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This paper presents and analyzes algorithms for computing joins and semijoins of relations in a 
multiprocessor database machine. First, a model of the multiprocessor architecture is described, 
incorporating parameters defining I/O, CPU, and message transmission times that permit calculation 
of the execution times of these algorithms. Then, three join algorithms are presented and compared. 
It is shown that, for a given configuration, each algorithm has an application domain defined by the 
characteristics of the operand and result relations. Since a semijoin operator is useful for decreasing 
I/O and transmission times in a multiprocessor system, we present and compare two equi-semijoin 
algorithms and one non-equi-semijoin algorithm. The execution times of these algorithms are 
generally linearly proportional to the size of the operand and result relations, and inversely propor- 
tional to the number of processors. We then compare a method which consists of joining two relations 
to a method whereby one joins their semijoins. Finally, it is shown that the latter method, using 
semijoins, is generally better. The various algorithms presented are implemented in the SABRE 
database system; an evaluation model selects the best algorithm for performing a join according to 
the results presented here. A first version of the SABRE system is currently operational at INRIA. 
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1. INTRODUCTION 

Several relational database machines are currently being developed [ 1,4,14,30]. 
The main objective of these projects is to answer complex queries, expressed in 
a nonprocedural language on a very large database, with better performance than 
conventional database systems [ll, 281. These machines are generally equipped 
with a set of processors executing requests in parallel. They are examples of a 
design approach which tends to distribute the processing power in close proximity 
to the data storage units. This relieves the main computer of the data processing 
functions. 
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One factor limiting the performance of relational systems is the join operation. 
The B-join [13] (or simply join) of two operand relations R and S on attributes A 
from R, and B from S is the result relation T, obtained by concatenating each 
tuple in R with each tuple in S, such as, for example, A 8 B, where 0 is one of the 
operators =, <, I, r, >, #. Join is an important operation generally needed to 
answer multirelation queries, but it can be very time consuming. A semijoin is a 
special case of join, in which the attributes of the result relation belong to only 
one operand relation. 

Several uniprocessor algorithms have been presented and discussed [8,19,29]. 
In such a context, and without indexing, the obvious method of computing joins 
by nested loops has an execution time proportional to n**2 for relations of 
cardinality n. A better method, based on sorting, can reduce this time to a.n log 
n, where a is a constant [8]. A still better method, based on hashing [2], can 
further reduce the time to b-n, where b is also a constant. However, this last 
method allows the performance of semijoins only. 

A large collection of parallel algorithms can be derived from monoprocessor 
algorithms for performing join. We explore here a class of algorithms based on 
“divide and conquer” principles; this means that data are divided into equal 
parts, and a similar algorithm is then applied by each processor to join the parts. 
A first study of this class of algorithms has been done in [9]. In this paper we 
extend their results to the SABRE database machine architecture, using a larger 
class of algorithms; we also show the value of performing semijoins before joins 
in a multiprocessor system. 

In summary, this paper presents three implementations of parallel join algo- 
rithms-the nested loops, the sort-merge, and the hashing algorithms-in the 
SABRE multiprocessor system [la], and it more precisely analyzes the algo- 
rithms’ performance. In Section 2, the architecture model that enables us to 
study the algorithms is precisely described, it is derived from the SABRE database 
machine project. The SABRE database machine components involved in com- 
puting joins or semijoins are a set of filtering processors associated with the disk 
units, a cache memory, and a set of join processors. The processors own a local 
memory which stores data during processing, and are linked together by an 
interconnection network. In Section 3, the analysis criteria are introduced, 
including the performance parameters needed for the evaluation of the execution 
times (I/O, CPU, and message transmission) of the algorithms. The basic 
assumption is that the operand relations are too large to fit into the cache 
memory or into the join processors’ local memories. In Section 4, three multipro- 
cessor join algorithms are presented: the nested loop join algorithm [15], the 
sort-merge-join algorithm, and the hashing join algorithm. The execution times 
of these algorithms are then compared. The results depend mainly on the number 
of processors, the size of the operand relations, and the proportion of matching 
tuples in a relation. It turns out that, for a given configuration, each algorithm 
has an application domain defined by the characteristics of the operand and 
result relations. 

Recent results have shown the value of semijoins for optimizing query execution 
[5-7, 121. The length of time for this operation is substantially less than that for 
a join, and is linearly proportional to the size of the operand and result relations. 
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The semijoin is useful in distributed relational databases [23, 261 for reducing 
the time for processing queries involving binary operations, by means of initially 
selecting relevant data and thereby reducing the size of the operand relations. 
We show in this paper that it is also very useful for optimizing join processing 
in a multiprocessor database machine. In Section 5, two equi-semijoin algorithms 
are presented and compared. A third non-equi-semijoin algorithm is also pro- 
posed. Their execution time is generally proportional to the size of the operand 
and result relations, and inversely proportional to the number of processors. In 
a uniprocessor environment, a semijoin can be used efficiently to replace the join 
of relations by the join of their semijoins [29]. Thus comparisons of two join 
methods, one based directly on the nested loop algorithm [9] and the other 
performing semijoins before the join, are developed. These comparisons indicate 
the general advantage of performing joins by using semijoins. 

2. ARCHITECTURAL MODEL 

The environment in which join and semijoin algorithms are studied is the SABRE 
database machine [18], composed of a set of processors linked through an 
interconnection network. The processors exchange commands directly and ex- 
change data via a cache memory. We now give a simplified model which describes 
the main architectural components of SABRE, focusing on those components 
useful in implementing joins and semijoins. 

The first layer of the architecture is arranged as a set of data filtering processors 
[3, 16, 271. These processors, called filters, perform selections (restriction and 
projection) on data coming from disks. It has been shown in [IO] that, if parallel 
readout disks are employed, the usage of processor-per-disk together with an 
efficient placement strategy gives the best results, since channel contention is 
thereby avoided. Furthermore, this usage provides cheap filtering power. Thus, 
in SABRE, we implement a filter-per-disk device. Filters are very simple proc- 
essors, close to the general form of automata. They permit realization of asyn- 
chronous processing “on the fly”- in other words, filters perform a selection at 
disk rotation speed on a secondary memory page, which generally corresponds to 
a track. A selection expression is composed of a set of references that specify the 
projection attributes and the selection condition. A selection condition is a logical 
combination of predicates of the form (Ai op C), expressed in normal conjunctive 
form, where Ai is an attribute of an operand relation, op an operator chosen 
among <, 5, =, #, 2, >, and C, a value. The number of predicates which can be 
taken into account by a filter depends on characteristics of the automata only, 
and not on the data flow or on the tested expressions. In [16] evaluations show 
that, for an average memory size of 64K bits, a filter can accept up to 200 
predicates. 

The second layer of the architecture is a cache memory. The filters are 
connected to the cache memory through a special bus [17]. We assume that this 
bus does not provide any contention. Selected data are moved via the bus to the 
cache memory, divided in pages. In SABRE the basic processing and moving unit 
is the page. The cache manager should anticipate page reading and use a 
replacement algorithm to swap the useless pages to the disk. A filter can be 
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QP: Query Processor CM : Cache Manager 

AP: Access Processor FP: Filtering Processor 

JP: Join Processor LM: heal Memory 

Fig. 1. Simplified architecture model. 

associated to the cache memory in order to carry out the necessary selection 
among pages already in the cache. 

The third layer of the architecture is a set of join processors devoted to 
computing joins of relations. Join processors send reading and writing requests 
to the cache in order to get pages of relations and to write back result pages. 
Pages are stored in the local memories of the processors during processing. The 
join processors are connected with the cache memory by a specific interconnection 
network. The requirements for this network are the ability to carry out parallel 
transfers between the cache and any join processor, and the capability to 
broadcast a page from the cache to several join processors. This kind of intercon- 
nection network is feasible [ 141, and different alternatives have been studied. 
The current developments of SABRE are based on a French multimicroprocessor 
called the SM90 [17]. Although this machine has a very fast common bus (eight 
megabytes per second), we try to be independent of the interconnection network, 
as it would affect the performance of the whole system. For our purposes, we 
assume an ideal interconnection network, which would provide the two needed 
services and introduce no contention. 

Finally, the complete architecture of SABRE includes two more processor 
types (i.e., the access path management processor and the query decomposition 
processor [IS]). These processors are connected to the join processor bus, and 
share with the join processors the task of executing external requests. The 
architectural components of SABRE are depicted in Figure 1, where, for simplic- 
ity, the interconnetion networks are reduced to buses. Thus, SABRE allows a 
high degree of intra- and interrequest parallelism by means of a set of specialized 
processors. In the following, we are going to more precisely focus on intrarequest 
parallelism for performing joins. 
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3. ANALYSIS CRITERIA 

In the following, we assume that a semijoin or join operation is performed on 
relations R and S, producing the result relation T. We recall that the semijoin of 
R by S is the set of tuples of R participating in the join of R and S. The following 
notation is needed to evaluate the proposed algorithms: 

m, n: number of pages in R and S, respectively; 
b + 1: size of local memory (in number of pages) of each join processor (JP); 

p: number of join processors (JP) assigned to the operation; 
c: cache memory size allocated to the join operation (in number of pages); 
d: number of filters assigned to the operation; 
t: number of tuples in a page, assumed to be the same for both R and 5’; 

JS: join selectivity factor, defined by size (R join S)/(m. n); 
SR: semijoin of (R by S) selectivity factor which is defined by size(semijoin 

(R by S))lw 
SS: semijoin of (S by R) selectivity factor which is defined by size(semijoin 

(S by R))ln; 
j: average number of distinct join attribute values in a page. Thus, mj and 

rzj are the total numbers of distinct join attribute values in R and S, 
respectively; 

NC: number of predicates accepted by a filter; 
Ct: occupation factor of join attributes in a tuple, defined by the size of the 

join attribute divided by the size of the tuple. Thus, the number of pages 
of the relation obtained after projecting relation S on join attributes 
without duplicate elimination is defined by nu = n . Ct. 

The presented algorithms will be compared according to their execution times. 
The basic performance parameters necessary for the evaluation of the execution 
times are those detailed above. These parameters allow one to measure the I/O 
time, the CPU time, and the interprocessor communication time when executing 
a multiprocessor algorithm. The identified parameters depend on hardware 
capabilities, and will be fixed for purposes of comparison only. 

3.1 I/O Time 

In a multiprocessor architecture, two kinds of transfers are considered as I/O 
operations: page transfers from a mass storage unit and transfers from the cache 
memory to a processor’s local memory. The page transfer time from disk to cache 
is denoted Tdc, and includes the selection time due to filtering on the fly. The 
page transfer time from cache to processor is denoted Tcp. The average time of 
a read by a join processor is now defined by introducing the probability that the 
requested page is already in the cache memory [9]. The cache manager should 
maximize this probability by anticipating page reading, which is made easier by 
the fact that a referenced relation will be read in its entirety. This probability is 
equivalent to the cache hit ratio, denoted by F. Thus the average time of a read, 
defined as CR, is 

CR = F,Tcp + (1 - F).(Tcp + Tdc). 
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The average time of a write by a join processor can be evaluated in the same 
fashion by introducing F’-the probability that there is an available page frame 
in the cache during the write operation. This probability is supposed to be 
relatively low and constant. The cache manager uses an algorithm different than 
LRU, since the main difference with a classical cache memory is that the entire 
operation is known in advance. Therefore, the cache manager can swap out pages 
in order to keep F’ constant. Thus the average time of a write, defined by CW, 
is 

CW = F’.Tcp + (1 - F’).(Z’cp + Tdc). 

3.2 Communication Time 

Page moves are regarded as- I/O operations. Therefore, the only communication 
time which needs be taken into account is from page request and reply messages. 
This message time, denoted as M, is then added to the I/O time. Thus CR is 
replaced by CR + M(request) + M(reply), and CW is replaced by CW + 
M(request) + M(reply). Control messages, such as those used for processor 
allocation, are few in number and small in size, relative to the page request and 
reply messages. Therefore they will be ignored. 

3.3 CPU Time 

Two basic operation times are defined. 0 denotes the time of a simple operation, 
such as comparing two attributes or computing a hashing function. The time for 
moving a tuple in a page of local memory is denoted by I. With these two basic 
operation times, we can compute all other times as follows. 

Join time. The pages to be joined may or may not be sorted. If they are 
unsorted, two methods for joining are possible. The first consists in internally 
sorting the pages, followed by a merge-type join operation. The second method, 
which is simpler, compares each tuple in a page with each tuple in another page; 
it is better than the first method, since it only requires comparison operations, 
which are cheaper than the tuple movement that internal sorting requires. Thus, 
the time for joining two unsorted pages, denoted as CJO, is CJO = 0.t**2. The 
time for joining two sorted pages by a merge-type operation is defined as CJl = 
2t-0. 

One page sort tine. The average time for internally sorting a page of t tuples 
requires t. log, t comparisons and move operations [22]. It is defined as 

cs = (0 + I)t*logzt. 

q page merge time. The merging of q sorted pages needs q ( q - 1) t comparison 
operations and q. t move operations. By adding the q page reading and writing 
times, the q page merge time is defined by 

CMq = (q( q - 1)t.O) + (q.t.1) + (q(CR + CW)). 
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4. JOIN ALGORITHMS 

4.1 The Nested Loop Join Algorithm 

This algorithm is a parallel version of-the most inefficient uniprocessor join 
algorithm, since it composes the Cartesian product of the relations. This simple 
algorithm is particularly well suited to parallel execution. The method is to join 
each page of one relation with the entire other relation. The algorithm has been 
described and evaluated in [9] for processors having three pages of local memory, 
where two buffers are used to input pages and one buffer to output pages. The 
method is now generalized to support execution with more than three pages of 
local memory. The execution of this algorithm by p processors, each having (b + 
1) pages of local memory proceeds as follows. The smaller relation is chosen as 
the external one and is sequentially distributed among p join processors in blocks 
of (b - 1) pages. Next, the second (internal) relation is broadcast page by page 
to the p processors. Then, each processor joins each (b - 1) page block of the 
external relation with the entire internal relation. For each page of the internal 
relation, each processor computes an internal join with (b - 1) pages of the 
external relation, using a result buffer of one page. If the external relation does 
not fit into the processors’ local memories, then the same process must be 
repeated for the remaining pages of the external relation. 

We should point out that, since each tuple of one relation will be compared to 
each tuple of the other one, this algorithm also supports non-equijoin. Finally, 
the execution time of the nested loop join algorithm is derived in Appendix A. 
The final result is 

TIME(NL) = m-CR/p + m.n(CR/(p(b - 1)) + (CJO + JS(t.I+ CW))/p). 

The formula shows that this time is proportional to m/p + a. mn/p. Therefore, 
the smaller relation must be chosen as external in order to decrease the first 
term. This equation also shows that the degree of parallelism is constant (i.e., 
the amount of work each processor performs is constant) during the entire 
execution of the algorithm. It should be noted, however, that the last pass of the 
algorithm can use a fewer number of processors if the ratio m/(p(b - 1)) does 
not give an integer result. 

4.2 The Sort-Merge-Join Algorithm 

This algorithm employs a parallel sort of the operand relations on join attributes, 
followed by a uniprocessor merge-type operation of the two sorted relations to 
complete the join. For simplicity, we consider the equijoin. The sorting algorithm 
is a parallel version of the uniprocessor ascending (or merge sort) algorithm 
(described in [22], p. 247). In [9] a join algorithm is presented using a parallel 
binary merge sort, where the processors are organized in the form of binary trees 
[25]. Performance analysis of this join algorithm shows that it is generally less 
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efficient than the multiprocessor nested loop join algorithm, if the number of 
processors is high. This is mainly because, after a certain stage, the degree of 
parallelism is divided by two at each merge pass, so that, at the last pass, one 
processor merges the entire relation. We propose a parallel b-way merge sorting, 
which is more efficient in a multiprocessor environment. Moreover, if the number 
of processors p is less than or equal to b, the last stage only needs one pass. 

We briefly review the b-way merge sort algorithm. Let us suppose that there 
are n elements to be sorted. A run is defined as an ordered sequence of elements, 
thus the set to be sorted contains n runs of one element. The method consists of 
iteratively merging b runs of K elements into a sorted run of K. b elements, 
starting with K = 1. For pass i, each set of b runs of b**(i - 1) elements is merged 
into a sorted run of b**i elements. Starting from i = 1, the number of passes 
necessary to sort n elements is logbn [22]. 

We now describe the application of this method in a multiprocessor database 
machine. Let us suppose we have to sort a relation of n pages that is too large to 
fit into the cache memory. 

Recall that each of the p processors has a local memory of b + 1 pages, where 
b pages are used as input pages and 1 is used as an output page. At each pass, 
each processor merges a set of b runs of b**(i - 1) pages into a sorted run of b**i 
pages. The merge of b runs is done by successively reading one necessary page of 
each run into b input buffers and then moving ordered tuples into the output 
buffer, writing in the cache memory when full. When read at the first pass, pages 
are internally sorted. To clarify the analysis, we assume that modulo (n, p) = 0 
(i.e., that p processors divide the relation into equal parts and share exactly the 
same amount of work). At each merge pass the number of runs is divided by b, 
while the size of each run is multiplied by b, and the whole relation is read and 
written. For the first pass, let N be the number of runs to be merged, if N is 
greater than p. b, one step is necessary for each of the p processors to merge b 
runs, and this step is repeated N/( p. b) times until all the runs have been read. 
When N is equal to p. b, only one step is necessary, and each processor merges 
exactly b runs of n/(p. b) pages. This pass is called the optimal stage [9]. The 
optimal stage then generates p runs of n/p pages and, if p equals b, one processor 
can merge them in a single pass. But, in certain configurations, p can be very 
much greater than b, in which case the solution is to arrange the processors as a 
tree of order b during the last stage, called the postoptimal stage. The number of 
necessary processors is divided by b at each pass. At the last pass, one processor 
merges the entire relation. The number of passes for the postoptimal stage is 
logbp. This stage degrades the degree of parallelism. However, the result relation 
is sorted on the join attributes, which can be very useful if such a sort is required 
in the query. 

Joining two sorted relations is done by a uniprocessor merge-type operation, 
where each relation is read one page at a time. The adaptation of this algorithm 
to the non-equijoin modifies the merge-type operation into a more complex and 
time consuming one. 

In Appendix B, we evaluate the execution time for sorting a relation for n 
pages. We then derive the execution time of the sort-merge-join algorithm, which 
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TIME(SM) = n/p[Cs + CMb.log&/p)/b + CMb.(l - b**logbp)/(l - b)] 

+ m/p[Cs + CMb.log&n/p)/b + CMb.(l - b**log,p)/(l - b)] 

+ (n + n)CR + max(m, n).CJl + m.n.JS.CW. 

This formula is rather complex, and will be interpreted later with the given 
parameters. 

4.3 The Hashing Join Algorithm 

The proposed method uses hashing techniques and Boolean arrays. The use of 
Boolean arrays for implementing the semijoin operation has been described by 
Babb [2]. The idea is to hash the join attribute and to then use the result as an 
address into the Boolean array. The presence of a marked bit in the array means 
that matching tuples exist. The value of the Boolean arrays is to eliminate most 
of the data not needed in the result. In order to support join as well as semijoin 
operations, the method is improved and adapted to a multiprocessor context. For 
simplicity, we describe the equijoin. The method proceeds in two stages, prior to 
which a Boolean array B is initialized in the cache memory. In the first stage, 
the smaller relation is read into the cache memory and hashed on the join 
attribute by the cache processor so that each tuple is written in a bucket of a 
hashed file. The hashed file is composed of buckets having a variable number of 
linked pages. For each bucket, a page frame is maintained in cache memory. This 
avoids the need to manage an overflow area. Simultaneously, for each join 
attribute value u, B(h(u)) is marked (set to l), where h is a hashing function 
applied to the join attribute. The first stage is completed when the entire relation 
has been hashed. In the second stage, the Boolean array is broadcast to p 
processors, and the larger relation is sequentially distributed among p processors. 
Each processor uses two buffers as input pages, one buffer as the output page 
and one buffer to store the Boolean array. Thus, each processor receives one page 
of the larger relation and performs the following processing. For each tuple of 
the page such that the join attribute value u’ satisfies B(h(u’)) = 1, one bucket 
of the hashed file is accessed by specifying the key u’ to find the matching 
tuple(s). Since a bucket of the hashed file may contain more than one page, the 
bucket is read page by page. The tuples of each page are then compared with u’ 
to complete- the join. 

This method makes extensive use of hashing. In order for it to be applicable, 
the number of distinct join attribute values in the hashed relation must be 
significantly greater than the number of buckets. At the first stage, the choice of 
hashing the smaller relation is made to minimize the creation and storage times 
of the hashed file. 

The classical problem with hashing is collisions. If ul and u2 are different join 
attribute values, we can have h(u1) = h(u2). Since the Boolean array is accessed 
by hashing, collisions can lead to useless access to the hashed file during the 
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second stage. In order to reduce collisions, several hashing functions hl, h2,. . . , 
hq can be used, each associated with a Boolean array Bl, B2,. . . , Bq. Then, for 
each value u, all of the corresponding bits in each Bi must be set (i.e., Bl(hl(u)) 
= 1, B2(h2(u)) = 1,. . . Bq (b(u)) = 1). In [2] it is shown that increasing q causes 
the probability of collisions to approach 0. 

If the hashing function for the hashed file has the property of maintaining 
order (i.e., given two attribute values ul and ~2, if ul < ~2, then h(u1) < h(u2), 
and the algorithm can then support non-equijoin). 

In Appendix C, we derive the execution time of the algorithm, which is 

TIME(H) = m[(l - F)Tdc + t(0 + Z)] + (m - C)(l - F’)Tdc 

I + (n/p)[CR + t-0 + t.SS.(n/c)-CR + n-JS.CW]. 

It is of the form al - m + a2 - n/p + a3 - mn/p, where a3 is proportional to the join 
and semijoin selectivities. It already appears therefore that the algorithm will be 
almost linear for join with a very small selectivity; thus, it is a very efficient 
algorithm for such a case. 

4.4 Comparisons 

For purposes of comparison, we fix the values of the parameters discussed in 
Section 3. The chosen values according to our current implementation are the 
following: 

0: the time to compare two attributes is equal to 10 microseconds; 
I: the time to move a tuple in a page is equal to 250 microseconds, based 

on a page size of 4K bytes and a tuple length of 40 bytes; 
t: the number of tuples in a page is equal to 100 microseconds; 

F, F ’ : cache hit ratios, F = 0.8 and F ’ = 0.3; 
Tdc: the time of a disk-cache page transfer is equal to 30 milliseconds; 
Tcp: the time of a cache-processor page transfer is equal to 4 milliseconds, 

based on an average bus bandwidth of 1 megabyte per second; 
M: the time to process a message which includes sending, transfer, and 

receiving times and is assumed to be 10 milliseconds; 
Ct: occupation factor of a join attribute is equal to 0.2, so semijoin attribute 

length is 8 bytes. 

Using these fixed values and the previous equations, the three join algorithms 
are compared. Other comparisons have been done with different values of F and 
F,’ showing that their influence is weak (since the differences between the 
execution times remain approximately constant). However, decreasing F ’ in- 
creases somewhat the execution time of the sorting join algorithm relative to the 
other algorithms, since the final merges are done by a unique processor. For 
simplicity, we denote the nested loop join algorithm as the NL algorithm, the 
sort-merge-join algorithm as the SM algorithm, and the hashing join algorithm 
as the H algorithm. 

4.4.1 Execution Times uersus Relation Sizes. Figure 2 illustrates the behavior 
of the algorithms versus relation sizes. The sizes of the two relations are assumed 
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JS = 0,Ol 
HO : SS = 0,5 
Hl : SS = 0,l 
H2 : SS = 0,Ol 

RELATION SIZES (m = n) 
1 I 1 I 1 1 1 

16 32 64 128 256 512 1024 

Fig. 2. Execution times of the algorithms versus relation 
sizes. 

to be the same (m = n). The configuration comprises 16 processors, each having 
a local memory of 5 pages with a cache memory size (allocated to the join) of 16 
pages. Three curves describe the performances of the H algorithm for three 
different semijoin selectivity factors (0.5, 0.1, 0.01). The join selectivity factor is 
assumed to be 0.01. It appears that the SM algorithm is better than both the NL 
algorithm and the H algorithm (with SS L O.l), when the operand relations are 
large. The behavior of the H algorithm depends essentially on SS, the semijoin 
selectivity factor, which yields the number of matching tuples from the distributed 
relation with the hashed file. When SS is small (SS < O.Ol), the number of 
accesses to the hashed file is low, and the H algorithm is superior. For the given 
configuration, when SS is less than 0.5, the H algorithm always performs better 
than the NL algorithm. Beyond SS = 0.5, the H algorithm does not perform well 
(curve HO). The size of the cache memory allocated to the join (denoted by C) 
significantly influences the execution time of the H algorithm, because, if C is 
high enough, the hashed file can fit into the cache without swapping out to the 
disk. 

The previous comparisons show that, for the given configuration, each algo- 
rithm has a domain of application where it performs better than the others. 
Figure 3 illustrates the domains of the NL algorithm in comparison with the SM 
algorithm, for various sizes of relations. Similarly, Figure 4 depicts the domains 
of the SM algorithm in comparison with the H algorithm for SS = 0.1, which is 
a realistic coefficient. 
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Fig. 3. Limit of the NL algorithm in comparison with the 
SM algorithm. (p = 16, b = 4, JS = 0.01) 

n 

1024 - 

512 - 

256 - 

128 256 512 1024 

Fig. 4. Limit of the H algorithm in comparison with the 
SM algorithm. 

In conclusion, one of the important results of this first comparison is that no 
algorithm is predominant. Therefore, a well-designed database machine should 
implement all the algorithms and select the best one to perform a join, according 
to the estimated time in utilizing the previous formulas. That is the way the 
SABRE system performs joins. 

4.4.2 Comparisons with Respect to the Number of Processors. The configura- 
tion is essentially characterized by the number of join processors and the size of 
the cache memory. Figures 5 and 6 show the behavior of the algorithms for 
various numbers of processors for small relations (Figure 5) and larger relations 
(Figure 6). The complexity of the NL algorithm is l/p, while that of the SM 
algorithm is l/logbp. Thus, when the number of processors increases, the NL 
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1 2 4 8 16 32 64 

Fig. 5. Execution times of the algorithms versus the number of 
processors. 

Fig. 6. Execution times of the algorithms versus the number of 
processors (p). 
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algorithm performs better than the SM algorithm. The curve of the H algorithm 
for SS = 0.5 would be approximately the same as that of the NL algorithm. With 
a favorable semijoin selectivity factor (O.l), the H algorithm gives good results 
when the number of processors is high. This is because the time of the second 
stage of the H algorithm is of complexity l/p. Generally, the semijoin selectivity 
factor will be low, and, in that case, the H algorithm seems very attractive. It is 
notable that, for the SM algorithm, after a certain number of processors, dupli- 
cating the number of processors causes very little decrease in the execution time. 
This is owing to the increasing number of passes of the postoptimal stage, 
proportional to the number of processors. In fact, the SM algorithm is better for 
configurations in which p = b, when only one postoptimal pass is needed. When 
p becomes greater than b, the postoptimal stage degrades the degree of parallelism. 

5. SEMIJOIN ALGORITHMS 

If the comparison operator 13, in the join definition of Section 1, is equal, and if 
the result attributes belong to a single relation, the operation is called an equi- 
semijoin. In this section we will mainly discuss and evaluate two equi-semijoin 
algorithms, one using hit arrays and the other using the selection operation 
performed by the filtering processors. Finally, we will consider non-equi-semi- 
joins, where the comparison operator 6 is not equal. 

5.1 Equi-Semijoin with Bit Arrays 

The proposed method is an extension of the uniprocessor method for performing 
semijoins, as described in [2]. The basic version uses a bit array to aid the 
operation. In our parallel version this array is replicated in the join processors’ 
local memories. The operation in a multiprocessor environment proceeds in two 
stages. First, semijoin source attributes are retrieved in parallel by d filtering 
processors, moved to the cache memory, and finally compacted in pages. These 
pages are then distributed among p join processors. Thus each processor reads 
m/p pages of the source relation 5’ after projection-called relation S’- and 
places source attribute values in a local memory resident data structure W, in 
ascending order, if the value is not already in W. Simultaneously, one bit in the 
bit array M is marked for each source attribute value u. The bit address is 
calculated by a hashing function h, where M(h(u)) is set to 1. At the end of this 
first stage, the bit array in each processor represents a part of the attribute values 
of the source relation, while the union of all the bit arrays represents all the 
distinct attribute values. The logical union of the p arrays is then computed by 
one processor, which broadcasts the result to the p - 1 other processors. The 
intermediate lists ( W) of each processor are merged to form a single list contain- 
ing all the distinct source attribute values. This step is performed by one processor 
in one b-way merge pass if p 5 b, or in logbp passes if p > b, where the number 
of processors is divided by b at each pass. The resultant merged list does not 
contain any duplicates and is broadcast to the remaining p - 1 processors. The 
main assumption of this method is that a processor’s local memory can contain 
both the bit array and the list W. This assumption holds in most cases. If, 
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however, the list does not fit into the local memory, the problem is treated in the 
same way as the join problem analyzed in Section 4. 

The second stage of the algorithm is to distribute the target relation R (after 
selection by filters) among p processors. Each processor gets a page of R, and 
each tuple, whose join attribute value u ’ satisfies M(h(u ‘)) = 1, is projected into 
the result relation if u’ is in W. The latter check is necessary because of possible 
collisions during hashing. (Note that more than one bit array can be used to 
decrease the probability of collisions.) 

The total time of the semijoin algorithm using bit arrays is derived in Appendix 
D. It includes the I/O time, which is 

I/O(SJH) = (r#). Tdc + (nu/p) - CR + [p + 1 + (logbp) . (b/2). T cp 

+ (m/p) - (CR + SR-CW). 

and the CPU time, which is 

CPU(SJH) = (na/p)-(t/0)-(0 + Iw) + Cm + p-0 

+ (m/p)-[OS(t + t.SR.log,nj) + SR-I]. 

5.2 Equi-Semijoin Using Selection 

This method depends entirely on the selection devices offered by the filtering 
processors [16] to compute the equi-semijoin. The operation proceeds in two 
stages. The first stage is similar to that of the previous algorithm; bit arrays are, 
however, not used. The second stage realizes the semijoin by restricting the target 
relation to the tuples whose semijoin attribute value is in the list W. Only one 
processor is needed to initiate the operation. From the merged list, W, this 
processor constructs selection conditions in the target relation by constructing a 
restriction predicate. This predicate is a disjunction of clauses of the form (A = 
Bi), where A is the semijoin attribute of R, and Bi are the distinct attribute 
values in W. If the number of Bis is greater than NC, which is the number of 
predicates accepted by a filter, several selection operations are involved. The 
number of operations is then Sup(njlNc). Since every selection operation requires 
reading R in its entirety, the performance of this algorithm depends on the filter 
processing capabilities. One should keep in mind that a simple filter could accept 
a high number of predicates. 

The total time of the semijoin algorithm using selection is derived in Appendix 
E. It includes the I/O time, which is 

I/O(SJS) = (n/d). Tdc + (no/p)-CR + logbp.(b/2).Tcp 

+ (nj/Nc).(m/d).Tdc. I 

and the CPU time, which is 

CPU(SJS) = (NJ/~)-(t/Ct)-Iw + Cm + nj.0. 1 
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Fig. 7. Execution times versus relation sizes. 

5.3 Comparisons 

This section presents performance comparisons of the two equi-semijoin algo- 
rithms, using the time formulas developed in the previous sections. Results are 
shown in Figures 7 and 8. Assumptions concerning the processor capabilities, as 
parametrized by the times defined in Section 3, are the same as those of Sec- 
tion 4. 

Figure 7 illustrates the behavior of the algorithms with varying relation sizes. 
The sizes of both the source and target relations are assumed to be the same (m 
= n), The configuration chosen to represent a multiprocessor architecture is 
composed of 16 filters and 16 join processors, each owning five pages of local 
memory. A filter is assumed to accept up to 100 predicates. The stage which 
consists of reading the projected relation S’ and merging the lists W is the same 
for both algorithms, therefore parameters Ct, Cm, and Iw do not influence the 
performance. Figure 7 consists of four curves. The two curves representing the 
time for the algorithm using bit arrays (SJH) vary linearly according to the size 
of relations (n), and depend on two different semijoin selectivity factors. The 
selectivity factor slightly affects the write time of the result. The two time curves 
of the algorithm using selection (SJS) depend on two distinct nj values, and show 
that this algorithm is heavily influenced by the ratio Sup (nj/Nc), which is the 
number of needed selection operations. This can be seen by the stair shape of 
the curves. This algorithm is better when there are a few distinct attribute values. 
More generally, the algorithm by selection is better than the algorithm using bit 
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1 2 4 8 16 32 

Fig. 8. Execution times versus the number of processors. 

arrays when the approximate expression 

(n/p).(CW + SR.CW) - Sup(nj/Ak).(m/d).Tdc 

is strictly positive. 
The presence of p join processors cuts the time of the bit arrays algorithm by 

a factor of p, just as the presence of d filters cuts time off the selection algorithm. 
Figure 8 represents execution times as a function of the number of processors, 

assuming that p = d. Performances of these algorithms are proportional to the 
number of processors, and the difference between the two curves is also due to 
the ratio (nj/Nc). Two curves depict the performances of the algorithm by 
selection (nj = n, nj = 4n). The curve for the selection algorithm for nj = n is 
the same as the curve for the algorithm using bit arrays. For greater values of nj, 
the algorithm by selection is worse. The performance of the algorithm by selection 
depends on the number of filters and their capabilities. 

5.4 Non-Equi-Semijoin Algorithms 

The non-equi-semijoin represents the case when the comparison operator rep- 
resents the forms <, 5, 2, >. In this section we propose a simple algorithm to 
perform non-equi-semijoin in a multiprocessor database machine. The method is 
based upon the following observation: the non-equi-semijoin consists of selecting 
those tuples r of the target relation whose semijoin attributes satisfy “r.A op X,” 
where X is either the minimum attribute value in the source relation, if op is > 
or 2, or the maximum value, if op is < or 5. The search for a maximum or 
minimum value in a data set is an easily performed function supported by the 
filtering processors. Each read attribute value is compared by the filter to a 
maximum or minimum current value in its local memory, and replaces the 
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current value if the comparison holds. Then, d filters get partial results which 
will be integrated into one result by a processor, which can be the filter controller. 
The non-equi-semijoin is finally performed by restricting the tuples in the target 
through d filters which require tuples to satisfy A op X. Furthermore, this 
algorithm has the advantage of not using the cache. 

The CPU time of this algorithm is negligible, since it only consists of two 
function calls. The I/O time is the reading time of the source relation (of size n) 
necessary to calculate the minimum or maximum in parallel by d filters, plus the 
reading time of the target relation (of size m) to apply the selection. The result 
relation is written directly in cache, thus the write time is included in the 
selection time. The execution time of this algorithm is 

TIME(ISJ) = ((n/d) + (m/d)).Tdc. 

It is assumed that the cache manager always keeps track of available pages 
during the operation, in order not to slow down the filters by waiting. 

6. JOIN USING SEMIJOIN 

The previously proposed semijoin algorithms are computed in a time linearly 
proportional to the size of the operands. The main advantage of the semijoin 
operator is to reduce the operand relation to just those tuples that participate in 
the join. Therefore, it may sometimes be advantageous to replace the join of two 
relations by the join of two semijoins. In order to compare the two alternatives 
(join or semijoin), we have chosen the multiprocessor nested loop join algorithm 
presented in Section 4.1, since it is simple and generally satisfactory, with a high 
degree of real parallelism. 

The nested loop join of the initial relations is denoted by NL and is then 
compared to the nested loop of the semijoins of each relation by the other, 
denoted NLSJ. The semijoin algorithm using bit arrays is chosen for comparisons, 
since it is more general than the semijoin algorithm using selection, and more 
frequently used than the non-equi-semijoin algorithm. The condition that has to 
be satisfied in order to apply this method is that the entire list of distinct join 
attribute values fit into local memory. When this condition cannot be satisfied, 
the semijoin is solved like a join. Therefore, it is assumed that the condition is 
true in the remainder of this section. 

Comparisons of the two methods, NL and NLSJ, are illustrated in Figures 9, 
10, 11, and 12. The basic configuration is the same as in Section 4.4. Figure 9 
presents the performance of the two methods according to the ratio JS’ = size 
(R join S)/(m’ en’), where m’ and n’ are the sizes of the semijoins of R by S and 
of S by R, respectively. For each method, three join selectivity factors are 
considered (JS = 0.16, 0.016, 0.5), while the relation sizes are kept large (m = n 
= 1024 pages). The parameter JS’ significantly influences the algorithm using 
semijoins. As JS’ approaches 0, the size of the join result approaches the size of 
the biggest semijoin result; as JS’ approaches 1, the size of the join result 
approaches the size of the Cartesian product of the semijoin results. In the latter 
case, the semijoin reduces the size of the initial relations significantly. The 
method using semijoin is generally better than the nested loop method, and 
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Fig. 9. Comparisons of the time of the nested loop join method 
(NL) and the join method using semijoin (NLSJ) versus JS’. JS’ = 
size (R join S)/[size (R semijoin S) . size (S semijoin R)]. 
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091 095 1 

Fig. 10. Limit of the methods for varying JS and JS’. 
(p = 16, b = 4, m = n = 1024) 
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Fig. 11. Comparisons of the algorithms’ times versus relation sizes. 

becomes quite superior when the join selectivity factor decreases. Figure 10 
illustrates the domains of the two methods for various JS and JS’ and shows 
that the NL method is only competitive when the ratio (JS/JS’) approaches 1. 
In that case, performing semijoin does not reduce the size of the operand relations. 

Figure 11 illustrates the performance of the two methods according to the size 
of the relations (assumed to be equal) for a join selectivity factor of 0.016 and 
the ratio JS’ equal to 0.4. The curves show the obvious superiority of the method 
using semijoins. This is because semijoin time is negligible compared to join time, 
and the operand relations to be joined are smaller with the semijoin method than 
with the join method. 

The performance of the algorithms with an increasing number of processors, 
as depicted in Figure 12, still indicates that the performance of the semijoin 
method is preferable for a typical join selectivity factor of 0.016. The difference 
between the two methods may be reduced somewhat by increasing that factor. 

The comparisons show that if a semijoin of the operand relations precedes the 
application of the nested loop join algorithm, the total time of the join is generally 
decreased, which confirms the value of the semijoin operator. Similar comparisons 
were made, based on the sort-merge-join algorithm and the hashing join algo- 
rithm, and similar results were found. 
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Fig. 12. Comparisons of the algorithms’ times versus the number < 
processors. 

7. CONCLUSION 

In this paper we have presented and analyzed several algorithms for computing 
joins and semijoins in a multiprocessor database machine. First, we described 
the architectural components useful for computing joins in the SABRE database 
machine, and the time parameters, including I/O, CPU, and communication 
times, were also described. We then presented and compared three join algorithms 
according to their execution times. The nested loop join algorithm turns out to 
be the simplest, and its execution time was found to be inversely proportional to 
the number of processors. It works best when the number of processors is very 
high. Furthermore, since each tuple is compared to every other tuple, the nested 
loop join algorithm easily supports non-equijoin. The sort-merge-join algorithm 
is more complex and performs better as the operand relations become large. For 
a certain configuration, the addition of new processors causes very little improve- 
ment in performance. But the sort-merge-join algorithm has the merit of utilizing 
another useful operator (sorting), and yields a result relation which is sorted on 
the join attributes. The hashing join algorithm is better when the number of 
matching tuples in the larger relation is small. In that case, using bit arrays 
results in avoiding much useless access to the hashed file. It is shown that, for a 

ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984. 



154 l P. Valduriez and G. Gardarin 

given configuration, each of the algorithms can excel, according to the character- 
istics of the operand and result relations. Since the join operation is very 
important in relational systems, a well-designed database machine would imple- 
ment various algorithms and, for each join, choose the best one by computing 
their execution times. 

Focusing on the interprocessor transfers in a multiprocessor database machine 
and considering that semijoin reduces the transmission times, we have presented 
parallel algorithms for semijoin operations. 

Two multiprocessor equi-semijoin algorithms were analyzed. The algorithm 
using bit arrays gives good results; its execution time is proportional to na/p + 
m/p + r/p, where m is the number of pages of the target relation, na the number 
of pages containing the projected source semijoin attributes, r the number of 
pages of the result relation, and p the number of processors. But the main 
assumption in the application of the algorithm using bit arrays is that the list of 
distinct semijoin attribute values should fit into the processor’s local memory. A 
second equi-semijoin algorithm using selection was proposed. This algorithm 
depens upon the parallel filtering power offered by the selection processors 
assigned to the disks. It is superior to the first algorithm when the semijoin can 
be computed in a single pass; that is, when the number of distinct semijoin 
attribute values is less than the number of admitted predicates in a filter. 
Otherwise, the algorithm using bit arrays is better. 

A non-equi-semijoin algorithm was also proposed. It uses the maximum and 
minimum functions provided by the filter processors and does not need any room 
in the cache during execution, except for writing the final result. This algorithm 
has an execution time proportional to m/d + n/d, where m and n are the size of 
the operand relations and d the number of filters associated with the operation. 

Comparisons were then performed between the two join strategies. The method 
of joining two operand relations and the method of joining the result relations of 
semijoins were comparerd using the nested loop join algorithm. Finally, it was 
shown that the semijoin method is generally better, which indicates the value of 
implementing this operator in a database machine. 

The results can be extended in several directions. First, the algorithms can be 
optimized. For example, the postoptimal stage of the multiprocessor b-way merge, 
which degrades the degree of parallelism, can be improved by using another, 
more complex, method. Second, other methods, based on index or pre-evaluated 
joins, can be found. These indices would be organized in such a fashion as to 
facilitate parallel execution. The performances of the methods would essentially 
depend on the placement strategies of relations on disk units. An original 
multiattribute clustering technique [21] will be used in SABRE, and will improve 
join executions. 

APPENDIX A 

Analysis of the Nested Loop Algorithm 

The algorithm can be divided into several steps, such that each step corresponds 
to one pass of reading the internal relation. First, let us determine the execution 
time of one step. 
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During one step, each processor starts reading (b - 1) pages of R. Thus, 
p(b - 1) pages of R are read in parallel. The time necessary for reading these 
pages is 

tl = (b - l)CR. 

Then, each page of S is broadcast and joined with (b - 1) pages of R by each 
processor. The time to read a page of S is 

t2 = CR. 

The time to join (b - 1) unsorted pages of R with one unsorted page of S is 

t3 = (b - 1)CJO. 

This join generates a result of size (b - l)JS pages. The resulting tuples must be 
moved to an output buffer; that cost in time is 

t4 = (b - l)JS.t.I. 

The output buffer, when filled, must be written in cache memory (or on disks). 
This write requires an average time of 

t5 = (b - l)JS.CW. 

Finally, the total time for one step of the algorithm is 

Tl = t1 + n(t2 + t3 + t4 + t5), 

which turns out to be 

Tl = (b - 1)CR + n(CR + (b - 1)CJO + (b - 1)JS.t.I + (b - l)JS.CW) 

or, equivalently, 

‘I’1 = (b - l)CR + n(CR + (b - l)(CJO + JS(t.l+ CW))). 

At each step, p(b - 1) pages of R are read. Therefore, the number of steps is 

iz = m/(p(b - 1)). 

Consequently, the total execution time of the algorithm is 

TIME(NL) = k. Tl, 

which turns out to be 

TIME(NL) = m-CR/p + m.n(CR/(p(b - 1)) + (CJO + JS(t.I+ CW))/p). 

APPENDIX B 

Analysis of the Sort-Merge-Join Algorithm 

First, let us evaluate the execution time to sort a relation of n pages. As they are 
read during the first pass, pages are internally sorted. Each processor internally 
sorts n/p pages. Thus, the time to internally sort n pages is approximately. 

tl = n.Cs/p. 
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During all the passes preceding the optimal stage, each processor is fully utilized. 
At each pass of the relation a processor performs n/(p*b) merge operations of b 
pages. The cost of merging b sorted pages is CMb. Thus, the additional cost of 
each pass before the optimal stage is 

t2 = n.CMb/(peb). 

At the optimal stage corresponding to the pass K, each processor produces a 
sorted run of b**K pages. Since each of the p processors has merged exactly nfp 
pages, the following equation is satisfied: 

b**K = njp, 

and so we have 

K = lo&/p). 

Finally, the time necessary to reach the optimal stage is 

Tl = tl + K.t2, 

which turns out to be 

2’1 = n-G/p + (N.CMb.log&/p))/(b.p). 

Let us now derive the time necessary after the optimal stage. The optimal 
stage generates p runs of n/p pages. The number of passes to merge p runs in 
log@. At each pass of the postoptimal stage, the number of processors needed is 
divided by b, while the work of each is multiplied by b. At the first postoptimal 
pass, p/b processors perform n/p merge operations of b pages at a cost in time of 

ml = CMb.n/p. 

More generally, at the ith postoptimal pass, p/b**i processors perform 
b**(i - 1). n/p merge operations at a cost in time of 

mi = CMb.b**(i - 1)-n/p. 

Finally, the total cost of the postoptimal stage is 

T2 = ml + m2 + . . . + mi + . . . + m logbp, 

which turns out to be 

T2 = CMb. (n/p). (1 + b + b**2 + a . . + b**((logg)- 1)). 

Then, applying the well-known formula: 

1 + b + b**2 + . . . + b**(k - 1) = (1 - b**k)/(l - b), 

we obtain 

T2 = CMb.(n/p).(l - b**logbp)/(l - b). 

The execution time required to sort a relation of n pages is then: 

SORT(n) = Tl + T2, 
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that is, 

SORT(n) = n/p[Cs + CMblog,(n/p) + CMb(1 - b**log&/(b - l)]. 

The execution cost of the algorithm is the cost of sorting the relation R, plus 
the cost of sorting the relation S, plus the cost of joining the sorted relations by 
a merge. The uniprocessor merge-type operation consists in reading the sorted 
relations, joining them, and writing the result relation. The cost of merging m 
and n pages is then 

MERGE(m, n) = (m + n)CR + max(m, n).CJl + m.n.JS.CW. 

Finally, the execution time of the sort-merge-join algorithm is 

TIME(SM) = SORT(n) + SORT(m) + MERGE(m, n), 

which turns out to be 

TIME(SM) = n/p[Cs + CMb.log&/p)/b -t CMb. (1 - b**log&/(l - b)] 

+ m/p[Cs + CMb.logb(m/p)/b + CMb 
. (1 - b**logbp)/(l - b)] 

+ (m + n)CR + max(m, n).CJl + m.n.JS.CW. 

APPENDIX C 

Analysis of the Hashing Join Algorithm 

The execution time of the algorithm comprises time Tl for hashing the smaller 
relation by the cache processor, time T2 for distributing the larger relation among 
p processors, time 7’3 for accessing the hashed file, and, finally, time T4 for 
writing the result. The time for broadcasting the Boolean arrays is negligible 
and, thus, is ignored. We remind the reader that c page frames are available in 
the cache for the join operation. Thus the creation of the hashed file consists of 
creating m buckets if c > m, or c buckets, otherwise. In the first case, the hashed 
file could be maintained in cache memory during the entire execution of the join 
operation. In the latter case, the pages of the same bucket would be linked and 
written on disk, and retrieved using a table of physical addresses. The time for 
reading a page for R, taking into account the ratio F, is 

tl = (1 - F)Tdc. 

The time for hashing a page oft tuples is 

t2 = t(0 + I). 

The time for writing the hashed file is the time for writing (m - c) pages, since 
c pages are reserved in cache memory during the join execution. Furthermore, 
page frames may be available in the cache with the probability F’. Thus the time 
for writing (m - c) pages from cache to disk is 

t3 = (m - c)(l - F’)Tdc. 
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Then, the execution time for hashing a relation for m pages is 

Tl = m(t1 + t2) + t3, 

which turns out to be 

Tl = m[(l - F)Tdc + t(0 + 1)] + (m - c)(l - F’)Z’dc. 

The execution time for the second stage is the time for reading the relation S 
by p processors in parallel, the time for accessing the hashed file, and the time 
for writing the result relation. Each processor reads n/p pages of the relation S, 
and, for each of the t tuples of a page, accesses the Boolean array. This leads to 
a time of 

T2 = (CR + t . O)n/p. 

An access to the hashed file is needed for each matching tuple of S. The 
number of matching tuples is defined by the semijoin selectivity factor SS, and 
each bucket of the hashed file contains (m/c) pages. Thus, for each page of S, 
the number of pages read from the hashed file is t. SS . (m/c) . CR, and this 
occurs (n/p) times for the entire relation S. Therefore, we obtain 

T3 = (n/p)(m/c)CR . t . SS. 

The time for writing the result relation of size m . n . JS in parallel by p 
processors is 

T4 = m . n . JS . CW/p. 

Finally, the execution time of the multiprocessor hashing join algorithm (H) is 

TIME(H) = Tl + T2 + T3 + T4, 

which turns out to be 

TIME(H) = [(l - F)Tdc + t(0 + I)] + (m - C)(l - F’)Tdc 

+(n/p)[CR+t.O+t.SS.(m/c)#CR+m.JS.CW. 

APPENDIX D 

Analysis of the Semijoin Algorithm Using Bit Arrays 

The total time of the semijoin algorithm using bit arrays is the sum of the X/O 
time and the CPU time, which can be represented as 

TIME (SJH) = I/O (SJH) + CPU (SJH). 

(1) I/O time. The I/O time consists of the interprocessor page move time, 
incurred by reading the operand relation, performing the union and merge 
operations, and finally writing the result relation. First, relation S is projected 
over the semijoin attributes to relation S ‘. This operation requires reading S 
entirely from disk to cache by d filters. The time required for this operation is t 1 
= (n/d) . Tdc. The relation S ’ has nu pages and is read in parallel by p processors 
for a time t2 = (nu/p) . CR. 
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We suppose that the q bit arrays in a processor’s memory are contained in a 
page, thus the union operation needs p interprocessor moves plus one more to 
broadcast the result. This operation takes time t3 = (p + 1). Tcp. The merging 
of p attribute lists is done in logbp passes by a b-way merge and, assuming an 
average list size of b/2 pages, the merge I/O time is t4 = logbp . (b/2). Tcp. 

The time for the second stage of the algorithm consists of reading relation R, 
of size m, which is t5 = (m/p) . CR, and writing the result relation T, whose size 
depends on the semijoin selectivity factor SR, for a time t6 = (m/p) . SR . CW. 

Finally, the I/O time is 

I/O (SJH) = tl + t2 + t3 + t4 + t5 + t6, 

which may be written as 

I/WSJW = (n/d) - Tdc + (m/p) - CR + [p + 1 + (logbp) . (b/2)] . Tcp 

+ (m/p) - (CR + SR - CW). 1 
(2) CPU time. The CPU time of the semijoin algorithm using bit arrays is now 

calculated. During the first stage, for each read page of the relation S’ (containing 
t/C!t attribute values), a hashing function is applied to each value, which is then 
inserted into list W. We define the time of inserting an element in W by Iw. 
Then, the CPU time for this stage is 

cl = (flu/p) * (t/Ct) * (0 + Zw). 

The merge time of the p lists is denoted by Cm. The union of the p arrays needs 
p comparisons (i.e., p . 0 time units). This requires a time 

c2=Cm+p.O. 

During the second stage, for each read page of R, a hashing function is applied 
to the t attribute values. Furthermore, for the t . SR tuples held in a page, W is 
accessed in order to confirm the absence of collision. The list W contains nj 
attribute values in sorted order. Thus, binary search [22, p. 4061 can be applied 
to W, with a time of (logZnj) . 0 per tuple. The move time of the tuples in the 
result page is SR - I for each read page of R. The time of the second page is 
therefore, 

c3 = (m/p) - [0 . (t + t . SR - log2nj) + SR . I]. 

Thus, the total CPU of this algorithm is cl + c2 + c3, that is, 

CPU(SJH) = (na/p) . (t/Ct) . (0 + Iw) + Cm + p - 0 

+ (m/p) - [0 . (t + t - SR + logZnj) + SR - I]. 

APPENDIX E 

Analysis of the Semijoin Algorithm by Selection , 
The time of this algorithm also consists of the I/O and the CPU times. 

(1) I/O time. The algorithm proceeds in two stages. The first stage, similar to 
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the previous algorithm, projects relation S over the semijoin attributes into 
relation S ‘, which demands a time 

tl = (n/d) - Tdc, 

and reads the relation S’ in parallel by p processors, requiring a time 

t2 = (m/p) . CR. 

The merge operation requires the same time as the merge in the previous 
algorithm, that is, 

t3 = Tcp * logbp * (b/2). 

The task of the second stage is to perform selection in parallel by d filters on 
relation R (of size m). One selection on the entire relation requires a time 
(m/d) . Tdc, and may have to be repeated nj/Nc times if nj is greater than NC. It 
should be noted that the selection time includes the write time of the result 
relation in cache. Thus, the time for this second stage is 

t4 = (nj/Nc) s (m/d) - Tdc. 

Finally, the I/O time of the algorithm is 

I/O(SJS) = tl + t2 + t3 + t4, 
which turns out to be 

I/O(SJS) = (n/cl) - Tdc + (w/p) . CR + logbp . (b/2) . Z’cp 

+ (nj/Nc) . (m/d) . Tdc. 

(2) CPU time. The CPU time is incurred by the insertions in the list W 
containing the semijoin source attribute values. This time is the same as in the 
previous algorithm, namely (nu/p) . (t/Ct) - Iw. The merge time of p lists is 
denoted Cm. 

The CPU time for the second stage is due to the initialization of the selection 
operations. The time of constructing selection predicates with nj attributes in 
list W is nj . 0. The CPU time of the algorithm is then, 

CPU(SJS) = (w/p) . (t/Ct) - Iw + Cm + rzj - 0. 
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