine if it is a good idea
to replicate a query. One may think that global satisfaction may be achieved by each
participant being satisfied on average. This, however, is not possible as participants
usually compute their satisfaction after query allocations, or even after receiving re-
sults, while decisions to replicate queries are done before allocating queries. We thus
consider a global satisfaction notion that takes place before query allocations and
hence it depends on the possibility that a participant fails.

To define global satisfaction, we therefore must consider all the possible cases of
failure, which requires some work in probabilities. Thus, in the following, we first
characterize, in Sect. 4.1, the probability that a query be successfully treated. We
then provide, in Sect. 4.2, a global satisfaction definition that consider the intentions
of participants as well as their failure probability.

4.1 Probabilities of success

As we assume that faults are not correlated, the probability that a participant i fails
in a time unit is f;, where f; denotes the failure probability of a participant i. Let
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tqp denote the‘time required by a provider p to perform a query g. Consequently, the
probability A; that a participant i does not fail in a discrete time interval t; is:

Al =1~ i)

Given this, what is important for a consumer is to know the probability that its
query be successfully treated, i.e. performed by at least g.n providers. We formally
define this as follows:

SPI(P = > (]_[Ag I1 (1—A§)) (1)
PECRy NpePgt  peRj\Ry*
I PgI=n

Similarly, it is important for a provider to know the probability that its results be
returned to consumers. For this, a provider p has to know the probability that no more
than n — 1 (denoted by h) better ranked providers in 13\(; successfully treat a query.
Formally,

= ¥ (T4 T o-4)) @
PECRy NpePt  pePp\Ryt
I P2¥lI<h

In the same spirit, but from a more general point of view, we define the probability

. — . .
that the results produced by a provider R 4[a] and x — 1 other providers in P; be
returned to consumer g.c as,

> (]_[A{; I1 (1—A{;)> ifx <gq.n
P,CP; \peP,  pePp\F

1Py ll=x

— =

R 4laleP,

3)
> (]‘[Aﬁ,’ I1 (1—A5)> else

=_ = -
quPq PEPy p= K40/l

a  pr _
S4(Py . x) =

= '< k
1Py ll=x %*“}jx(ﬁi
— =
R 4laleP, qlkI€Py
P%Pq

4.2 Global satisfaction definition

We can now define global satisfaction with respect to the way in which the medi-
ator allocates queries. Informally, we define global satisfaction as follows. Given a
query g, global satisfaction denotes the most possible satisfaction that consumer g.c
and providers in P, may have if ¢ is allocated to a given set I/;q’ . Intuitively, global
satisfaction denotes the sum of satisfaction of the relevant providers plus the satis-
faction of the consumer. Unfortunately, possible failures of both the consumer and
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providers make this more complicated. For a relevant provider that does not fail, we
must consider the following three cases:

(1) A provider is allocated a query and its results are returned to the consumer. For
this, it is necessary that the consumer does not fail and that no more than £ (i.e.,
n — 1) better ranked providers be alive. In this case, the satisfaction of a provider
is based on its intention, if the consumer does not fail, or the cost of treating the
query, otherwise.

(2) A provider is allocated a query replica and its results are not returned to the
consumer. This happens if at least n better ranked providers do not fail. In this
case, the satisfaction of a provider is based on the cost of treating the query.

(3) A provider is not allocated a query. Here, the satisfaction of a provider is based
on its negative intention. For the consumer, we simply need to consider the prob-
ability that each relevant provider has to successfully return results.

Putting everything together, we formally define the global satisfaction in Defini-

tion 4, where Aé is the satisfaction coefficient that allows us to take into account the
criticality of a query ¢ based on the number j of providers returning results (Defini-
tion 1 of Sect. 3.1).

Definition 4 (GLOBAL SATISFACTION) Given an incoming query ¢, the global sat-
isfaction @(P(; ) of allocating ¢ to a set P; is defined as follows,

OF) =Y (4, g - sy BTH - PI IR 1))
j=1
c n—1,5i-1\ b 1B 1+
+ (1A -8 (BT - PCIR 4[]
n—1,5j—1 BB I
+ (1 =Sy~ BT - PCR 451D

I
+ Y AL =PI IR 1))
j=r+1

+AS Z (A,é . % . Z(SZ(E;,J') : aq[?q[a]D)
0 a=1

It is clear that the term “global satisfaction” can have a much broader interpretation
and may be linked to many other points, e.g. the quality of results. Exploring all the
different facets that the satisfaction term might have is well beyond the scope of this
paper. However, anticipating Sect. 5, the algorithms we propose are quite general and
can be used with any satisfaction definition.

5 Automatic query replication algorithms

Given the global satisfaction definition we presented in previous section, one can
imagine that the main goal of the system is to maximize the global satisfaction, i.e.,
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to allocate an incoming query to those providers that increase the global satisfaction.
However, looking for global satisfaction may have surprising bad results because
this approach prioritizes the most adequate participants to the system. Looking for
improving individual satisfaction so as to prioritize less satisfied participants is then
a better way to proceed. Furthermore, as participants are usually selfish, the mediator
also tries to improve system performance when ranking providers.

Therefore, we propose two new algorithms that respect the strategy of the mediator
to allocate queries. The first algorithm, called S, OR (standing for Satisfaction-based
Query Replication), implements a typical query replication strategy: it aims at creat-
ing some query instances in addition to those asked by consumers so that consumers
receive results from their required number of providers. The second algorithm, called
SpOR+, implements a more elaborated strategy: it considers the query instances re-
quired by consumers and decides if more or less instances must be created. Intuitively,
for high workloads, S, QR+ prioritizes highly critical queries by creating less query
instances (for low critical queries) than required by consumers. A key feature of both
two algorithms is their simplicity, which allows for an easy implementation in any
new or existing distributed information system. We discuss in detail both algorithms
in the following two sections.

5.1 SpQR algorithm

Satisfaction-based Query Replication (SpOR for short) aims at increasing—as far as
this does not decrease the global satisfaction—the probability that consumers receive
results from the number of providers they require. For this, S, OR replicates incoming
queries by considering global satisfaction, that is, it only replicates a query when this
yields an increase in global satisfaction. A salient feature of S, OR is that it decides
on-line which queries should be replicated and at which rate, based on both partic-
ipants satisfaction and failure probability. Algorithm 1 shows how S, OR works for
a given query. The idea is simple: it creates as many backup providers as long as
global satisfaction increases. In more details, given a query g, SpQR compares the

global satisfaction of the first g.n relevant providers (i.e. the R ;[1..n] providers)
with the global satisfaction of the ?q[l..n + 1] providers. If the global satisfaction
of TZ)q[l..n + 1] is greater, S, QR compares then such global satisfaction with that
of 7€>q[1..n + 2] and repeats the operation until it finds a set ?q[l..n + i] whose

global satisfaction is higher than 7€)q[1..n + i + 1]. However, in special cases—for
example, when a consumer prefers all providers at equal and providers have posi-
tive intentions towards queries—, SpOR could finish by allocating the query to all
providers, which might impact the performance of applications. To avoid this, S,OR
thus stops this process as soon as the probability that at least g.n providers success-
fully treat the query (Equation (1)) is higher than a given threshold 7'. Instead of
having a fixed threshold value for all queries, we take into account the criticality of
queries so that the value of T be higher for critical queries. We formally define 7 in
equation below—where max and min are the minimum values that T can take: these
values are in the interval [0..1[.

T =y - (max — min) 4+ min
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Algorithm 1: S,OR

Input :q,?q,aq,ﬁq,ﬁéq,T

Output:l/’\q’
1 begin
2 r=gq.n;
3 while (r < [Rq| A ©P)) <OF*Y) A SPUE)) <T)do
4 L r++
5 return F;;
6 end
T U Ao ]
. Local maxima., . . . . . . . Local maximum ' ‘
o e Ny ' o ° S '
g S Lo ] 8 o . Starting point
5 e L . S . o .
Z | Starting point - S S z : e
= ® ° ° . ‘ = ° ° . ‘
G ‘ L ) 2 ‘ D )
S| e 3 ‘ o
B B ‘Sb‘QR path SbQR+ path -
12345678091011121314... 12345678 91011121314...
Provider Rank Provider Rank
(a) S,OR case. (b) SpOR+ case.

Fig. 2 Finding local maximum around ¢g.n (with g.n = 6)

In other words, S, OR looks for the local maximum of global satisfaction as far as
threshold 7T is not reached. Notice that S, OR allows the mediator to satisfy partici-
pants in the long run by respecting the ranking provided by the mediator.

Example 1 We illustrate in Fig. 2(a) the principle of S, QR when looking for such
local maximum w.r.t. a query g where consumer g.c requires results from 6 providers
(g.n = 6). Assume that ¢ has a medium criticality (y = 0.5) and that the 61 best
ranked provider has a higher probability of failure. Suppose now that the 7th, 8th,
and 9th ranked providers have a low positive intention to perform ¢g. Also, suppose
that ¢ has a medium and high positive intention to receive results from the 7¢h and
8th, respectively, ranked providers, but that it has a negative intention towards the
9th ranked provider. In this case, S, OR decides to create 2 backup queries because

provider 7€>q [8] denotes the local maximum.

5.2 SpQR+ Algorithm

We now consider the query replication from a more general point of view. That is,
we not only analyze if backup queries must be created, as in the previous section,
but also if the number of query instances asked by consumers—parameter g.n for
a query g—can be reduced so as to increase the global satisfaction. This is quite
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Algorithm 2: S, OR+

Input :q,Te’q,E?,,,Fiq,Féq,T

Output: I/’\q’

1 begin
S+ - 2> = =

2 P} =S,0R(q. Ry, Cly. Plq,PCq. T)
3 r=gq.n;
4 while (r > 1 A ©(P)) <0 ~")) do
5 |_ r——;
6 13{]—:}?(;;
7 if (Q(I?q_) < @(I?q"')) then return 1?;';
8 else return Pq_ ;
9 end

useful for heavy workloads when replicating queries may significantly impact the
performance of applications. Then, the idea is to allocate low critical queries to less
providers than those required by consumers in order to keep computing resources
for highly critical queries. To do so, we propose S, QR+, an algorithm that looks for
the local maximum of global satisfaction by also analyzing global satisfaction when
reducing the number of instances of queries.

We show the S, QR+ process in Algorithm 2. S, QR+ has the following two prop-
erties: (1) it never creates more backup queries than S, OR, and (2) it exactly operates
as SpOR when g.n = 1. One can say that the instances of a query should not be
reduced when its criticality is 1 since, according to the satisfaction definition of a
consumer (see Sect. 3.1), the satisfaction of a consumer (regarding the job made by
the mediator) falls to zero if its query is allocated to less than the desired number
of providers. However, as S, OR, Sy OR+ also works for providers and thus, in some
cases, providers may benefit from the reduction of instances of a query. Besides, a
consumer may be satisfied with the received results, even if it is not the desired num-
ber. In any case S, QR+ always allocates at least one query instance so that queries
be treated (i.e. g.n > 1).

Example 2 To exemplify the principle of S, QR+ when looking for a local maximum
w.r.t. a query g with g.n = 6, we consider again the example of previous section.
But, this time we assume that g has a low criticality (y = 0.1). As, besides creating
backup queries, S QR+ also strives to reduce query instances if necessary, we con-
sider those providers with a better rank than 6 (see Fig. 2(b)). For these better ranked
providers, suppose that the 5th and 3¢h ranked providers have both a negative inten-
tion to perform g because of overload and that the 4¢h has a high positive intention to
perform g. On the other side, suppose that ¢ has a high positive intention towards all
three providers. In this case, even if g.n = 6, S, QR+ allocates g to the 7?)(, [1..n —2]

providers because 73)51 [4] represents the highest local maximum. This allows S, QR+
to devote more computing resources to highly critical queries.
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5.3 Global satisfaction computation

Both two algorithms S, OR and S, QR+ compare the global satisfaction of two sets
of relevant providers so as to allocate the query to the set having the highest global
satisfaction. To know which set of providers has the highest global satisfaction, one
should compute the global satisfaction of both sets. At first glance, this comparison is
complicated and may be long to realize. However, sets of providers are built accord-
ing to the query allocation strategy (i.e., using vector 73)) and hence the difference
among two compared sets is always only one provider. Thus, we can reduce the global
satisfaction comparison to the study of the impact of adding a provider from a given
set of providers, which results in a significant simplification of the global satisfaction
comparisons. We formalize this comparison in Theorem 1.

Theorem 1 Comparing the global satisfaction of a set of relevant providers ﬁr
with the global satisfaction of the same set of relevant providers plus a new rele-
vant provider, P; +1 can be done by studying the impact of adding the new relevant
provider only. Formally,

OF ) —e@En =4, """ <A2'SZ_1(ﬁ;)'ﬁq[75q[r+l]]
+(1—AY) - SN B - PCLR oIr + 11]
+ (1= SN ED) - PCLLR 4lr + 1]

+ Pl Rylr +111)

r

1 5 5
+A;-Z<Aé~;'<Z<sz<P;“vf>—Sz<PJ’f>)
j=0

a=1
x Clylal+ S, (BIH, ) - CI,[R 4l + 1]]))

Proof (Theore}r\n 1) Our degonstration is derived from algebraic reductions of Defini-
tion 4 (the ® (Pq’ Hh_e (Pq’ ) case). For clarity, we proceed to demonstrate equation
of Theorem I line by line. First, in case that a provider is considered to get a query ¢

and is also considered to be in set P, we have:

> (A Wloag s BT - PLUR L)
3 (AR A s B PR )

Thus, all values from 1 up to r are eliminated by the subtraction because of (2).
Consequently, we only consider the r + 1 value, that is:

glr+1]

Aq AG Sy 1(Pr) PI [Rq[r+1]]
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which demonstrates the first line (of Theorem 1). When a provider is expected to get

query g and not expected to be in set 73;, we have the case in which consumer g.c is
expected to fail:

Ryl 1Bl B3R B g
S (a0 (1 - a9) -5 B - PE IR L)
R0 P I T S
=Y (A (1= a) s H BT - PER (17N)
and also the case where at least g.n other providers with a ranking smaller than j are
P k
in qu HP; ,
—~i_ — =
Sy (a1 (1= s )P Rt i0)
[j] —1,pi-1 Py S S
3 (A (- s ) PR L)

In both cases, values from 1 up to r are eliminated by the subtraction and hence we
only consider the » + 1 value. Consequently, we have the following equation for the
first case:

R
Rglr+1] 1P\ Pr 1B
Ag T (1= AS) - SE NP - PCyL R glr + 111
and
+1] YR
Aq r (1=S371P)) - PCyLR 4r + 11]

for the second case. The above two equations demonstrate lines 2 and 3, respectively.
Now, for those providers that are expected to not get query ¢ we have:

120 1Pl r .
S oA VPR N - Y Ay —PLIR 41
j=r+2 Jj=r+1

Notice that all values from r + 2 up to || P, || are again eliminated by the subtraction.
But, conversely to previous equations, the 4+ 1 value remains in the right side and
thus we take its negative value, which implies the following equation:

AV PR 1+ 100

This equation demonstrates the fourth line. Finally, to demonstrate the final line (i.e.
the expected satisfaction concerning the consumer), we focus on the consumer’s side
of Theorem 1 and thus we have the following subtraction:

n . r+1 N
AS - Z (Aé . % . Z (S‘ql(Pq’-H’ - aq[?q[a]]))
j=0

a=1

A Z(A’ z(s;<13;,j>~€lq[?q[a11))

a=1
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Conversely to all previous equations, even though we have repeated iterations (from
1 up to r), the subtraction cannot eliminate such values because of (3), which consid-

ers set 7’; In other words, SZ(I’;q"H, Jj) is different from SZ(ID;’, J) even for a same

value j, which is not the case for SZ’I (f’qj ). Therefore, we can only reduce the equa-
tion above by grouping values from 1 up to r,

- 1 d N N
a5y (Aé o (Z(szwm - S ) &,m))
=0

a=1

and separating the r + 1 value,
" | - —
A <A{1 = STV, j) - CIGLR ol + 1]])
j=0
Thus, we have the following equation:

n r
1 Srdl PR
AZ'Z<A4';'(Z(SZ@J“J)—SZ(PJ’J))~Clq[al
-

a=1

~ - —
+SPHNPIHY ) - CI IR gIr + 1]]))

which demonstrates the fifth line (of Theorem 1). U
5.4 Discussion

We pointed out so far that there may exist several definitions of satisfaction and that
one may see the quality of results as an intuitive definition of satisfaction. However,
in our context, it is not possible to include satisfaction regarding answers, This is
for two reasons: (i) the evaluation of participants for a particular answer is private
and, (ii) by convention, our proposal takes place before providers produce queries
results (i.e. before query allocations) and hence we do not have any information about
the results produced so far. Instead, we propose algorithms that are quite general
and independent of the way in which satisfaction is computed. We can thus adapt
the satisfaction definition to fit any particular application. This also applies to the
intentions of participants, where participants may consider any information they have,
such as personal experiments, reputation of participants, response time, and load.
However, it is worth noting that the behavior of the system strongly depends on the
way participants compute their intentions. For instance, if providers do not care about
their preferences and compute their intentions by only considering their load, the
system will ensure short response times.

Given the behavior of both algorithms, the reader may think that consumers can
take the best providers for themselves by specifying that each of their queries is criti-
cal. Indeed, they can freely do so because of their autonomy. However, this is far from
the truth. This is because this strategy does not allow consumers to differentiate what
is critical for them from what is not. For low query loads, this has not a deep impact
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since every query can be replicated. For high query loads, as far as they do not tell
what is important for them, they simply let other participants to choose which query
is replicated and which is not. Absolutely this is not what consumers expect to see.
Furthermore, if all consumers set the criticality to the same value, the criticality of
queries would be completely neutralized and not considered at all by our algorithms.
Furthermore, dealing with this issue is responsibility of the score function itself and
thus it is beyond the scope of this paper.

Moreover, the scoring function used by the mediator to produce vector 76) is usu-
ally based on specific demands, which are given by the application challenges that
one wants to solve. As a consequence, a large number of specific query allocation
methods with different behaviors may exist. For example, the score function of a
query load balancing method is designed for those applications whose goal is to en-
sure good system performance. To deal with all this diversity, our algorithms treat the
ranking function as a black box by preserving the ranking order of providers when
finally deciding which providers are allocated a query. This allows us in turn to pre-
serve the strategy chosen by the mediator to allocate queries. As a result, one can
apply our approach in any kind of application.

6 Experimental study

To validate our algorithms, we compare them with the two most popular baseline
algorithms. The first one is replicateAll [11], used for example in BOINC, which
systematically generates one replica by allocating each incoming query g to g.n + 1
providers. The second one, used in many systems, consists to not replicate at all so
that re-allocation has to deal with all problems, which we call none. We carry out
our experimental validation with four main objectives: (i) to evaluate how well, from
a satisfaction point of view, our algorithms operate in the presence of autonomous
participants; (ii) to evaluate the impact on performance of backup queries generated
by our algorithms; (iii) to evaluate how our algorithms operate in environments where
participants have no preference; and (iv) to analyze if our algorithms can adapt to
different querys’ criticality and to different probabilities of participants failure.

6.1 Experimental setup

Let us first point out that the definition of a synthetic workload for environments
where participants have special interests towards queries is an open problem. In [15]
the authors discuss the need for benchmarks of scenario-oriented cases, which are
similar to the case we consider, but this remains an open problem. Although, it is
possible to consider real-world data over long periods of time from a specific appli-
cation, we decided to generate a much more general workload that can be applied to
different applications and environments in order to thoroughly validate our results.
We implemented Sy QA [18], which computes vector 72), and then implemented
SpOR, SpyOR+, and replicateAll algorithms on top of SpQA. Without loss of gener-
ality, we followed [18] to define participants’ intentions. That is, providers consider
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their preferences, utilization, and satisfaction to compute their intentions, and con-
sumers only consider their preferences. We do not detail this computation because it
is orthogonal to the problem we address in this paper. We followed [21] to generate
the experimental system.

We generated a network with 150 consumers and 300 providers who compute their
satisfaction as presented in Sects. 3.1 and 3.2, respectively, and consider a single
mediator. At first glance, the reader may think that this number of providers is not
representative for large-scale systems. Nonetheless, we assume that all 300 providers
are able to perform any incoming query, i.e. all 300 providers always compete among
them in order to perform any incoming query. Therefore, this number of providers is
a representative number of relevant providers found in practice.

We generated 10% of providers with low-capacity, 60% with medium, and 30%
with high. The high-capacity providers are 3 times more powerful than medium-
capacity providers and still 7 times more powerful than low-capacity providers. We
divided the set of providers into three classes according to the interests of con-
sumers: consumers that have high-interest (60% of providers), medium-interest (30%
of providers), or low-interest (10% of providers).

As consumers do not directly compete among them to get results from providers, it
really does not matter how many they are. What impacts performance it is the work-
load they produce. This is why, instead of varying the number of participants, we
vary the workload. We strongly believes that systems with much more participants
will have the same relative performance. Notice that, the workload we generate is
only with respect to the number of queries issued by consumers. Any backup query
generated by the algorithms we test is added to such workload. We generated two
classes of queries that high-capacity providers perform in 1.3 and 1.5 seconds, re-
spectively. We assumed that queries arrive in a Poisson distribution. We assumed
that participants have the same network capacities and that each of them has a failure
probability per second of 0.03. This is a high failure probability, but we want to stress
the system so as to conduct our experiments under difficult situations.

We initialized the satisfaction of participants with a value of 0.5. Then, during
experiments, participants made an average of their satisfaction over the last 150 is-
sued queries (for consumers) and the 400 queries that have passed through providers.
Queries have a criticality generated at random between 0.3 and 1 and should be an-
swered by six different providers (i.e., g.n = 6). Moreover, we considered that it is
up to a provider p to estimate the time it needs to answer each incoming query g
and gives it to the mediator. Finally, we ran 10 times each experiment and report the
average of these results.

6.2 Results with autonomous participants

In these experiments, we assume that participants compute their preferences and
queries cost uniformly at random in the intervals [—1, 1] and [—1, O], respectively.
We compute this at random for two reasons: we cannot control the environment of
participants; we strive to simulate highly heterogeneous preferences of participants.
In Fig. 3(c), we observe that for low workloads replicateAll has (around 0.01%)
less queries with missing results than the other algorithms. However, we observe in
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Fig. 3 Results with queries requiring six providers and for different workloads

Fig. 3(a) that it replicates 20 times more queries. The disadvantages of replicateAll
becomes clear in Fig. 3(c) when the workload is higher than 60%: the number of
queries with missing results for high workloads is twice as with our algorithms since
providers are more loaded and queries are blinded-replicated. This does not happen
with our algorithms, which automatically adapt the query replication rate to the work-
load. This is because providers take care of their load while expressing intentions. It
is worth noting that S, QR+ voluntarily aborts ~1% of low-critical queries for high
query loads in order to prioritize high-critical queries. This is why it misses a very
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low percent of results for high query loads. Figure 3(b) clearly illustrates that our
algorithms create much less backup queries as the workload increases. Furthermore,
we observe in Fig. 3(b) that our algorithms mainly replicate critical queries. This
trend is more important as the workload is higher, in particular for S, OQR+. The great
advantage is that the number of missing results S, QR+ has for non-critical queries is
similar to the ones of the none case, while it ensures more results for highly critical
queries (see Fig. 3(d)).

It is worth noting that, in the S, QR+ case, the number of aborted queries—those
which were allocated to less providers than those required—increases with the work-
load. SpQR+ voluntarily aborts lowly critical queries (see Fig. 3(d)) to prioritize
highly critical queries (see Fig. 3(b)). As a result, the number of queries with miss-
ing results (because of provider failure) increases much more slowly (see Fig. 3(c)).
Figure 3(f) clearly shows that consumers appreciate this, where satisfaction is de-
fined as in Sect. 3.1. Furthermore, aborting lowly critical queries allows S, QR+ to
guarantee short response times (see Fig. 3(e)). Notice that, even if SpOR has slightly
longer response times than when doing no replication (the none case), it significantly
outperforms replicateAll. During our experiments, we observed that the smaller the
number of required results (n), our algorithms are much better than replicateAll. For
example, when n = 2, replicateAll starts to have problems with workloads higher
than 40% while our algorithms remain stable.

6.3 Results with passive participants

One may wonder if the previous results are impacted by the preferences of partici-
pants. To clarify this doubt, we now assume that participants are fully devoted to the
system, such as nodes in a cluster. To establish this, we neutralize both preferences
and costs of participants by respectively setting all of them to 1 and 0.

We illustrate the results in Figs. 4(a)—4(e). Interestingly, we observe in Fig. 4(a)
that our algorithms create much more backup queries than in previous results, es-
pecially for those queries having a high criticality (see Fig. 4(b)). This is because
participants have now no preference towards either queries nor other participants and
hence the system only considers the criticality of queries. As a result, such an increase
in the number of backup queries is reflected by having almost the same number of
missing results as replicateAll for low workloads, and as the none case for high work-
loads (see Fig. 4(c)). Let us however highlight in these results that S, QR+ voluntary
aborts more queries than it misses due to providers failure. This proves its capacity
to deal with provider failures. Now, we observe in Fig. 4(d) that our algorithms also
improve their performance by preserving more critical queries. These results clearly
illustrate the aim of our algorithms at mainly replicating highly critical queries. Fi-
nally, we see in Fig. 4(e) that, even though S, OR and S, QR+ create more backup
queries, their response time is only degraded by 70 milliseconds on average. All this
proves their efficiency even in systems with passive participants.

6.4 Varying criticality of queries

To analyze the sensitivity of our algorithms to different criticities of queries, we run
two series of experiments: (i) with lowly critical (criticality of 0), and (ii) with highly
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Fig. 4 Results with queries requiring six providers, with participants having no preferences, and for dif-
ferent workloads

critical queries (criticality of 1). The criticality of queries neither impacts the per-
formance of replicateAll nor that of the none systems, because they do not consider
this criteria. This is why we only show the results for our algorithms. For these ex-
periments, we assume again autonomous participants and hence they compute their
preferences and query costs as in Sect. 6.2.

Figure 4(f) illustrates the number of created backup queries for different work-
loads. These results confirm the fact that our algorithms tend to replicate less queries
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Fig. 5 Backup queries created
for different workloads and two
different probabilities of
providers failure
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as the workload increases in order to not overload providers. We can also see the sen-
sitivity of our algorithms to the criticality of queries by creating more backup queries
for the highly critical queries. We confirm that, as stated in Sect. 5.2, S,OR+ never
replicates more queries than S OR. In fact, as the workload increases, the number of
queries replicated by S, QR+ is much smaller than those replicated by S, OR. Once
more again, this is because providers quickly become overloaded and thus begin ex-
pressing negative intentions—which are considered by S, OR+ to reduce the number
of required providers.

6.5 Varying probability of providers failure

We finally run our algorithms in systems where providers have quite different prob-
abilities of failure per second: 0.006 (low probability), 0.05 (medium probability),
and 0.1 (high probability). We assume that queries arrive with a criticality of 1 and
that consumers ask for a single answer per query, i.e., n = 1. We chose these values
because it is with these values that providers failure impacts the more. Since n = 1
and because of the properties of S, QR+ (see Sect. 5.2), the results we present here
are valid for both of our algorithms. Let us say that results from these experiments
are quite similar to those already observed in previous sections. For this and for space
reasons, we just present the most important. In Fig. 5, we can see that, as the failure
probability of providers increases, more backup queries are created by our algorithms
to ensure that consumers get answers for their queries. However, when providers
become overutilized, our algorithms decrease the number of backup queries. This
proves the high sensitivity of our algorithms to the probability of providers failure.
We could observe during our experiments that our algorithms have in average less
queries with missing results than none and replicateAll. We also observed our algo-
rithms to better satisfy participants than other algorithms. For low workloads, con-
sumers feel better satisfied with replicateAll, but the difference is quite small (see

Fig. 3(f)).

7 Related work

Query replication approaches can be classified in two models: passive or active query
replication. In passive query replication, also known as primary-backup [5], primary
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providers actively perform queries and regularly checkpoint their state to backup
providers [2], which are either waiting for a checkpointing message or saving a check-
pointing message. In case a primary provider fails, a backup provider takes over the
role of the primary provider by reading the last checkpointed state in order to recover
a state that existed before the primary provider’s failure. In this way, the failure can
be masked to consumers, but they can experience a long delay in getting results [25].
Furthermore, this model is in general inappropriate in the presence of autonomous
participants, because it inherently assumes that providers are homogeneous from a
functionality and data point of view and thus provide the same results for queries.

In active query replication, also called state-machine [22], both primary and
backup providers play the same role: they actively perform queries and, unlike in
the passive replication model, there is no centralized control. Active replication does
not require checkpointing messages to maintain backup queries and is thus appro-
priate for distributed systems with autonomous participants. Several solutions have
been proposed based on this model. For example, [23] proposes a query allocation
algorithm that maximizes the reliability of heterogeneous systems. [10] proposes a
scheduling algorithm to achieve fault tolerance in multiprocessor systems. But, these
two algorithms can only tolerate a single provider failure, while large distributed sys-
tems suffer from many more providers failures. [9] proposes an algorithm using a set
of scheduling heuristics that actively replicates each incoming query a fixed number
of times, say r, thereby producing schedules that tolerate r providers failure. How-
ever, these active query replication solutions replicate each incoming query, which
may quickly utilize all computing resources in the system.

Recently, probabilistic approaches have been proposed to deal with failures with-
out replicating each incoming query. For instance, in [1] each processing node and
communication link is associated with a failure rate. The authors then tackle the prob-
lem of scheduling a task graph with deadline constraints and guaranteeing the best
possible reliability. However, this work assumes a constant probability of failure for
nodes and considers parallel and homogeneous computers. In [3], authors address the
problem of scheduling a set of queries, which are characterized with the same prob-
ability of failure, to a set of processors. Given a set of queries and the set of relevant
providers, a precise analysis can determine whether replication is required to either
guaranteeing high reliability or a minimal set of processors for dealing with a set of
queries. However, the authors consider multiprocessor systems and thus make strong
assumptions that do not apply to distributed systems with autonomous participants.
An advantage of probabilistic approaches though is that, as in our proposal, no as-
sumption on the number of tolerated failures is made. In contrast to our algorithms,
these probabilistic solutions assume that providers have the same probability of fail-
ure, the same capacity to perform queries, and no intentions at all. None of these
assumptions is realistic in large-scale distributed systems.

Our algorithms significantly differ from previous work in four main points. First,
to the best our knowledge, this is the first work that uses a probabilistic approach to
replicate queries in large-scale distributed systems. Second, in addition to the failure
probability of providers, they consider the failure probability of consumers. This con-
sideration is quite important, because repeated consumer failures may cause dissatis-
faction of those providers that perform their queries. This is because such providers
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waste their computing resources for producing results that are finally not returned to
the consumer. Third, our algorithms go further than simply considering failure proba-
bilities: they also consider both participants’ satisfaction and queries’ criticality to set
the query replication rate. This allows our algorithms to only replicate those queries
that increase participants’ satisfaction. Finally, we consider query replication in its
generality: besides replicating queries to tolerate failures, we consider the fact that
consumers may also replicate queries to deal with Byzantine providers.

8 Conclusion

In this paper, we focused on active query replication in the presence of autonomous
participants. In this context, a way to avoid having several participants to voluntar-
ily leave the system is to satisfy their interests. However, basic query replication
techniques can decrease system performance and dissatisfy providers. This is be-
cause they quickly overload the system for high query loads and do not consider
participants interests at all. Thus, system architects/developers are usually faced to
the problem of deciding whether replicating queries is beneficial to the performance
of their systems. Usually, system architects/developers decide before-hand how to
recover from provider failures: (i) by systematically generating one or more query
replicas for any incoming query (the replicateAll approach); or (ii) by re-allocating
queries after provider failures (the none approach). Our goal is to free system archi-
tects/developers from all these messy details. For this, we revisited query replication
from a satisfaction and probabilistic point of view. To our knowledge, this is the first
work that analyzed query replication from a satisfaction point of view.

In summary, we made the following main contributions. First, we extend the sat-
isfaction model presented in [18] to take faulty participants and query criticality into
account. Second, we introduced a new global satisfaction notion that characterizes:
(i) the criticality of queries for consumers, (ii) the failure probability of participants,
and (iv) the satisfaction of participants. Third, we proposed two simple, yet power-
ful, query replication algorithms to deal with participant failures while considering
participants satisfaction, which we called S, OR and S, OR+. Both algorithms decide
on-the-fly whether a query should be replicated and at which rate such that system
performance is not decreased and participants satisfaction is increased. Two salient
features of these algorithms is that: they replicate only those queries that allow in-
creasing global satisfaction, and; they make no assumption on how many provider
failures might occur at any time. S, QR+ differs from S, OR in that it may voluntarily
fail to allocate as many replicas as required by consumers for their low critical queries
so as to keep computing resources for critical ones.

Our experimental results demonstrated that our algorithms significantly outper-
form, from the performance and satisfaction points of view, the two most popular
baseline branch of algorithms: (i) those that (it systematically generates one replica
for any incoming query (replicateAll) and (ii) those that only re-allocates queries af-
ter provider failures (none). The results showed that our algorithms correctly adapt
on-the-fly the query replication rate to the criticality of queries and the failure prob-
abilities of participants. This allows our algorithms to ensure good system perfor-
mance and high participants satisfaction at any point in time. In particular, the results
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also show that while replicating systematically all queries suffers from serious per-
formance problems. Our results also showed that while S, OR is the most adequate to
guarantee the number of query instances required by consumers, S, QR+ is the best
choice to increase participants satisfaction and prioritize highly critical queries.
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