
808 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

Scaling Access to Heterogeneous
Data Sources with DISCO

Anthony Tomasic, Louiqa Raschid, Member, IEEE, and Patrick Valduriez

Abstract—Accessing many data sources aggravates problems for users of heterogeneous distributed databases. Database
administrators must deal with fragile mediators, that is, mediators with schemas and views that must be significantly changed to
incorporate a new data source. When implementing translators of queries from mediators to data sources, database implementors
must deal with data sources that do not support all the functionality required by mediators. Application programmers must deal
with graceless failures for unavailable data sources. Queries simply return failure and no further information when data
sources are unavailable for query processing. The Distributed Information Search COmponent (DISCO) addresses these problems.
Data modeling techniques manage the connections to data sources, and sources can be added transparently to the users and
applications. The interface between mediators and data sources flexibly handles different query languages and different data
source functionality. Query rewriting and optimization techniques rewrite queries so they are efficiently evaluated by sources.
Query processing and evaluation semantics are developed to process queries over unavailable data sources. In this article, we
describe 1) the distributed mediator architecture of DISCO; 2) the data model and its modeling of data source connections; 3) the
interface to underlying data sources and the query rewriting process; and 4) query processing semantics. We describe several
advantages of our system.

Index Terms—Heterogeneous database, query reformulation, source capability, heterogeneous cost model, partial answer,
partial evaluation.

——————————���F���——————————

1 INTRODUCTION

ATABASE systems have several types of users. End us-
ers focus on data. Application programmers concen-

trate on the presentation of data. Database administrators
(DBAs) provide definitions of data. Database implementors
(DBIs) concentrate on performance. Distributed databases,
i.e., systems that access multiple databases simultane-
ously, also have the same types of users. Distributed data-
bases may be either homogeneous or heterogeneous. Ho-
mogeneous distributed databases require that every un-
derlying database conforms to the same data model and
query language. Heterogeneous distributed databases relax
this restriction and permit each underlying database to
have different data models, query languages, and thus, dif-
ferent functionality. Since some underlying databases may
be very simple, i.e., a file, we use the term data source in-
stead of the term database.

1.1 Architecture
As shown in Fig. 1, current distributed heterogeneous
database systems [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11] adopt a distributed architecture that consists of
several specialized components. End users interact with

applications (A) written by application programmers. Ap-
plications access underlying data sources via mediators (M)
[11]. Mediators export a mediator schema that is an in-
tegrated representation of data sources. Mediators process
queries over the integrated representation. To construct this
representation, DBAs provide information to mediators to
accomplish query processing. This information consists of
the schemas of the data sources, the mediator schema,
and views which transform queries between data source
schema and the mediator schema. To deal with the different
query languages of each data source, wrappers (W) trans-
form subqueries sent to data sources and transform an-
swers returned from data sources. Wrappers map from a
subset of the functionality of a general query language,
used by mediators, to the particular query language of the
source. The wrapper implementor, a new specialty of DBI,
writes wrappers for each type of data source.

This architecture has several advantages. First, the spe-
cialized components of the architecture allow the various
concerns of different users to be handled independently.
Second, mediators typically specialize in a related set of
data sources with “similar” data, and thus export schemas
and semantics related to a particular domain. The speciali-
zation of the components of this architecture leads to a
flexible and extensible system.

1.2 Research Issues for Mediators
To create a specific mediator, a DBA must define a mediator
schema for the mediator; a collection of data sources; local
schema for the data sources; and a mapping between the
mediator schema and the local schemas. Generally this
mapping is done via database views. A view is a named

1041-4347/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� A. Tomasic and P. Valduriez are with Institut National de Recherche
en Informatique et en Automatique (INRIA), 78153 Le Chesnay, France.
E-mail: anthony.tomasic@inria.fr.

•� L. Raschid is with the Maryland Business School, University of Maryland,
College Park, MD 20742. E-mail: louiqa@umiacs.umd.edu.

This paper was named the Best Paper at ICDCS ’95, the 1995 International
Conference on Distributed Computing Systems.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 106777.

D



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 809

query. The domain of a view is the data source schemas and
the range of a view is the mediator schema. (See Section 2
for competing approaches for mapping from the mediator
to local schemas.) The DBA, via view definitions, must re-
solve conflicts among the different data models, different
schemas, and different semantics of data sources to con-
struct an uniform semantics for the mediator schema. Thus,
the view definitions and various schema are tightly inte-
grated. This tight integration creates a problem for the
DBA, when a new data source is to be added. For each new
local schema, view definitions must be changed, and per-
haps the mediator schema itself must be modified. We call
this the fragile mediator problem.

For query execution, an application sends a query to a
mediator and waits for an answer. The mediator accepts the
query and transforms it into subqueries and a composition
query. Each subquery corresponds to a data source and it
uses only the functionality of the data source. The compo-
sition query performs all the remaining work required to
compute the answer to the query. The mediator then coor-
dinates the execution of the query. It sends each subquery
to the wrapper that controls a data source. The wrapper
translates the subquery into a corresponding query in the
local query language, and then sends this translated query
to the data source. The data source computes an answer
and transmits the answer to the wrapper, which translates
the answer to the format required by the mediator. The me-
diator coordinates the arrival of the answers with the com-
position query. The composition query combines the an-
swers into the final answer. To support query execution, the
mediator must cope with the different functionality of each
wrapper (corresponding to each data source). For instance,
one data source might support only projection operations
and another data source might support only selection op-
erations. This problem is call the source capability problem.

After the mediators have been defined by the DBAs, the
appropriate wrappers written by DBIs, and the applications

programs have been developed, the system is deployed to
end users. End users interact with applications that access
the underlying data sources through the mediators. If an
application issues a query to an underlying data source that
is unavailable, in the absence of replication, generally the
mediator fails to process the query, and the application in-
forms the user that nothing can be done until the data
source is again available. We call this problem the graceless
failure for unavailable data sources problem.

1.3 The DISCO Architecture
As heterogeneous distributed database systems scale up to
incorporate many data sources into the system, the three
problems defined previously are aggravated. For DBAs,
scaling up data sources makes a heterogeneous system hard
to maintain due to the fragile mediator problem. To add a
data source to the system, the DBA must change schemas
and add new definitions. For DBIs, scaling up makes a
system hard to program and tune due to the source capa-
bility problem. To add a data source, implementors must
write new code and add new cost information. For end us-
ers and application programmers, scaling up makes a sys-
tem harder to use due to the graceless failure for unavail-
able data sources problem.

These three problems are mitigated in some respects by
the specialized components of the mediator architecture
that was presented. The architecture permits DBAs to de-
velop mediators independently and thus limits the impact
of the addition of a data source on mediators. DBIs can de-
velop wrappers independently and thus the introduction of
a new data source impacts only some mediators that handle
these data sources. And since applications issue queries to
mediators, graceless failures only occur in mediators that
access these unavailable data sources.

The design of the Distributed Information Search COm-
ponent (DISCO) provides novel features, beyond those dis-
cussed, for all users to deal with the problems of scaling up
the number of data sources. DISCO aids the DBA in adding
data sources if the new data sources are similar (in the
sense of similar types) to existing data sources. DISCO also
supports simple type transformations when there is a mis-
match between types. Solutions to the fragile mediator prob-
lem when there are schematic conflicts among the data
sources, or semantic conflicts in the contents of the data
sources, is a more complex issue. To cope with the source
capability problem, DISCO aids the DBI by providing a
wrapper language and a wrapper interface to ease the con-
struction of wrappers. The DBI specifies the functionality of
the wrapper for each data source, and the mediator guar-
antees that any subquery issued to this data source will be
specified based on this functionality. Thus, the wrapper
need only implement the functionality of the data source.
For the application programmer and end user, DISCO pro-
vides a new semantics for query processing to provide
graceful instead of ungraceful failures for unavailable data
sources. If a data source is unavailable during query
evaluation, a partially evaluated query is returned. This
partially evaluated query may be used, in some circum-
stances, by the application, to provide a partial answer to
the user query.

Fig. 1. DISCO architecture. Boxes represent stateless components
and disks represent components with state. The letter A stands
for application; M, mediator; W, wrapper; and D, data source. Lines
represent exchanges of queries and answers. Solid boxes mark
the application-mediator protocol, and the solid circles mark the
mediator-wrapper protocol.



810 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

We use a (simple) example to briefly describe each novel
feature of DISCO, namely, the data model, the wrapper inter-
face description of the data sources, and the semantics of
query processing with unavailable sources.

1.4 Mediator Data Model
Suppose a mediator defines the type Person in the media-
tor schema as the union of person types in the underlying
data sources. In many current heterogeneous distributed
databases, this definition is accomplished by introducing a
view for each underlying data source. When a new data
source is added, a new view must be added. In DISCO, this
definition is accomplished by defining an extent person,
for the type Person, for all data sources that have persons.
An extent represents a collection of objects (cf. Section 3).

Consider two data sources handled by wrappers w0 and
w1. Data source w0 contains a person relation1 with a per-
son Mary whose salary is 200, and w1 contains a person
relation with a person Sam whose salary is 50. The DBA
models w0 and w1 as extents person0 and person1, of
type Person. The DBA then defines the extent person as
the union of all extents associated with type Person, in this
case person0 and person1.

To access the objects, the DISCO query language is used.
For example, the query

select x.name
from x in person
where x.salary > 10

constructs a bag of the names of the persons from person,
i.e., the union of person0 and person1, who have a salary
greater than 10. The answer to this query is a bag of strings
Bag("Mary","Sam").

With this organization, the addition of a new data source
with persons simply requires modifying the extent person
to include this new source, as long as the type of the new
data source is the same as the type Person. The same
query would then access three data sources. The query it-
self does not change, nor does the definition of the Person
type. In addition, DISCO provides support for incorporating
new data sources with similar structure with respect to ex-
isting sources. This property simplifies the maintenance of
the mediator and thus addresses, in part, the fragile me-
diator problem.

1.5 Mediator Interface to Wrappers
Each heterogeneous database system specifies the interface
between the mediators and wrappers using a different level
of functionality. Some systems define the interface to in-
clude complex query processing capabilities. Other systems
define the interface to be a low level object interface and
thus wrappers support only simple access to objects. DISCO

provides a flexible wrapper interface. Mediators interface
to wrappers at the level of an abstract algebraic machine
of logical operators. All mediators and wrappers share the
same abstract algebraic machine. When the DBI imple-
ments a new wrapper, she chooses a subset of the algebra

1. In this paper, we use an example of relational data sources. However,
the DISCO model can be applied to a variety of information servers, such as
information retrieval systems, file systems, HTTP sources, etc.

to support [12]. The DBI implements the subset, and
also implements a register call in the wrapper. This call
returns, among other things, a specification of the capabili-
ties of the wrapper, i.e., the subset of the algebra supported
by the wrapper.

The mediator interacts with the wrapper in two phases.
In the register phase, the wrapper communicates to the
mediator its local schema, its specification, and a (optional)
description of the cost of operations in its algebra [13].
During query processing, a mediator transforms the query
on the mediator schema into subqueries on the local
schema. Each subquery is translated into a logical expres-
sion for the wrapper. The mediator uses the grammar re-
turned by the wrapper interface to check that the logical
expression only uses the subset implemented by the wrap-
per. If the check succeeds, the logical expression is used. If
the check fails, the logical expression submitted to the
wrapper is simplified (by moving processing to the media-
tor) until a simplified logical expression is found that can be
executed by the wrapper.

Suppose that a mediator generates a logical expression
to project the name attribute from person0.

project([name], scan(person0))

The mediator will pass this logical expression to a wrapper,
thereby, pushing the scan and projection operations onto
the wrapper, only if the wrapper interface supports the
project and scan logical operators, and only if the
wrapper supports composition of these logical operators. If
the wrapper does not support project, the projection will
be performed in the mediator and only the scan logical
expression will be passed to the wrapper.

1.6 Mediator Query Processing
DISCO supports a new query processing semantics to deal
with the graceless failure for unavailable data sources
problem. DISCO uses partial evaluation semantics to return a
partial answer to queries, by processing as much of the
query as possible, from the information that is available
during query processing [14].

Consider again the query in Section 1.4. Suppose that the
w0 data source does not respond. Then, the answer to the
query would be the following query and not, as in current
heterogeneous database systems, simply an error indicating
failure. The query returned as an answer represents a par-
tial answer:

union(select y.name
from y in person0
where y.salary > 10,
Bag(“Sam”))

(In DISCO, the union of two bags is a bag). Thus, the query
in the partial answer is contained in the first argument of
the union and the data is contained in the second argu-
ment. When w0 becomes available, this partial answer
could be resubmitted as a new query (since it is itself a
query) and the answer Bag("Mary", "Sam") would be
returned, assuming that the underlying data sources have
not changed.



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 811

This paper is organized as follows. Section 2 describes
related work. Section 3 presents the data model through
a description of the extensions to an existing standard.
Section 4 describes mediator query processing and the
wrapper interface. Section 5 presents a new semantics of
query processing with unavailable sources. We conclude
with a summary, a description of the internal architecture
of the current mediator prototype, and a discussion of fu-
ture plans. Earlier results of this research have been pub-
lished in [15], [16].

2 RELATED WORK

We first present a comparison of the features of the DISCO

data model with other approaches developed for dealing
with heterogeneous databases. Next, we make a compari-
son of query processing, optimization, and plan generation,
in heterogeneous environments, where wrappers may have
limited capability, and we examine research on cost-based
optimization. Finally, we review partial evaluation from the
programming language literature.

2.1 Data Model
Pegasus [17], UniSQL/M [18], [19], SIMS [20], IRO-DB [3],
and other projects, support mediator capabilities through a
unified global schema [21], which integrates each remote
database and resolves conflicts among these remote data-
bases. Although these projects made substantial contribu-
tions in resolving conflicts among different schemas and
data models, the global schema approach suffers from the
fragile mediator problem; the unified global schema must
be substantially modified as new sources are integrated.

For example, UniSQL/M [18], [19] is a commercial mul-
tidatabase product; virtual classes are created in the unified
schema to resolve and “homogenize” heterogeneous enti-
ties from relational and object-oriented schema. Instances of
the local schema are imported to populate the virtual
classes of the integrated schema, and this involves creating
new instances. The first step in integration is defining the
attributes (methods) of a virtual class, and the second step
is a set of queries to populate this class. They provide a
vertical join operator, similar to a tuple constructor, and a
horizontal join, which is equivalent to performing a union
of tuples. The major focus of their research is conflicts due
to generalization, for e.g., an entity in one schema can be
included, i.e., become a subclass of an entity in the global
schema, or a class and its subclasses may be included by an
entity in the global schema. Attribute inclusion conflicts
between two entities can be solved by creating a subclass
relationship among the entities. Other problems that are
studied are aggregation and composition conflicts.

Alternately, the capability of a mediator to resolve con-
flicts is supported by the use of higher-order query lan-
guages or metamodels [22], [23], [24], [25], [26], [27]. Me-
diators are also implemented through the use of mapping
knowledge bases that capture the knowledge required to
resolve conflicts among the local schema, and mapping or
transformation algorithms that support query mediation
and interoperation among relational and object databases
[28], [29], [30], [31], [32]. Here, too, the emphasis is on

resolving conflicts among schema and data models, to sup-
port interoperability of the queries. All of these approaches
face the fragile mediator problem.

In DISCO, we provide underlying support for various solu-
tions to the fragile mediator problem with a two-pronged
approach. First, we adopt the standard ODMG object data
model [33] to represent both mediator and data source
schemas. We extend this model by introducing mediator
and data source types. The extent of the mediator type, cor-
responding to objects of that type, is automatically defined
over the extents of the data sources. We support incorpo-
rating new data sources, with no type mismatch, or simple
type mismatch, by modifying the extent of the mediator
type, and by mapping types to resolve simple type con-
flicts. In related research [17], [3], [24], [19], [18], [25], the
mismatch of the data types, formats, values, etc., with re-
spect to data source types and mediator types was resolved
by obtaining a single unified type. In DISCO, our first objec-
tive is to support scale up by easing the introduction of new
data sources. Each addition of a type and resolution of a
type conflict, between data source and mediator, is inde-
pendent of any other type conflict, and is handled by the
data model.

The second aspect of dealing with the fragile mediator
problem demands dealing with semantic conflicts of values
(contents) in difference sources. Users may need to define
reconciliation functions [17], which determine how data val-
ues from different sources are combined; they may need to
deal with missing data [34]; and they may need to utilize
techniques to resolve object identity across multiple sources
[3]. In DISCO, we do not explicitly support such functional-
ity in the data model. However, we do recognize that there
are many advantages, in particular, from a performance
viewpoint, if such features are directly incorporated into
the data model, by a set of built-in functions, as in [17], [3].
If these functions are included in the data model, then,
during query processing, the mediator may use special
heuristics to optimize the processing of these functions.

The focus of research in the TSIMMIS project [4], [35] is
the integration of structured and unstructured (schema-
less) data sources, techniques for the rapid prototyping of
wrappers and techniques for implementing mediators. The
common model is an object-based information exchange
model (OEM), which has a very simple specification.
TSIMMIS has components that extract properties from un-
structured objects, transform information into a common
model, combine information from several sources, allow
browsing of information, and manage constraints across
heterogeneous sites. They address the issue of mismatch in
the querying capability of different data sources, and pro-
pose techniques for query reformulation that resolve this
mismatch. These techniques are not incorporated into the
data model.

The Garlic system [36], [37], [38], research described in
[39], [40], [30] and the Information Manifold project [41],
[42], [43], all assume a mediator environment based on a
common data model. In the Information Manifold project
[41], [42], [43], and in [30], the model is an extension to
Datalog, and in [39], [40], the model is an extension to
ODMG. Information Manifold uses a technique based on



812 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

view definitions to map from the local schemas to the
mediator schema. At the same time, views also express
the limited capability of the remote sources, i.e., only the
views may be computed on the remote sources. For query
execution, mediator queries are rewritten using views. This
introduces the well-known containment problem and
various heuristics are proposed for efficient algorithms
[40], [42], [30].

2.2 Source Capabilities
There are several approaches to handling the source capa-
bility problem. One approach is based on standardization¦
all underlying data sources are required either to have the
same functionality or conform to the same communication
standard. Another approach uses abstract data types. The
third approach uses view definitions. DISCO permits vary-
ing levels of functionality between data sources and the
mediator. Each wrapper implements a subset of the func-
tionality of a logical algebraic machine.

In the standardization case (Pegasus [17], UniSQL/M
[19], [18], SIMS [20], IRO-DB [3]), and research reported in
[31], [32], some syntactic translation is required if all wrap-
pers support the same functionality (with different syntax).
However, since the same functionality is available in all
data sources, the wrappers are not very complicated and
the required syntactic translation is straightforward. The
standardization approach considerably simplifies the con-
struction of mediators because, in general, every subquery
can be executed at a data source. However, this solution
excludes data sources with limited capability.

The Open Database Connectivity (ODBC) 3.0 standard
[44] from Microsoft uses a variation on the standardization
approach by using various conformance levels (similar to
the conformance levels of SQL standards). The lowest level
conformance standard defines the variation of SQL which
must be accepted by the wrapper. Higher conformance lev-
els add additional features. Thus, at a minimum, the wrap-
per and the data source must support a variation of SQL. In
DISCO, a wrapper can support as little functionality as a
simple file scan.

In the abstract data type approach, e.g., [1], [2], the func-
tionality of underlying sources is encoded as a black-box
function. This approach also simplifies the construction
of mediators because, in general, the operations that can
be pushed to a data source are fixed by the abstract data
type interface.

In [40], [41], [45], [30], the source capability problem is
addressed in part by using views. The Information Mani-
fold extends this system by restricting queries on views to
contain constants for some attributes, etc.

In Garlic [37], a dynamic source capability solution is
implemented. The query processor decomposes the query
into various subqueries and passes the subqueries to the
wrapper. The wrapper returns plans which implement part
or all of the subqueries. Properties (e.g., output columns,
predicates, etc.) are used to describe which parts of the
subquery are executed by the wrapper. Garlic then adds
operators in the mediator to complete the plan. The ad-
vantage of this approach is that the wrapper implementor
can write a program to decide on exactly what parts of the

subquery are executed by the wrapper. Thus, the wrapper
can check for unusual conditions of the subquery that are
required by the underlying data source. The disadvantage
of this approach is performance since the wrapper is called
multiple times during query optimization. Garlic solves this
problem by placing the wrapper code within the mediator.

In the approach that is followed in DISCO, the function-
ality of each wrapper is defined, either in the mediator or in
the wrapper, as a subset of an algebraic machine. Query
processing in the mediator is complicated; various trans-
formations of the mediator query may result in subqueries
that cannot be evaluated in each data source, given the pos-
sibly limited functionality of the underlying data source.
DISCO offers a solutions to the source capability problem.
DISCO can specify the composition of operators in the alge-
braic machine, and can attempt to generate a query whose
subqueries can be evaluated in the data sources. For
instance, in DISCO, one can specify that select can
be composed with scan, but that it cannot be composed
with person. Kapitskaia et al. [12] describes this fea-
ture in detail.

2.3 Mediator-Wrapper Cost Communication
There have been few projects on cost-based query optimi-
zation for heterogeneous systems [1], [46], [47]. In [46], [47],
the mediator calibrates its cost model by sending various
“experiment” subqueries to data sources and measuring the
response time and size of the answer. In DISCO, wrappers
(optionally) export cost equations to override the default
equations in the mediator. Naacke et al. [13] describes this
feature in detail.

The HERMES system [1] integrates heterogeneous
sources by modeling each source as a collection of domains,
defining some abstract data types. Thus, a source can be
viewed as a parameterized call, which returns a set of an-
swers. The bindings permitted to the call may be specified
as magic-set style adornments. For cost computations,
HERMES tracks statistics on the costs of previous calls, the
pattern of arguments to the call, and the time and date of
the call. To compute the cost of a new call, a cost estimate is
generated from the statistics. Finally, the system caches
previous calls and includes a system for specifying addi-
tional semantics of sources to perform a type of semantic
query optimization. DISCO permits the wrapper imple-
mentor to define the cost of operations directly so that the
mediator can obtain the cost of the particular subquery
evaluated at the wrapper. This solution is complementary
to the above solutions.

2.4 Missing Data Sources
There are several simple solutions to the problem of han-
dling missing data sources. First, a system can simply gen-
erate failure during query processing for unavailable data
sources. A second solution assigns a meaning to the un-
available data at the data source. For instance, the unavail-
able data source can be considered to have no tuples or
have null values. Another solution changes the meaning of
the query in the presence of unavailable data. For instance,
suppose a query requests the union of answers from three



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 813

data sources, a, b, and c, but data source c is unavailable.
Then the system implicitly changes the meaning of the
query to be the union of answers from the available data
sources, and returns the union of a and b as the answer to
the query.

In APPROXIMATE [48], unavailable data sources are
tackled by sandwiching the actual answer between subsets
and supersets of the answer. The sandwiching sets are
computed using semantic information from the data
sources and a modification to the relational algebra.

DISCO chooses a more flexible alternative: The answer to a
query is another query. The answer is a partial evaluation of
the original query. The partial evaluation represents the
work done with the available data sources and the work
remaining to be done with the unavailable data sources.
Bonnet and Tomasic [14] describe this feature in detail.

Partial Evaluation has been studied in programming
language research; it is defined as “a source-to-source pro-
gram transformation technique for specializing programs
with respect to parts of their input” [49]. As described in
Section 5, we use a technique inspired by partial evaluation
of programs to handle queries evaluated against data
sources that are unavailable at runtime. In this subsection,
we compare our technique to a taxonomy of techniques in
partial evaluation in programming languages.

In the programming language literature, typically partial
evaluators improve the performance of programs by partial
evaluation of a program given some input. This perform-
ance improvement is accomplished by generating, for a
program p, a partially evaluated program ps. Program ps is
based on some prespecified (static) input s, and some un-
known (dynamic) input d. The answer to ps given d is the
same as the answer to p given s and d. Applying this analy-
sis to a query evaluated against data sources, the static in-
put would include the constants that appear in the query,
and the extents corresponding to data source types, for the
available data sources. The dynamic input would be the
extents corresponding to the data source types, for the un-
available data sources.

Partial evaluators are classified as on-line, monolithic or
off-line, staged. An online partial evaluator is a non-
standard interpreter; it determines the treatment of each
expression on-the-fly and can be very expensive. Staging
involves a compiler and a runtime system. It first divides
the inputs of the program into prespecified and unknown
parts, and then determines, for each expression, if it should
be evaluated at compile-time or runtime. This is accompa-
nied by a specialization that constructs a specialized pro-
gram, with respect to the specified and unspecified parts.

Our technique roughly corresponds to a sequence of
multiple on-line partial evaluations. The availability of data
sources is determined on-the-fly, according to observed
behavior of the data sources. We plan to investigate off-line
evaluation also, where we first determine the availability of
the data sources before evaluation starts. Another major
difference between our work and existing work is the inter-
pretation of ps. In partial evaluation, ps is opaque. In our
work, we are interested in the contents of ps since it contains

partially evaluated answers. Thus, we plan to apply func-
tions to ps to extract information.

3 MEDIATOR DATA MODEL

In this section we describe the DISCO data model as an
extension to the ODMG 2.0 data model specification [33].
The ODMG standard consists of an object model, object
definition language (ODL), a query language (OQL), and a
language binding. Note however that the prototype imple-
mentation, described in more detail in Section 6.1, imple-
ments a relational subset of this model.

The ODMG object model is based on a type system.
Types can be atomic or structured. The atomic types are
predefined, such as integer, boolean, string, and the par-
ticular set of object types of the application. The structured
types are the set, bag, list and tuple. Type expressions are
constructed through the recursive application of structured
type constructors to atomic types and type expressions.
Object types are described in the data model through
an object interface using ODL. An object interface specifies
the properties (attributes and relationships) and operations
or methods that are characteristic of the instances of this
object type. A relationship is a reference-valued attribute of
an object type. An object interface allows the declaration of
a key constraint, and the declaration of inverse links be-
tween object types. The object types are organized along a
subtype hierarchy. All the attributes, relationships and
methods defined on a super-type are inherited by the sub-
type. An object type extent is a set of instances of a given
object type (and its subtypes); it can be explicitly named in
the object type interface, in which case they are automati-
cally maintained.

The set of operators includes built-in operators, user-
defined functions and user-defined methods. The built-in
operators are comparison and arithmetic operators; aggre-
gation operators; set, list and set membership operators;
type conversion operators. Special built-in operators are
value constructors, (e.g., set, bag, list, and tuple construc-
tors), attribute selection, quantifiers and select.

An object database is accessed through the set of persis-
tent named variables. Particular named variables are associ-
ated with the extent of an object type that is automati-
cally maintained. A database interface consists of a set of
object type interfaces, and a set of named variables (with
their types).

OQL queries corresponding to an interface are well-typed
expressions constructed in this interface. Given an interface,
OQL expressions are syntactically constructed by a recursive
application of user-defined and built-in functions, starting
with constants and variables. Each OQL expression has an
associated type.

The OQL select-expression is a built-in n-ary operator of
particular import. The expressions corresponding to each
input collection, the predicate, and the projection of a
select-from-where expression, may all be general OQL
expressions. As a consequence, OQL allows navigation
(following object identifiers), nested selects, dependent
joins, quantified predicates and user-defined functions or



814 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

methods to appear in all clauses of the select operator. A
variable is defined in the from clause of a select-expression
or in a quantified expression (for all or exists). The collec-
tion-valued expression associated with a variable is its
domain. The value of a variable is restricted to range
over its domain.

The language binding consists of a mapping of ODL and
OQL into the bound language. In addition, the binding
specifies how updates to objects are accomplished.

DISCO extends ODMG ODL in two ways, to simplify the
addition of data sources to a mediator:

•� multiple extents: This extension associates multiple
extents with each interface defined for the mediators.

•� type mapping: This extension associates type mapping
information between a mediator type and the type as-
sociated with a data source.

3.1 Access to Data Sources
DISCO extends the concept of an extent for an interface,
to include a bag of extents for the interface, for any type
defined for the mediator. Each extent in the bag mirrors
the extent of objects in a particular data source, associated
with this mediator type. Since this extension is fully inte-
grated into the ODMG model, the full modeling capabilities
of the ODMG model are available for organizing data
sources. DISCO evaluates queries on extents and thereby on
the data sources.

To describe the data model, we describe how a data-
base administrator (DBA) defines access to a data source
in DISCO.

In the first step, the DBA locates a wrapper (written by a
database implementor), for the data source. Wrappers are
located via Java remote method invocation (RMI) name
servers; thus, their addresses are URLs. For instance, the
following command defines a wrapper object w0 associated
with a specific URL:

wrapper w0 rmi://rodin.inria.fr/
AnnuaireWrapper;

Section 4 discusses the features of the wrapper inter-
face. When the wrapper is registered, the schema (types) of
the source are exported to the mediator. For example, the
Person type corresponding to the objects in data sources
w0 and w1 from Section 1, is defined as follows (this extent
and type will be exported):

extent p0 of Person;
interface Person {
attribute String name;
attribute Short salary;  }

Next, the DBA defines the mediator extent correspond-
ing to the wrapper extent as follows:

extent person0 of Person wrapper w0
extent p0;

This statement adds the extent person0 to the Person
interface. This statement also creates an object in the
MetaExtent type, to be described later. Thus, each DISCO

extent represents a collection of data in one data source, of some
particular type. (A more general approach associates an im-
plementation for a mediator type with each data source
[35], [50]).

The wrapper extent name p0 is used by the wrapper to
access data. For a relational database, it will be the relation
name. The mediator checks that the mediator type Person
is indeed exported by the data source. If the wrapper can-
not match (or convert) the type in the mediator to the type
in the data source, a runtime error will occur. The DISCO

data model can also handle the case where there is a mis-
match of types, as discussed in Section 3.2.

At this point, data access from the data source is possi-
ble. The following query returns the answer Bag("Mary").

select x.name
from x in person0
where x.salary > 10

The addition of a new Person data source only requires
adding an extent to the mediator type Person, given that
the appropriate wrapper is available for the new repository.
For example, the following extent expression:

extent person1 of Person wrapper w1
extent p1;

adds the person1 extent to the Person interface, utilizing
a different wrapper w1. The same type relationship holds
with w1 so its objects are of type Person.

To access objects in both data sources, the extents are
listed explicitly in the following select expression. The fol-
lowing query returns the answer: Bag("Mary", "Sam").

select x.name
from x in union(person0, person1)
where x.salary > 10

Explicitly referencing extents is a powerful capability,
but it is difficult to express more general queries that refer
to collections of extents. The DISCO data model solves this
problem by using a special metadata type MetaExtent,
which records the extents of all the mediator types. The
special extent syntax used previously to add or delete
extents is translated automatically into instances of this
metadata type, which is defined as follows:

extent metaextent of MetaExtent;
interface MetaExtent {
attribute String name;
attribute Extente;
attribute Type interface;
attribute Wrapper wrapper;
attribute Map map;  }

Thus, extents for the mediator types can be added or de-
leted by adding or deleting objects of type MetaExtent.
For example, the previous extent automatically created an
instance, say m1, where

m1.name = “person1”
m1.interface = Person
M1.e = person1



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 815

m1.wrapper = w1
m1.map = null

The map attribute of type MetaExtent is described in
Section 3.2.

Using this metadata, DISCO provides a way to implicitly
reference all the extents associated with a mediator type, by
declaring an extent in the interface definition. Thus, the
following interface definition for Person defines person
as an extent that is the union of all extents of type Person:

interface Person (extent person) {
attribute String name;
attribute Short salary;  }

The extent person is defined as the union of all extents
which satisfy the following query on MetaExtent.

select x.e
from x in metaextent
where x.interface = Person

This definition for person essentially accesses the meta-
data of the extents and dynamically selects all of the extents
associated with the type Person. The extent person can
be used anywhere a normal extent can be used.

This modeling feature distinguishes DISCO from other
systems and permits the DBA to more easily manage scal-
ing to a larger number of data sources. With the above ODL
definitions, the query in Section 1.4 will produce the an-
swers described.

3.2 Mapping DISCO Types to Data Source Types
In the previous section, the type of the data source was
identical to the type defined in the mediator for accessing
the data source. Thus the name of the relation in the data
source was the same as the extent name. Further, the names
of the attributes of the relation in the data source were
identical to the names of the attributes of the mediator type.
In many existing systems, the burden of resolving the con-
flict between the two types is in the hands of the wrapper
implementor. DISCO provides a mapping between the two
types to help the DBA to resolve such conflicts.

Suppose the DBA defines a different mediator type,
Prime, with extent prime0, to access a wrapper Z� with
Person objects, as follows:

extent prime0 of Prime wrapper w2
extent p2;

interface Prime {
attribute String n;
attribute Short s;  }

This statement has a type conflict because Prime and
Person are different types.

The DBA resolves this kind of type conflict by specifying
a map between the attributes of the mediator type (Prime)
and the attributes of the data source type (Person). A map
is a function from the attributes of a type to the attributes
of another type. The map consists of a list of pairs and it
is described in the map attribute of the extent declaration.

The DBA resolves the type conflict in this example with the
following map:

extent prime0 of Prime wrapper w2
extent p2

map (n = name) (s = salary);

Since prime0 is of type Prime, the map creates a
one-to-one correspondence between the n field and name
and s and salary, respectively. Thus, when a subquery is
generated for this data source by the mediator, it will refer
to the attributes in the map to obtain the correct type for the
data source. Maps are restricted to a flat structure, and they
are defined as a list of strings. However, they can easily be
extended to handle nested types. A further extension pro-
vides functions which map between domains and ranges,
allowing the mediator to resolve mismatch of values in the
data sources during query processing.

3.3 Matching Similar and Dissimilar Structures
In general, when a DBA defines the aggregation of data
from data sources, the need to access multiple data sources
of similar structure or substructure, or sources of dissimilar
structure, may arise. The ODMG data model provides
subtyping for modeling similar substructures and views for
modeling dissimilar structures. All these features can be
applied while incorporating new data sources, and associ-
ating types of objects in the data sources to the types de-
fined in the mediators.

3.3.1 Subtyping
Subtyping organizes collections of data sources with simi-
lar substructures. Consider two data sources of students,
accessed with wrappers w4 and w5. The DBA defines
a Student interface as a subtype of Person, and the fol-
lowing extents:

interface Student:Person
(extent students) { }

extent student0 of Student wrapper w4
extent p4;

extent student1 of Student wrapper w5
extent p5;

Thus, queries on students can reference data in w4
and w5. The person extent still contains the two extents,
person0 and person1. Thus, the extent of a type does not
automatically reference the extents of its subtypes, in the
subtype hierarchy. To accommodate this, the ODMG syntax
must be extended with a special * syntax, e.g., person*,
for type Person, which recursively refers to the extents of
all the subtypes of this type. Thus, the person* extent
contains four extents.

3.3.2 Views and Reconciliation
Maps and subtyping are a very restricted form of transfor-
mation for resolving mismatch between types. In general,
arbitrary transformations in the representation of a data
source may be needed not only to resolve mismatched
types, but reconcile semantic differences between data sources.
For instance, one data source defines salary as an integer



816 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

and another data source defines salary as the sum of regu-
lar pay and overtime pay.

In this section we show that the ODMG data model rec-
onciles some semantic differences through arbitrary trans-
formations implemented with views. A view is a named
query. A view can reference other views, as long as the ref-
erences are not cyclic. Views are not updatable in the sense
that updates can not be applied to the results of view (i.e.,
view updates). However, updates to data sources will be
automatically reflected in the view.

The define ¤ as ¤ OQL syntax specifies a view
consisting of a query name and a query. Views do not have
explicit objects associated with them. The objects are refer-
enced through the query name and are generated through
executing the query. The following view:

define double as
select struct(name: x.name,

salary: x.salary
+ y.salary)

from x in person0 and y in person1
where x.name = y.name

specifies a mapping from the query name double to
the corresponding query. This query uses a select expres-
sion. The query is evaluated over the extents person0 and
person1. Thus, the query definition specifies a mapping to
underlying data sources. Access to double computes all
people who reside in both data sources and returns a bag
containing, for all people in both data sources, the name of
the person from the w0 data source and the sum of the sala-
ries of the person from both data sources. Thus, reconciling
the salaries of two data sources has been done by simply
using the addition function. Reconciliation functions are
indistinguishable from other functions. Since the full power
of OQL is available in the view definition language, aggre-
gate functions are also possible.

To aggregate over an arbitrary number of data sources,
we simply use select in the aggregate function, as follows:

define multiple as
select struct(

name: x.name,
salary: sum(select z.salary

from z in person*
where x.name = z.name))

from x in person*

Student is a subtype of Person. Since person* refer-
ences the extents of Student, through the type hierarchy,
the salaries of students in wrappers w4 and w5 will auto-
matically be summed in the multiple view definition.

In general, arbitrary transformations in the representa-
tion of a data source may be needed, and this functionality
is also provided by views. Suppose a data source with
wrapper w6 of type Two, does not have a single salary field,
but has two fields, regular for regular pay and consult
for consulting pay. We may still wish to aggregate over the
data sources. To do so, the different structures are included
in a view definition. In this example, we assume that the
people in the data sources of type Person are distinct from

the people in w6 of type Two. The opposite assumption is
also supported in the data model, but the view definition
would be more complicated.

interface Two {
attribute String name;
attribute Short regular;
attribute Short consult; }

extent two0 of Two wrapper w6 extent p6;

define new as
union(

select struct(
name: x.name, salary:  x.salary)

from x in person,
select struct(

name: x.name,
salary: x.regular + x.consult)

from x in two0)

4 MEDIATOR QUERY PROCESSING

The mediator includes a query processor containing a
query preprocessor, a query optimizer and a runtime sys-
tem. It also contains a catalog that records information on
local data, local schema, global schema, etc. This catalog is
updated when a source is registered with the mediator by
importing the local schema, capabilities and cost informa-
tion of the source. The import is accomplished via the
wrapper associated with the source.

The processing of a query is accomplished in several steps.2

Step 1 performs the reformulation of the query into local
schemas. The query is parsed and type checked against the
global schema and then it is reformulated into the local
schemas of the sources. Reformulation is accomplished
through view definitions and the application of maps of
Section 3. In particular, each extent in the reformulated
query references either an extent in a particular source or an
extent local to the mediator.

Step 2 performs logical search space generation. The re-
formulated query is transformed into a preliminary tree
of logical operators in the relational algebra that is equiva-
lent to the query. The logical operators in the tree belong to
a universal abstract machine (UAM) of logical operators
implemented in the mediator. DISCO has the usual logical
operators of scan, project, join, etc. In addition, trans-
formation rules rewrite trees to equivalent trees. DISCO has
the usual transformation rules, e.g., commuting and associat-
ing join operations. Thus, multiple preliminary logical op-
erator trees are generated for each query. Finally, an addi-
tional logical operator, submit, expresses the mediator call
to a wrapper.

Step 3 performs preliminary query decomposition. Each
preliminary logical operator tree is then decomposed
into a forest of n wrapper subtrees and a composition
tree that combines the results of the wrapper subtrees into
the final answer. Each wrapper subtree is the largest subtree

2. We describe a top-down transformation of the query into an execution
plan. However, the prototype has an implementation of both this algorithm
and a dynamic-programming bottom-up style query processing algorithm.



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 817

of the preliminary tree of logical operators whose leaves
reference (via the extent) the same wrapper. The composi-
tion tree is the remaining subtree not in any wrapper
subtree. This tree links together the forest of wrapper sub-
trees into a single tree. The leaves of the composition tree
are either one of the wrapper subtrees or a scan operation
on data stored in the mediator.

Step 4 compares the functionality required for each
wrapper subtree with the capabilities exported by the cor-
responding wrapper and modifies the wrapper subtree to
use only the capabilities of the wrapper. This modification
is accomplished by moving operations that the wrapper
cannot perform from the wrapper subtree to the composi-
tion tree. The final subtrees are marked in the composition
tree via the submit logical operator. These modifications
transform the preliminary logical operator tree into the final
logical operator tree. This step is described in more detail in
Section 4.1.

Step 5 transforms the final logical operator tree into
an execution plan by transforming the logical operations in
the mediator composition tree to physical algorithms in the
mediator runtime system. The logical operations done by
wrappers are not transformed because the corresponding
physical algorithms are executed by the wrapper itself. The
submit logical operators in the composition tree are trans-
lated into exec physical algorithms. This physical algo-
rithm is responsible for calling the associated wrapper. The
composition tree can always be evaluated by the mediator
since the UAM can be executed by some physical algorithm
in the runtime system. The mediator runtime system is
based on the iterator model [51]. DISCO has the usual physi-
cal algorithms such as nested-loop-join, file-scan, etc.

Step 6 assigns a cost to the execution plan by considering
the cost (in terms of total time and statistical information) of
the physical algorithms in the mediator and the costs of the
logical operations on the wrappers. If a wrapper has ex-
ported cost equations, those are also considered. This step
is described in more detail in Section 4.2.

Steps 2 through 6 are repeated until the execution plan
with lowest cost is generated.

Step 7 executes the lowest cost plan. During query
execution, the mediator calls the wrappers and passes the
final wrapper subtree. The wrappers evaluate their sub-
tree and send their results back to the mediator. The me-
diator runtime system combines the results using execution
plan which represents the final composition query. If a
wrapper is unavailable, a partial answer is produced, as
described in Section 5.

4.1 Defining Source Capability Specifications
In response to a registration call from the mediator,
a wrapper exports its source capabilities. The source cap-
abilities are sentences of a language which describe the
logical operations supported by the wrapper and the at-
tributes and predicates that can appear in a logical opera-
tion [12]. Thus, the sentences describe a subset of the ex-
pressions of the UAM.

In the simplest case, the wrapper returns a set of opera-
tors (e.g., {scan, project}) which means that the wrapper

supports the entire definition of those operations in the
UAM. Thus, projections are permitted across all attributes,
etc. In addition, more detail is permitted describing which
attributes can appear as arguments to an operation. For
example, the following source capability specification

scan [person0]
select [person0 1 {bind name (=)

bind salary  (<)}  ]

means that the scan operation applies only to the person0
extent. For the select operation, only 1 attribute can be
selected. If the select operation applies to the name
attribute of the person0 extent, it must use the equality
(=) predicate. Otherwise, it must select the salary attrib-
ute with the less-than (<) predicate. Thus, the following
expressions, for some constant C are permitted:

scan(person0)
select(scan(person0), name = C)
select(scan(person0), salary < C)

The use of these expressions in query processing is
straightforward. Each wrapper subtree is searched bottom-
up, comparing each logical operator with the specification.
When a logical operator o is found which does not match
the specification, the subtree is truncated to the subtree be-
low o. This subtree can be executed by the wrapper. The
subtree from the root to o is moved to the preliminary com-
position tree.

The mediator provides additional functionality to the
wrapper implementor by accepting a context free gram-
mar from the wrapper. If the context free grammar can
parse the string representation, then the entire subtree can
be executed by the wrapper. Otherwise the expression is
rejected. This functionality permits the wrapper imple-
mentor to check the expression for properties that are not
expressible in the specification language. Complete details
are given in [12].

The principal advantages of the capability specification
is its simplicity for the wrapper implementor and the effi-
cient use of the capabilities during query processing. The
algorithm for capabilities based reasoning is O(n) where n is
the number of nodes the preliminary tree. Using algorithms
of a higher complexity, e.g., [52], may produce plans which
push more operations onto a wrapper. In this latter work,
instead of computing source capabilities over trees, con-
junctive queries are used instead. Unfortunately the com-
plexity of this latter work is in the worst case exponential in
the size of the capability expression. An open research issue
is the definition of a capability system which balances the
quality of the plans produced with the complexity of the
capability algorithm.

4.2 Defining Cost Information
In response to a registration call from the mediator, a
wrapper optionally exports some cost information. Cost
information is exported in the form of logical rules. This
logical rules encode classical cost model equations. If
the wrapper does not export some particular cost equation,
a default equation in the mediator is used. Cost equa-
tions describe the total time required for an operation and



818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

statistical information of the total number of tuples pro-
duced by an operation, the total number of bytes, and the
number of distinct values in each attribute.

For example, the following rules, expressed as facts, de-
scribe the cost information for a scan operation

totaltime(scan(person0), 10,000)
countobject(scan(person0), 100)
countbyte(scan(person0), 10,000)
cardinality(scan(person0), [100, 90])

The first rule gives the total time to scan the person0�ex-
tent as 10,000 milliseconds. (This time does not include the
overhead of the network connection between the mediator
and wrapper, since the wrapper may connect to multiple
mediators.) The extent has 100 objects and is represented
with 10,000 bytes. There are 100 distinct values of the name
attribute and 90 distinct values of the salary attribute. A
more interesting example is the following:

countobject(select(X,P), 1) :-
contains(P, name = C)

totaltime(select(scan(X), P), T) :-
totaltime(scan(X), T)

These rules declare that the select logical operator re-
turns a single object for equality comparisons on the name
attribute and that the total time to perform a scan opera-
tion followed by a select operation is the same as the
time needed to perform the scan operation. Note that the
wrapper does not export the total time needed for the scan
operation and the default rule (and implicitly, the corre-
sponding equation) in the mediator is used. Thus, the lan-
guage gives very fine control over exactly which rules use
the default and which rules use more specific wrapper in-
formation. In addition, default rules for a whole class of
wrappers is possible. Complete details are given in [13].
These rules are used during query processing to determine
the cost of execution of a subtree on a wrapper. In fact, the
same mechanism is used to determine the cost of physical
algorithms used at runtime in the mediator.

Note that in the case the wrapper always wants the
maximum acceptable subtree to be pushed to the wrapper,
a trick can be used: simply return rules that represent cost
equations of zero cost. That is, the cost equations do not
represent the actual cost of execution. The mediator will
simply choose the plan which has the largest number of
operations performed at the mediator because every opera-
tion must be executed either at the data source or in the
mediator. The zero cost of the operation at the data source
will always be cheaper than the cost of the same operation
in the mediator.

4.3 Example
In the following steps the query optimizer translates a query
into a final logical operator tree. For example, the query
optimizer translates the following query:

select x.name
from x in person

where person has extents person0 and person1, associ-
ated with wrappers w0 and w1, respectively, into the fol-
lowing query plan:

union(project([name],
submit(w0, scan(person0))),

project([name],
submit(w1, scan(person1))))

Reading this query plan, in the order of application, from
right to left, the query retrieves tuples with the scan op-
eration from the person0 collection. The location of the
tuples is specified in the w0 wrapper. The submit operator
accesses the tuples in the data source, and the name attrib-
ute is projected out of each tuple in the collection. This pro-
jection is done by the runtime system of the mediator. A
similar operation is done with w1 and the results are com-
bined into a bag, by the union operator in the mediator.

Alternately, the query optimizer may generate the fol-
lowing final logical operator tree,

union(submit(w0, project([name],
scan(person0))),

project([name],
submit(w1, scan(person1))))

In this latter case, the projection of attribute name from
instances of the collection person0 is performed in
the wrapper (or in the data source), whereas the subquery
to the w1 wrapper is unchanged from the previous case.
The union operator is executed in the mediator, as before.
The w0 wrapper must export the capability to perform
project on the name attribute. Note that in this latter
case, both of the above plans are considered, since the exe-
cution of the projection operation may be less expen-
sive in the mediator than in the wrapper, depending on the
cost equation used to determine the cost of the project op-
eration in the wrapper and the cost equations for the corre-
sponding physical algorithm in the mediator.

To reiterate, determining which plan to use is based
on two factors. First, the arguments to all submit calls
must pass the corresponding capability description. Sec-
ond, the plan must have the lowest cost. To determine the
cost of an entire plan, the mediator determines the cost of
the part of the plan executed in the mediator in the usual
way, by using the cost of the operators performed and the
costs of the arguments to the operations performed. For
instance, the cost of the union logical operator, imple-
mented by, say, a dropduplicate physical operator, de-
pends in part on the size of the arguments, i.e., the size of
the results of the project operations. The result sizes of
the project operation, when performed on the wrapper,
take into consideration any relevant equations exported by
the wrapper. The plan with the lowest cost is sent to the
runtime system for execution.

4.4 Query Execution
The execution plan consists of a tree of nodes. Each
node is a physical algorithm that implements the logical
operators. There is not a direct correspondence between
physical algorithms and logical operators. All physical



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 819

algorithms support the Graefe iterator model [51] con-
sisting of three methods, open, get-next, and close.
The open method prepares the node for query execution.
The get-next method retrieves the next tuple of the an-
swer. This method is called multiple times to retrieve the
entire answer. The close method performs clean-up op-
erations. Execution proceeds by calling open on the root
node, which recursively calls open on its children. Then,
get-next is repeatedly called on the root node to retrieve
the answer. The root node calls its children as needed to
construct each tuple of the answer. Finally, close is re-
cursively called to finish query processing.

A leaf node of the execution plan is either an exec
physical algorithm which is responsible for accessing
wrappers or a physical algorithm which access data in the
mediator. Each exec node contains a wrapper subtree that
is executed by a wrapper. Upon receiving an open. method
call, the node issues the wrapper subtree to the wrapper.
Available data sources return answers which are material-
ized in the mediator. Unavailable data sources either ex-
plicitly return a negative acknowledgment or timeout with
an error. The node returns available to its parent as the re-
turn value for the open call if the entire answer was mate-
rialized in the mediator. Otherwise the node returns un-
available. Other physical algorithms have an open call that
returns available if all the open calls to the children nodes
returned available and otherwise returns unavailable. In the
next section we use this extension to help manage available
and unavailable data sources.

5 QUERY PROCESSING WITH UNAVAILABLE DATA

As mentioned in the introduction, scaling the number of
heterogeneous data sources aggravates the problem of ac-
cess to unavailable data sources in a query. Since the DISCO

data model models data sources as objects, and the query
language permits queries that range over data sources, it is
straightforward to write a query which accesses many data
sources. It is likely that some of the data sources will be
unavailable.

5.1 Partial Evaluation of Queries
Partial evaluation of queries is performed in two phases.
The first phase executes a query and determines which data
sources are available. If all the data sources are available,
query processing finishes normally and produces an an-
swer. If some data sources are unavailable, a new query is
generated in the second phase. This query represents both
the work that has been accomplished and the work that
remains to be done once the unavailable data sources are
again available. This transformation is possible because
each physical algorithm has a corresponding logical op-
erator tree, and each logical operator tree has a corre-
sponding part of a declarative query. The resulting declara-
tive query is the partial evaluation of the query. It is also the
answer to the query.

The first phase of partial answer evaluation is coded
in the open. call of each physical algorithm. Each node
calls open on all its children nodes. If all children nodes
return available, then the node returns available to its

parent. Otherwise the node returns unavailable. In effect, the
leaf exec nodes are opened and the wrappers are accessed.
Then all nodes in the tree label themselves as available de-
pending on the status of the subtree rooted at the node.

The second phase of partial answer evaluation is as fol-
lows. If the root node is available then all nodes in the plan
must be available and query processing proceeds normally.
If the root node is unavailable, each subtree containing only
available nodes materializes its (sub)result. Then, in a re-
cursive bottom-up fashion, each node returns a declarative
description of the subtree rooted at the node. For the mate-
rialized subtrees, this description is simply the identifier of
the materialized result. For other nodes, the declarative
description depends on the semantics of the physical algo-
rithm. For example, a node which performs selection will
attach the selection predicate to the declarative description
of the subtree rooted at the node. The description associ-
ated with the root is the answer to the query. Complete de-
tails are given in [14].

Consider the following query which retrieves persons of
the same name from three sources:

select x.name
from x in person0, y in person1, z in

person2
where x.name = y.name and y.name = z.name

The following is a query execution plan for this query,
where slice is the physical algorithm for projection,
join-nl is the nested loop join algorithm.

slice([name],
join-nl(name,

name,
join-nl(name,

name,
exec(w0,

scan(person0)),
exec(w1,

scan(person1))),
exec(w2, scan(person2))))

Suppose wrappers w0 and w1 answer and w2 does not
answer during query execution. The plan will now be
as follows:

slice([name],
join-nl(name,

name,
t0,
exec(w2, scan(person2)))

where t0 is the result of executing the join-nl operation,
in the mediator, over the results returned from the exec
calls to w0 and w1. A partial evaluation is returned, by
mapping from the currently existing partially evalu-
ated query execution plan to a new query. The result is
as follows:

select w.name
from w in t0

z in person2
where w.name = z.name



820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

where the contents of t0 have been directly materialized
for the partially evaluated query. This result is returned to
the user. Detailed algorithms for the construction of this
result are given in [14].

5.2 Research Issues in Partial Evaluation
Currently, the results of partial evaluation are returned to
the user. We have defined some functions which return
ad hoc information about the partial evaluation, e.g., a list
of all materialized results, a list of wrappers that returned
answers, a list of wrappers that did not return answers, etc.
This information is used by the user interface to manage the
interaction between the user and the partial answer. How-
ever, in general the problem of extracting information from
a partial answer is an open research issue. For the moment
the principal functionality provided is the resubmission of
the partially evaluated query to the mediator for comple-
tion of evaluation. The completion of evaluation is possible
if the previously unavailable sources are operating at the
time that the query is resubmitted. A query may be par-
tially evaluated multiple times, thus requiring the user to
resubmit partially evaluated results multiple times, before a
final answer is obtained.

A second problem with partial evaluation involves the
underlying semantics of executing queries within transac-
tion boundaries. Suppose two data sources w0 and w1 time
stamp each data value when it is added to the data source.
Suppose data source w0 is available, and a user evaluates a
query over both sources. The (partially evaluated) answer
will contain data from w0 but no data from w1. Suppose w0
and w1 are both updated, and the (partially evaluated) an-
swer is resubmitted as a new query. This final answer, as-
suming that w1 is available, will contain the updated tuples
from w1 but none of the updated tuples from w0 since the
partial answer will access materialized data in the mediator.
The detection of updates to sources, and the semantics of
partial evaluation with updates to sources, is an open re-
search issue.

Thirdly, materializing the partial answer, t0, as indi-
cated above, has an impact on the implementation of the
query processor. In this case, the state of the partial evalua-
tion, t0, is explicitly maintained by the mediator, to be re-
used if the query is resubmitted. The mediator must main-
tain this state until the user resubmits the partially evalu-
ated query. This introduces a problem of garbage collecting
states of partial evaluation, corresponding to queries that
are never resubmitted. This garbage collection problem can
be partially solved by periodically replacing the material-
ized result with the subquery used to generate it. Access to
the materialized result triggers the mediator to execute the
associated subquery. In addition, maintenance of material-
ized results is an optimization issue. For example, it may be
cheaper to resubmit the original query, rather than maintain
the materialized result and resubmit the (partially evalu-
ated) query. For very small materialized results, it may also
be cheaper to embed as constants the data of the material-
ized result directly in the query.

Finally, partial evaluation semantics interact with pipe-
lined evaluation runtime system architectures. The problem

stems from the need to construct all the results of an op-
erator at any point in time. In pipelined evaluation, this
corresponds to the materialization of a partially executed
pipeline. For the moment, we simply materialize answers
from wrappers. This restriction may impose large storage
requirements on the mediator. Relaxing this restriction is an
open area of research.

6� CONCLUSION

6.1�Description of the Current Prototype
Fig. 2 shows a diagram of the architecture of prototype 0
[53]. The prototype consists of a collection of mediator and
wrappers, both running as servers. Thus mediators and
wrappers can be arbitrarily paired, so wrappers can serve
multiple mediators. In addition, every mediator is a wrap-
per, so mediators can call other mediators as if they were
wrappers. The entire system, except for the data sources, is
coded in about 36,000 lines of Java. Java remote method
invocation is used for communication between applica-
tions, mediators, and wrappers.

The mediator has several interfaces. The administration
interface is used to declare global schemas, local data
elements, and register wrappers. The application interface
is used to accept queries and return answers and partial
answers. The wrapper interface is used to contact wrappers
(at registration time) to load schema, source capability,
and cost information. This interface is also used to sub-
mit subqueries to the wrappers and obtain answers to
subqueries. Currently, the mediator accepts a subset of
the ODMG standard corresponding to the relational alge-
bra. Query processing follows the outline described in
Section 4 and partial evaluation follows the outline de-
scribed in Section 5. However, some features for reconciling
type mismatch described in Section 3 have not yet been
implemented. The functionality of the mediator includes a
local storage system and a pipelined runtime system.

The wrapper has several interfaces also, for responding
to registration requests, answering subqueries, and com-
municating with the data sources. The functionality of the
wrapper includes a pipelined runtime system. Thus, if the
data source is pipelined, pipeline processing is possible
from the data source to the application.

6.2 Summary

Scaling the number of data sources in heterogeneous dis-
tributed databases aggravates problems for end users, ap-
plication programmers, database administrators, and data-
base implementors (wrapper implementors). The design of
DISCO provides novel solutions to some of the problems
encountered by these users:

1)�The model of data sources, the use of schema map-
ping, and views, aid the database administrator in
modeling the system.

2)�A flexible wrapper interface aids the wrapper imple-
mentor in dealing with the problem of describing the
functionality of the underlying data source.



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 821

3)�The query optimizer in the mediator handles the task
of solving the mismatch between the expressive power
of the DISCO system and the underlying data source,
and generating expressions which can be evaluated in
the data source.

4)�A cost-based query optimizer use the cost-model for
the mediator physical operators and the cost-model
provided by the wrapper.

5)�Partial evaluation semantics provides end users and
applications programmers with the ability to deal with
queries evaluated with unavailable data sources.

6.3 Future Work
Several aspects of DISCO present new research prob-
lems. The distributed architecture introduces several per-
formance issues, since in the most general case network
communication occurs between several components during
query processing.

The submit logical operator works well with the
autonomous nature of the data sources. The disadvantage
of this operator is that it cannot accept data from another
data source, or from the mediator. This restriction implies
that the full generality of algorithms for implementing dis-
tributed and parallel databases cannot be expressed. For
example, a semijoin algorithm to implement a join cannot
be used in the wrapper interface, since it requires the
transmission of results into a data source.

For the problem of graceless failure for unavailable data
sources, partial evaluation presents many open research
issues, discussed in Section 5.2. For example, extracting
information from a partially evaluated source in the general
case is difficult because the structure of the partially evalu-
ated query may vary widely, depending on how much
work was done during partial evaluation. Some informa-
tion may or may not be available, depending on which
data sources were unavailable. Second, resubmitting a par-
tially evaluated result is a manual operation, left up to the
user. Clearly some automatic form of resubmission is desir-
able. Third, partial evaluation is not clearly defined for ag-
gregate functions.

ACKNOWLEDGMENTS

We thank Daniela Florescu, Michael Franklin, Helena Gal-
hardas, Georges Gardarin, Catherine Hamon, Alon Levy, Yan-
nis Papakonstantinou, Peter Schwarz, and the anonymous
referees for discussions on various aspects of this article.
This work was supported, in part, by the Groupement
d’Intérêt Economique Dyade (a joint research and devel-
opment venture between Bull and INRIA); by the Defense
Advanced Research Project Agency under Grant No. 92-
J1929 and Grant No. 01-5-28838; and by the National
Science Foundation under Grant No. CDA9422138 and
Grant No. IRI 9630102.

Fig. 2. The architecture of the DISCO Prototype 0.



822 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  5,  SEPTEMBER/OCTOBER  1998

REFERENCES

[1]� S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S. Subrahma-
niam, “Query Caching and Optimization in Distributed Mediator
Systems,” Proc. ACM SIGMOD Conf. Management of Data, pp. 137–
148, 1996.

[2]� J. Blakeley, “Data Access for the Masses Through OLE DB,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, New York, vol. 25,
no. 2 of ACM SIGMOD Record, pp. 161–172, ACM Press, 1996.

[3]� G. Gardarin et al., “IRO-DB: A Distributed System Federating
Object and Relational Databases,” Object-Oriented Multidatabase
Systems: A Solution for Advanced Applications, O.A. Bukhres and
A.K. Elmagarmid, eds. Prentice Hall, 1996.

[4]� J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstanti-
nou, J. Ullman, and J. Widom, “Information Translation, Media-
tion, and Mosaic-Based Browsing in the TSIMMIS System,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, project demon-
stration, 1995.

[5]� R. Hull and R. King, “Index to the Reference Architecture for the
Intelligent Integration of Information (I3),” U.S. Government ARPA,
May 1995; WWW: http://isse.gmu.edu/I3_Arch/index.html.

[6]� W. Kim, Modern Database Systems: The Object Model, Interoperability,
and Beyond. New York: ACM Press, 1995.

[7]� L. Liu, C. Pu, R. Barga, and T. Zhou, “Differential Evaluation of
Continual Queries,” Proc. 16th Int’l Conf. Distributed Computing
Systems, pp. 458–465, Hong Kong, IEEE CSPress, 1996.

[8]� E. Mesrobian, R. Muntz, E. Shek, S. Nittel, M. LaRouche, and
M. Kriguer, “OASIS: An Open Architecture Scientific Information
System,” Proc. RIDE ‘96, New Orleans, IEEE Press, 1996.

[9]� M. Templeton, H. Henley, E. Maros, and D.J. Van Buer, “InterViso:
Dealing with the Complexity of Federated Database Access,”
VLDB J. vol. 4, 1995.

[10]� M. Tork Roth, M. Arya, L.M. Haas, M.J. Carey, W. Cody, R. Fagin,
P.M. Schwarz, J. Thomas, and E.L. Wimmers, “The Garlic Project,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 557–558,
Montreal, project demonstration, June 1996.

[11]� G. Wiederhold, “Mediators in the Architecture of Future Infor-
mation Systems,” Computer, vol. 25, no. 3, pp. 38–49, 1992.

[12]� O. Kapitskaia, A. Tomasic, and P. Valduriez, “Dealing with Dis-
crepancies in Wrapper Functionality,” Technical Report RR-3138,
INRIA, 1997.

[13]� H. Naacke, G. Gardarin, and A. Tomasic, “Leveraging Mediator
Cost Models with Heterogeneous Data Sources,” Proc. ICDE 14:
Int’l Conf. Data Eng., Orlando, Fla., 1998.

[14]� P. Bonnet and A. Tomasic, “Partial Answers for Unavailable Data
Sources,” Technical Report RR-3127, INRIA, 1997.

[15]� A. Tomasic, L. Raschid, and P. Valduriez, “Scaling Heterogeneous
Databases and the Design of DISCO,” Technical Report No. 2,704,
INRIA Rocquencourt, France, extended version, 1995.

[16]� A. Tomasic, L. Raschid, and P. Valduriez, “Scaling Heterogeneous
Databases and the Design of DISCO,” Proc. Int’l Conf. Distributed
Computing Systems, pp. 449–457, 1996.

[17]� R. Ahmed, P. De Smedt, W. Du, W. Kent, M.A. Ketabchi,
W.A. Litwin, A. Rafii, and M.-C. Shan, “The Pegasus Heterogene-
ous Multidatabase System,” Computer, vol. 24, no. 12, pp. 19–27,
Dec. 1991.

[18]� W. Kim et al., “On Resolving Schematic Heterogeneity in Multi-
Database Systems,” Distributed and Parallel Databases, vol. 3, no. 1,
1993.

[19]� W. Kim and J. Seo, “Classifying Schematic and Data Heterogene-
ity in Multi-Database Systems,” Computer, pp. 12–18, Dec. 1991.

[20]� Y. Arens, C.Y. Chee, C.-N. Hsu, and C.A. Knoblock, “Retrieving
and Integrating Data from Multiple Information Sources,” Int’l
J. Intelligent and Cooperative Information Systems, vol. 2, no. 2,
pp. 127–158, 1993.

[21]� C. Batini, M. Lenzerini, and S.B. Navathe, “A Comparative Analy-
sis of Methodologies for Database Schema Integration,” ACM
Computing Surveys, vol. 18, no. 4, pp. 323–364, Dec. 1986.

[22]� T. Barsalou and D. Gangopadhay, “M(dm): An Open Framework
for Interoperation of Multimodel Multidatabase Systems,” Proc.
Int’l Conf. Data Eng., 1992.

[23]� J. Chomicki and W. Litwin, “Declarative Definition of Object-
Oriented Multidatabase Mappings,” Distributed Object Manage-
ment, M.T. Oszu, U. Dayal, and P. Valduriez, eds. Morgan Kauf-
mann, 1993.

[24]� W. Kent, “Solving Domain Mismatch and Schema Mismatch
Problems with an Object-Oriented Database Programming Lan-
guage,” Proc. 17th Conf. Very Large Databases, Barcelona, Spain,
Morgan Kaufmann, Sept. 1991.

[25]� R. Krishnamurthy, W. Litwin, and W. Kent, “Language Features
for Interoperability of Databases with Schematic Discrepancies,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, Denver, Colo.,
May 1991.

[26]� L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian, “SchemaSQL
¦A Language for Interoperability in Relational Multi-Database
Systems,” Proc. 22nd VLDB Conf., pp. 239–250, Mumbai, India,
1996.

[27]� L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian, “On the Logi-
cal Foundations of Schema Integration and Evolution in Hetero-
geneous Database Systems,” Proc. Int’l Conf. Deductive and Object-
Oriented Databases, 1993.

[28]� S. Chakravarthy, W.-K. Whang, and S.B. Navathe, “A Logic-Based
Approach to Query Processing in Federated Databases,” technical
report, Univ. of Florida, 1993.

[29]� A. Lefebvre, P. Bernus, and R. Topor, “Query Transformation for
Accessing Heterogeneous Databases,” Proc. Joint Int’l Conf. and
Symp. Logic Programming, Workshop on Deductive Databases, 1992.

[30]� X. Qian, “Query Folding,” Proc. Int’l Conf. Extended Database Tech-
nology, 1996.

[31]� X. Qian and L. Raschid, “Translating Object-Oriented Queries to
Relational Queries,” Proc. IEEE Int’l Conf. Data Eng., 1995.

[32]� L. Raschid and Y. Chang, “Interoperable Query Processing from
Object to Relational Schemas Based on a Parameterized Canonical
Representation,” Int’l J. Intelligent and Cooperative Information Sys-
tems, 1995.

[33]� R.G.G. Cattell, D.K. Barry et al., Object Database Standard¦ODMG
2.0. Morgan Kaufmann, 1997.

[34]� A.L.P. Chen, J.L. Koh, T.C.T. Kuo, and C.C. Liu, “Schema Integra-
tion and Query Processing for Multiple Object Databases,” Inte-
grated Computer-Aided Eng., special issue on multidatabase and
interoperable sytems, vol. 2, no. 1, 1995.

[35]� Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina, “Object
Fusion in Mediator Systems,” Proc. 22nd VLDB Conf., Mumbai,
India, pp. 413–424, 1996.

[36]� M. Carey et al., “Towards Heterogeneous Multimedia Information
Systems: The Garlic Approach,” technical report, IBM Almaden
Research, 1995.

[37]� M. Tork Roth and P. Schwarz, “Don’t Scrap It, Wrap It! A Wrapper
Architecture for Legacy Data Sources,” Proc. 23rd VLDB Conf.,
Athens, pp. 266–275, 1997.

[38]� L.M. Haas, D. Kossmann, E.L. Wimmers, and J. Yang, “Optimiz-
ing Queries Across Diverse Data Sources,” Proc. 23rd VLDB Conf.,
pp. 276–285, 1997.

[39]� D. Florescu, L. Raschid, and P. Valduriez, “Using Heterogeneous
Equivalences for Query Rewriting in Multidatabase Systems,”
Proc. Int’l Conf. Cooperating Information Systems, 1995.

[40]� D. Florescu, L. Raschid, and P. Valduriez, “Answering Queries
Using OQL View Expressions,” Proc. Workshop Materialized Views:
Techniques and Applications, in conjunction with ACM SIGMOD
International Conference, 1996.

[41]� A.Y. Levy, A. Rajaraman, and J.J. Ordille, “Querying Heterogene-
ous Information Sources Using Source Descriptions,” Proc. 22nd
VLDB Conf., Mumbai, India, 1996.

[42]� A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava, “An-
swering Queries Using Views,” Proc. ACM PODS Symp., 1995.

[43]� A.Y. Levy, D. Srivastava, and T. Kirk, “Data Model and Query
Evaluation in Global Information Systems,” Int’l J. Intelligent In-
formation Systems, special issue on networked information re-
trieval, 1995.

[44]� Microsoft Open Database Connectivity Documentation, Microsoft,
Redmond, Wash., 1997; WWW: http://www.microsoft.com/odbc.

[45]� Y. Papakonstantinou, A. Gupta, and L. Haas, “Capabilities-Based
Rewriting in Mediator Systems,” technical report, IBM Almaden
Research, 1996.

[46]� W. Du, R. Krishnamurthy, and M.C. Shan, “Query Optimization
in a Heterogeneous DBMS,” Proc. 18th Conf. Very Large Databases,
Vancouver, B.C., Canada, Morgan Kaufmann, Aug. 1992.

[47]� G. Gardarin, F. Sha, and Z.-H. Tang, “Calibrating the Query
Optimizer Cost Model of IRO-DB,” Proc. 22nd VLDB Conf., Mum-
bai, India, 1996.



TOMASIC ET AL.: SCALING ACCESS TO HETEROGENEOUS DATA SOURCES WITH DISCO 823

[48]� S.V. Vrbsky and J.W.S. Liu, “APPROXIMATE: A Query Processor
that Produces Monotonically Improving Approximate Answers,”
IEEE Trans. Knowledge and Data Eng., vol. 5, no. 6, pp. 1,056–1,068,
Dec. 1993.

[49]� C. Consel and O. Danvy, “Tutorial Notes on Partial Evaluation,”
Proc. 20th Ann. ACM SIGPLAN-SIGACT Symp. Principles of Pro-
gramming Languages, Charleston, S.C., 1993.

[50]� P. Schwarz and K. Shoens, “Managing change in the Rufus sys-
tem,” Proc. IEEE Int’l Conf. Data Eng., 1994.

[51]� G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys, vol. 25, no. 2, 1993.

[52]� V. Vassalos and Y. Papakonstantinou, “Describing and Using
Query Capabilities of Heterogeneous Sources,” Proc. 23rd VLDB
Conf., Athens, 1997.

[53]� A. Tomasic, R. Amouroux, P. Bonnet, O. Kapitskaia, H. Naacke,
and L. Raschid, “The Distributed Information Search Component
(DISCO) and the World-Wide Web,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, Tuscon, Ariz., prototype demonstration,
1997.

Anthony Tomasic received his BS degree in
1983 from Indiana University, Bloomington; and
his MA and PhD degrees from Princeton Univer-
sity in 1992 and 1994, respectively. He is cur-
rently an ingénieur expert at Institut National
de Recherche en Informatique et en Automa-
tique (INRIA), France’s national research center
for computer science. He is responsible for the
design and implementation of DISCO. His re-
search interests include databases and infor-
mation retrieval.

Louiqa Raschid received a bachelor of technol-
ogy degree in electrical engineering from the
Indian Institute of Technology, Madras, in 1980;
and a PhD in electrical engineering from the
University of Florida, Gainesville, in 1987. Since
1987, she has been at the University of Mary-
land at College Park. She holds a joint appoint-
ment with the College of Business and Manage-
ment, the Institute for Advanced Computer Stud-
ies, and the Department of Computer Science

(affiliate). She was promoted to associate professor in September
1993. She is codirector of the Laboratory for Computational Linguistics
and Information Processing. Since 1994, she has been a visiting sci-
entist at Institut National de Recherche en Informatique et en
Automatique (INRIA). Her research interests include database acces-
sibility over the WWW; query processing with networked information
servers; semantic query optimization for object and relational data-
bases; and rule processing in database management systems. Her
research is supported by grants from the National Science Foundation
and the Defense Advanced Research Projects Agency. She serves on
the Editorial Board of the INFORMS Journal of Computing, and she is
a member of the IEEE, the IEEE Computer Society, the ACM, and the
Society of Women Engineers.

Patrick Valduriez received his PhD degree in
computer science from the University of Paris 6
in 1981. He is currently a director of research
at Institut National de Recherche en Informa-
tique et en Automatique (INRIA), where he heads
a group of researchers working on distributed
database technology. Since 1995, he has also
headed the R&D joint venture Dyade between
Bull and INRIA to foster technology transfer in
the areas of Internet/Intranet. From 1985 to 1989,
he was a senior scientist at the Microelectronics

and Computer Technology Corporation, Austin, Texas, where he par-
ticipated in the design and implementation of the Bubba parallel
database system. He is the author or coauthor of many technical
papers and several books, including Principles of Distributed Data-
base Systems (Prentice Hall, 1991) and Object Technology (Thomson
Computer Press, 1997). He is a trustee of the VLDB endowment
and an associate editor of several journals, including ACM Trans-
actions on Database Systems, the VLDB Journal, and Distrib-
uted and Parallel Databases. He served as program chair of
PDIS ’93 and SIGMOD ’97, and he received the 1993 IBM France
scientific prize.


