
The VLDB Journal (2001) 10: 120–132 / Digital Object Identifier (DOI) 10.1007/s007780100047

PicoDBMS: Scaling down database techniques for the smartcard

Philippe Pucheral1, Luc Bouganim1, Patrick Valduriez 2, Christophe Bobineau1

1 University of Versailles, PRiSM Laboratory, Versailles, France;
E-mail:{philippe.pucheral;luc.bouganim;christophe.bobineau}@prism.uvsq.fr

2 University Paris 6, LIP6 Laboratory, Paris, France; E-mail: patrick.valduriez@lip6.fr

Edited by A. El Abbadi, G. Schlageter, K.-Y. Whang. Received: 15 October 2000 / Accepted: 15 April 2001
Published online: 23 July 2001 –c© Springer-Verlag 2001

Abstract. Smartcards are themost secure portable computing
device today.They havebeenused successfully in applications
involving money, and proprietary and personal data (such as
banking, healthcare, insurance, etc.). As smartcards get more
powerful (with 32-bit CPU and more than 1MB of stable
memory in the next versions) and become multi-application,
the need for database management arises. However, smart-
cards have severe hardware limitations (very slow write, very
little RAM, constrained stable memory, no autonomy, etc.)
which make traditional database technology irrelevant. The
major problem is scaling down database techniques so they
perform well under these limitations. In this paper, we give an
in-depth analysis of this problem and propose a PicoDBMS
solution based on highly compact data structures, query ex-
ecution without RAM, and specific techniques for atomicity
and durability. We show the effectiveness of our techniques
through performance evaluation.

Key words: Smartcard applications – PicoDBMS – Storage
model – Execution model – Query optimization – Atomicity
– Durability

1 Introduction

Smartcards are the most secure portable computing device to-
day. The first smartcard was developed by Bull for the French
banking system in the 1980s to significantly reduce the losses
associated with magnetic stripe credit card fraud. Since then,
smartcards have been used successfully around the world in
various applications involving money, proprietary data, and
personal data (such as banking, pay-TV or GSM subscriber
identification, loyalty, healthcare, insurance, etc.). While to-
day’s smartcards handle a single issuer-dependent application,
the trend is toward multi-application smartcards1. Standards
for multi-application support, like the JavaCard [36] and Mi-
crosoft’s SmartCard for Windows [26], ensure that the card
be universally accepted and be able to interact with several

1 Everyone would probably enjoy carrying far fewer cards.

service providers. This should make smartcards one of the
world’s highest-volume markets for semiconductors [14].

As smartcards become more and more versatile, multi-
application, and powerful (32-bit processor, more than 1MB
of stable storage), the need for database techniques arises. Let
us consider a health card storing a complete medical folder
including the holder’s doctors, blood type, allergies, prescrip-
tions, etc. The volume of data can be important and the queries
fairly complex (select, join, aggregate). Sophisticated access
rightsmanagementusingviewsandaggregate functionsare re-
quired to preserve the holder’s data privacy. Transaction atom-
icity anddurability arealsoneeded toenforcedata consistency.
More generally, database management helps to separate data
management code from application code, thereby simplifying
and making application code smaller. Finally, new applica-
tions can be envisioned, like computing statistics on a large
number of cards, in an asynchronous anddistributedway. Sup-
porting database management on the card itself rather than on
an external device is the only way to achieve very high secu-
rity, high availability (anywhere, anytime, on any terminal),
and acceptable performance.

However, smartcards have severe hardware limitations
which stem from the obvious constraints of small size (to
fit on a flexible plastic card and to increase hardware se-
curity) and low cost (to be sold in large volumes). Today’s
microcontrollers contain a CPU, memory – including about
96kB of ROM, 4kB of RAM, and up to 128kB of stable stor-
age like EEPROM – and security modules [39]. EEPROM
is used to store persistent information; it has very fast read
time (60–100ns) comparable to old-fashion RAM but very
slow write time (more than 1ms/word). Following Moore’s
law for processor and memory capacities, smartcards will get
rapidly more powerful. Existing prototypes, like Gemplus’s
Pinocchio card [16], bypass the current memory bottleneck
by connecting an additional chip of 2MB of Flash memory to
the microcontroller. Although a significant improvement over
today’s cards, this is still very restricted compared to other
portable, less secure, devices such as Personal Digital Assis-
tants (PDA). Furthermore, smartcards are not autonomous,
i.e., have no independent power supply, thereby precluding
asynchronous and disconnected processing.



P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 121

These limitations (tiny RAM, little stable storage, very
costly write, and lack of autonomy) make traditional database
techniques irrelevant.Typically, traditionalDBMSexploit sig-
nificant amounts of RAM and use caching and asynchronous
I/Os to reduce disk access overhead asmuch as possible.With
the extreme constraints of the smartcard, the major problem is
scaling down database techniques.While there has beenmuch
excellent work on scaling up to deal with very large databases,
e.g., using parallelism, scaling down has not receivedmuch at-
tention by the database research community. However, scaling
down in general is becoming very important for commodity
computing and is quite difficult [18].

Some DBMS designs have addressed the problem of scal-
ing down. Light versions of popular DBMS like SybaseAdap-
tive ServerAnywhere [37], Oracle 8i Lite [30] or DB2 Every-
where [20] have been primarily designed for portable comput-
ers and PDA. They have a small footprint which they obtain
by simplifying and componentizing the DBMS code. How-
ever, they use relatively high RAM and stable memory and do
not address the more severe limitations of smartcards. ISOL’s
SQLJava Machine DBMS [13] is the first attempt towards a
smartcardDBMSwhileSCQL [24], the standard for smartcard
database language, emerges.While both designs are limited to
single select, they exemplify the strong interest for dedicated
smartcard DBMS.

In this paper, we address the problem of scaling down
database techniques and propose the design of what we call a
PicoDBMS. This work is done in the context of a new project
with Bull Smart Cards and Terminals. The design has been
made with smartcard applications in mind, but its scope ex-
tends as well to any ultra-light computer device based on a
secured monolithic chip. This paper makes the following con-
tributions:

• We analyze the requirements for a PicoDBMS based on a
typical healthcare application and justify itsminimal func-
tionality.

• Wegivean in-depthanalysis of theproblembyconsidering
the smartcard hardware trendsandderive designprinciples
for a PicoDBMS.

• We propose a new pointer-based storage model that inte-
grates data and indices in a unique compact data structure.

• We propose query execution techniques which handle
complex query plans (including joins and aggregates) with
no RAM consumption.

• Wepropose transaction techniques for atomicity and dura-
bility that reduce the logging cost to its lowest bound and
enable a smartcard to participate in distributed transac-
tions.

• We show the effectiveness of each technique through per-
formance evaluation.

This paper is an extended version of [7]. In particular, the
section on transaction management is new. The paper is orga-
nized as follows. Section 2 illustrates the use of take-away
databases in various classes of smartcard applications and
presents in more detail the requirements of the health card
application. Section 3 analyzes the smartcard hardware con-
straints and gives the problem definition. Sections 4–6 present
and assess the PicoDBMS’ storage model, query execution
model, and transaction model, respectively. Section 7 con-
cludes.

2 Smartcard applications

In this section,wediscuss themajor classesof emergingsmart-
card applications and their database requirements. Then, we
illustrate these requirements in further detail with the health
card application, which we will use as reference example in
the rest of the paper.

2.1 Database management requirements

Table 1 summarizes the database management requirements
of the following typical classes of smartcard applications:

• Money and identification: examples of such applications
are credit cards, e-purse,SIM forGSM,phonecards, trans-
portation cards.They are representative of today’s applica-
tions, with very few data (typically the holder’s identifier
and some status information). Querying is not a concern
and access rights are irrelevant since cards are protected by
PIN-codes. Their unique database management require-
ment is update atomicity.

• Downloadable databases: these are predefined packages
of confidential data (e.g., diplomatic, military or business
information) that can be downloaded on the card – for ex-
ample, before traveling – and be accessed from any termi-
nal. Data availability and security are the major concerns
here. The volume of data can be important and the queries
complex. The data are typically read-only.

• User environment: the objective is to store in a smartcard
an extended profile of the card’s holder including, among
others, data regarding the computing environment (PC’s
configuration, passwords, cookies, bookmarks, software
licenses, etc.), an address book as well as an agenda. The
user environment can thus be dynamically recovered from
the profile on any terminal. Queries remain simple, as data
are not related. However, some of the data are highly pri-
vate and must be protected by sophisticated access rights
(e.g., the card’s holdermaywant to shareasubset of her/his
address book or bookmark list with a subset of persons).
Transaction atomicity and durability are also required.

• Personal folders: personal foldersmay be of a different na-
ture: scholastic, healthcare, car maintenance history, loy-
alty. They roughly share the same requirements, which
we illustrate next with the healthcare example. Note that
queries involving data issued from different folders can
make sense. For instance, onemay be interested in discov-
eringassociationsbetweensomediseaseand thescholastic
level of the card holder. This raises the interesting issue of
maintaining statistics on a population of cards or mining
their content asynchronously.

2.2 The health card application

The health card is very representative of personal folder appli-
cations and has strong database requirements. Several coun-
tries (France, Germany, USA, Russia, Korea, etc.) are devel-
oping healthcare applications on smartcards [11]. The initial
idea was to give to each citizen a smartcard containing her/his
identification and insurance data. As smartcard storage ca-
pacity increases, the information stored in the card can be



122 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

Table 1.Typical applications’ profiles

Applications Volume S
el
ec
t/p
ro
je
ct

Jo
in

G
ro
up

by
/D

is
tin
ct

A
cc
es
s
rig
ht
s
/v
ie
w
s

A
to
m
ic
ity

D
ur
ab

ili
ty

S
ta
tis
tic
s

Money & identification tiny �
Downloadable DB high � � �
User environment medium� � � �
Personal folder high � � � � � � �

extended to the holder’s doctors, emergency data (blood type,
allergies, vaccination, etc.), surgical operations, prescriptions,
insurancedataandeven links toheavier data (e.g.,X-rayexam-
ination, scanner images, etc.) stored on hospital servers. Dif-
ferent users may query, modify, and create data in the holder’s
folder: the doctors who consult the patient’s past records and
prescribe drugs, the surgeons who perform exams and opera-
tions, the pharmacists who deliver drugs, the insurance agents
who refund the patient, public organizations which maintain
statistics or study the impact of drugs correlation in population
samples, and finally the holder her/himself.

We can easily observe that: (i) the amount of data is sig-
nificant (more in terms of cardinality than in terms of volume
because most data can be encoded); (ii) queries can be rather
complex (e.g., a doctor asks for the last antibiotics prescribed
to the patient); (iii) sophisticated access rights management
using views and aggregate functions are highly required (e.g.,
a statistical organizationmay access aggregate values only but
not the raw data); (iv) atomicity must be preserved (e.g., when
the pharmacist delivers drugs); and (v) durability is manda-
tory, without compromising data privacy (logged data stored
outside the card must be protected).

One may wonder whether the holder’s health data ought
to be stored in a smartcard or in a centralized database. The
benefit of distributing the healthcare database on smartcards
is threefold. First, health data must be made highly available
(anywhere, anytime, on any terminal, and without requiring
a network connection). Second, storing sensitive data on a
centralized server may damage privacy. Third, maintaining a
centralized database is fairly complex due to the variety of
data sources. Assuming the health data is stored in the smart-
card, the next question is why the aforementioned database
capabilities need to be hosted in the smartcard rather than the
terminals. The answer is again availability (the data must be
exploited on any terminal) and privacy. Regarding privacy,
since the data must be confined in the chip, so must the query
engine and the view manager. As the smartcard is the unique
trusted part of the system, access rights and transaction man-
agement cannot be delegated to an untrusted terminal.

3 Problem formulation

In this section, we make clear the smartcard constraints in
order to derive design rules for the PicoDBMS and state the
problem. Our analysis is based on the characteristics of both

existing smartcard products and current prototypes [16, 39],
and thus, should be valid for a while.We also discuss how the
main constraints of the smartcard will evolve in a near future.

3.1 Smartcard constraints

Current smartcards include inamonolithic chip, a32bitsRISC
processor at about 30MIPS,memorymodules (of about 96kB
of ROM, 4kB of static RAM, and 128kB of EEPROM), secu-
rity components (to prevent tampering), and take their electri-
cal energy from the terminal [39]. ROM is used to store the op-
erating system, the JavaCard virtual machine, fixed data, and
standard routines. RAM is used as workingmemory for main-
taining an execution stack and calculating results. EEPROM
is used to store persistent information. EEPROM has very fast
read time (60–100ns/word) comparable to old-fashion RAM,
but a dramatically slow write time (more than 1ms/word).

The main constraints of current smartcards are therefore:
(i) the very limited storage capacity; (ii) the very slow write
time inEEPROM; (iii) theextremely reducedsizeof theRAM;
(iv) the lack of autonomy; and (v) a high security level that
must be preserved in all situations. These constraints strongly
distinguish smartcards from any other computing devices, in-
cluding lightweight computers like PDA.

Let us nowconsider howhardwareadvances can impact on
these constraints, in particular, memory size. Current smart-
cards rely on a well-established and slightly out-of-date hard-
ware technology (0.35µm) inorder tominimize theproduction
cost (less than five dollars) and increase security [34]. Further-
more, up to now, there was no real need for large memories
in smartcard applications such as the holder’s identification.
According to major smartcard providers, the market pressure
generated by emerging large storage demanding applications
will lead to a rapid increase of the smartcard storage capac-
ity. This evolution is however constrained by the smartcard
tiny die size fixed to 25mm2 in the ISO standard [23], which
pushes formore integration.This limited size is due to security
considerations (tominimize the risk of physical attack [5]) and
practical constraints (e.g., the chip should not break when the
smartcard is flexed).Another solution to relax the storage limit
is to extend the smartcard storage capacity with externalmem-
ory modules. This is being done by Gemplus which recently
announced Pinocchio [16], a smartcard equipped with 2MB
of Flash memory linked to the microcontroller by a bus. Since
hardware security can no longer be provided on this memory,
its content must be either non-sensitive or encrypted.

Another important issue is the performance of stablemem-
ory. Possible alternatives to the EEPROM are Flash memory
and Ferroelectric RAM (FeRAM) [15] (see Table 2 for perfor-
mance comparisons). Flash is more compact than EEPROM
and represents a good candidate for high capacity smartcards
[16]. However, Flash banks need to be erased before writing,
which is extremely slow. This makes Flash memory appro-
priate for applications with a high read/write ratio (e.g., ad-
dress books). FeRAM is undoubtedly an interesting option for
smartcards as read and write times are both fast. Although its
theoretical foundation was set in the early 1950s, FeRAM is
just emerging as an industrial solution. Therefore, FeRAM is
expensive, less secure than EEPROMor Flash, and its integra-
tion with traditional technologies (such as CPUs) remains an



P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 123

Table 2.Performance of stable memories for the smartcard

Memory type EEPROM FLASH FeRAM

Read time (/word) 60 to 150ns 70 to 200ns 150 to 200ns

Write time (/word) 1 to 5ms 5 to 10µs 150 to 200ns

Erase time (/bank) None 500 to 800ms None

Lifetime (∗) (/cell) 105 write 105 erase 1010 to 1012

cycles cycles write cycles

∗ A memory cell can be overwritten a finite number of time.

issue. Thus FeRAM could be considered a serious alternative
only in the very long term [15].

Given these considerations, we assume in this paper
a smartcard with a reasonable stable storage area (a few
megabytes of EEPROM2) and a small RAM area (some kilo-
bytes). Indeed, there is no clear interest in having a largeRAM
area, given that the smartcard is not autonomous, thus pre-
cluding asynchronouswrite operations.Moreover,moreRAM
means less EEPROM as the chip size is limited.

3.2 Impact on the PicoDBMS architecture

We now analyze the impact of the smartcard constraints on
the PicoDBMS architecture, thus justifying why traditional
database techniques, and even lightweight DBMS techniques,
are irrelevant. The smartcard’s properties and their impact are:

• Highly secure: smartcard’s hardware security makes it the
ideal storagesupport for privatedata.ThePicoDBMSmust
contribute to the data security by providing access right
management and a view mechanism that allows complex
view definitions (i.e., supporting data composition and ag-
gregation). ThePicoDBMScodemust not present security
holes due to the use of sophisticated algorithms3.

• Highly portable: the smartcard is undoubtedly the most
portable personal computer (the wallet computer). The
data located on the smartcard are thus highly available.
They are also highly vulnerable since the smartcard can
be lost, stolen or accidentally destroyed. The main conse-
quence is that durability cannot be enforced locally.

• Limited storage resources: despite the foreseen increase
in storage capacity, the smartcard will remain the lightest
representative of personal computers for a long time. This
means that specific storage models and execution tech-
niques must be devised to minimize the volume of per-
sistent data (i.e., the database) and the memory consump-
tion during execution. In addition, the functionalities of
the PicoDBMS must be carefully selected and their im-
plementation must be as light as possible. The lightest the
PicoDBMS, the biggest the onboard database.

• Stable storage is main memory: smartcard stable memory
provides the read speed and direct access granularity of a
main memory. Thus, a PicoDBMS can be considered as a
main memory DBMS(MMDBMS). However the dramatic
cost of writes distinguishes a PicoDBMS from a tradi-
tional MMDBMS. This impacts on the storage and access

2 Considering Flash instead of EEPROMwill not change our con-
clusions. It will just exacerbate them.

3 Most security holes are the results of software bugs [34].

methods of the PicoDBMS as well as the way transaction
atomicity is achieved.

• Non-autonomous: compared to other computers, the
smartcard has no independent power supply, thereby pre-
cluding disconnected and asynchronous processing. Thus,
all transactions must be completed while the card is in-
serted in a terminal (unlike PDA, write operations cannot
be cached in RAM and reported on stable storage asyn-
chronously).

3.3 Problem statement

To summarize, our goal is to design a PicoDBMS including
the following components:

• Storagemanager: manages the storage of the database and
the associated indices.

• Query manager: processes query plans composed of se-
lect, project, join, and aggregates.

• Transaction manager: enforces the ACID properties and
participates to distributed transactions.

• Access right manager: provides access rights on base data
and on complex user-defined views.

Thus, the PicoDBMS hosted in the chip provides the min-
imal subset of functionality that is strictly needed to manage
in a secure way the data shared by all onboard applications.
Other components (e.g., the GUI, a sort operator, etc.) can be
hosted in the terminal or be dynamically downloaded when
needed, without threatening security. In the rest of this pa-
per, we concentrate on the components which require non-
traditional techniques (storage manager, query manager, and
transaction manager) and ignore the access right manager for
which traditional techniques can be used.

When designing the PicoDBMS’s components, we must
follow several design rules derived from the smartcard’s prop-
erties:

• Compactness rule: minimize the size of data structures
and the PicoDBMS code to cope with the limited stable
memory area (a few megabytes).

• RAM rule: minimize the RAM usage given its extremely
limited size (some kilobytes).

• Write rule: minimize write operations given their dramatic
cost (≈ 1ms/word).

• Read rule: take advantage of the fast read operations (≈
100ns/word).

• Access rule: take advantage of the low granularity and
direct access capability of the stablememory for both read
and write operations.

• Security rule: never externalize private data from the chip
andminimize the algorithms’complexity to avoid security
holes.

4 PicoDBMS storage model

In this section, following the design rules for a PicoDBMS,we
discuss the storage issues and propose a very compact model
based on a combination of flat storage, domain storage, and
ring storage. We also evaluate the storage cost of our storage
model.



124 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

Fig. 1.Domain storage

4.1 Flat storage

The simplest way to organize data isflat storage (FS), where
tuples are stored sequentially and attribute values are embed-
ded in the tuples. Although it does not impose it, the SCQL
standard [24] considers FS as the reference storage model for
smartcards. Themain advantage of FS is access locality. How-
ever, in our context, FS has two main drawbacks:

• Space consuming: while normalization rules preclude at-
tributes conjunction redundancy to occur, they do not
avoid attribute value duplicates (e.g., the attributeDoc-
tor.Specialtymay contain many duplicates).

• Inefficient: in the absence of index structures, all opera-
tions are computed sequentially. While this is convenient
for old fashion cards (some kilobytes of storage and a
mono-relation select operator), this is no longer accept-
able for future cards where storage capacity is likely to
exceed 1MB and queries can be rather complex.

Adding index structures to FS may solve the second prob-
lem while worsening the first one. Thus, FS alone is not ap-
propriate for a PicoDBMS.

4.2 Domain storage

Based on the critique of FS, it follows that a PicoDBMS stor-
agemodel should guarantee both data and index compactness.
Let us first deal with data compactness. Since locality is no
longer an issue in our context, pointer-based storage models
inspired by MMDBMS [3, 27, 31] can help reducing the data
storage cost. The basic idea is to preclude any duplicate value
from occuring. This can be achieved by grouping values in
domains (sets of unique values). We call this modeldomain
storage (DS).As shown in Fig. 1, tuples reference their at-
tribute values by means of pointers. Furthermore, a domain
can be shared among several attributes. This is particularly
efficient for enumerated types, which vary on a small and de-
termined set of values4.

One may wonder about the cost of tuple creation, update,
and deletion since they may generate insertion and deletion
of values in domains. While these actions are more complex
than their FS counterpart, their implementation remains more
efficient in the smartcard context, simply because the amount
of data to be written is much smaller. To amortize the slight
overhead of domain storage, we only store by domain all large
attributes (i.e., greater than a pointer size) containing dupli-
cates.Obviously, attributeswith noduplicates (e.g., keys) need

4 Compression techniques can be advantageously used in conjunc-
tion with DS to increase compactness [17].

Fig. 2.Ring storage

not be stored by domain but with FS. Variable-size attributes
– generally larger than a pointer – can also be advantageously
stored in domains even if they do not contain duplicates. The
benefit is not storage savings but memory management sim-
plicity (all tuples of all relations become fixed-size) and log
compactness (see Sect.6).

4.3 Ring storage

We now address index compactness along with data compact-
ness. Unlike disk-based DBMS that favor indices which pre-
serve access locality, smartcards should make intensive use
of secondary (i.e., pointer-based) indices. The issue here is to
make these indices as compact as possible. Let us first consider
select indices. A select index is typically made of two parts: a
collection of values and a collection of pointers linking each
value to all tuples sharing it. Assuming the indexed attribute
varies on a domain, the index’s collection of values can be
saved since it exactly corresponds to the domain extension.
The extra cost incurred by the index is then reduced to the
pointers linking index values to tuples.

Let us go one step further and get these pointers almost for
free. The idea is to store thesevalue-to-tuplepointers in place
of the tuple-to-valuepointers within the tuples (i.e., pointers
stored in the tuples to reference their attribute values in the
domains). This yields to an index structurewhichmakes a ring
from the domain values to the tuples. Hence, we call itring
index(see Fig. 2a). However, the ring index can also be used to
access the domain values from the tuples and thus serve as data
storage model. Thus we callring storage (RS)the storage of
a domain-based attribute indexed by a ring. The index storage
cost is reduced to its lowest bound, that is, one pointer per
domain value, whatever the cardinality of the indexed relation.
This important storage saving is obtained at the price of extra
work for projecting a tuple to the corresponding attribute since
retrieving the value of a ring stored attribute means traversing



P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 125

on average half of the ring (i.e., up to reaching the domain
value).

Join indices [40] can be treated in a similar way. A join
predicate of the form (R.a = S.b) assumes thatR.a andS.b
vary on the same domain. Storing bothR.a andS.b by means
of rings leads to defining a join index. In thisway, each domain
value is linked by two separate rings to all tuples fromR and
S sharing the same join attribute value. However, most joins
are performed on key attributes,R.a being a primary key and
S.b being the foreign key referencingR.a. In our model, key
attributes are not stored by domain but with FS. Nevertheless,
sinceR.a is theprimary keyofR, its extension formsprecisely
a domain, even if not stored outside ofR. Since attributesS.b
take their values inR.a’s domain, they referenceR.a values
by means of pointers. Thus, the domain-based storage model
naturally implements for free aunidirectional join indexfrom
S.b to R.a (i.e., eachS tuple is linked by a pointer to each
R tuple matching with it). If traversals fromR.a to S.b need
to be optimized too, abi-directional join indexis required.
This can be simply achieved by defining a ring index onS.b.
Figure 2b shows the resulting situation where eachR tuple is
linked by a ring to allS tuplesmatching with it and vice versa.
The cost of a bi-directional join index is restricted to a single
pointer perR tuple, whatever the cardinality ofS. Note that
this situation resembles the well-known Codasyl model.

4.4 Storage cost evaluation

Our storage model combines FS, DS, and RS. Thus, the issue
is to determine the best storage for each attribute. If the at-
tributes need not be indexed, the choice is obviously between
FSandDS.Otherwise, the choice is betweenRSandFSwith a
traditional index. Thus, we compare the storage cost for a sin-
gle attribute, indexed or not, for each alternative.We introduce
the following parameters:
• CardRel: cardinality of the relation holding the attribute.
• a: average length of the attribute (expressed in bytes).
• p: pointer size (3 bytes will be required to address “large”
memory of future cards).

• S: selectivity factor of the attribute.S = Card-
Dom/CardRel, whereCardDom is the cardinality of the
attribute domain extension (in all models).S measures the
redundancy of the attribute (i.e., the same attribute value
appears in1/S tuples).

Cost(FS) = CardRel*a // attribute storage cost in
// the relation

Cost(DS)= CardRel*p // attribute storage cost in
// the relation

+ S*CardRel*a // values storage cost in
// the domain

Cost(IndexedFS) = Cost(FS) // flat attribute storage cost
+ S*CardRel*a // value storage cost in the

// index
+ CardRel*p // pointer storage cost in

// the index

Cost(RS) = Cost(DS) // domain-based attribute
// storage cost

+ S*CardRel*p // pointer storage cost in
// the index

Fig. 3.Storage models’ tradeoff

ThecostequalitybetweenFSandDSgives:S = (a−p)/a.
The cost equality between IndexedFS and RS gives:

S = a/p

Figure 3a shows the different values ofS anda for which
FS and DS are equivalent. Thus, each curve divides the plan
into a gain area for FS (above the curve) and a gain area for DS
(under the curve). For values ofa less than 3 (i.e., the size of a
pointer), FS is obviously always more compact than DS. For
higher values ofa, DS becomes rapidlymore compact than FS
except for high values ofS. For instance, consideringS = 0.5,
that is the same value is shared by only two tuples, DS out-
performs FS for alla larger than 6 bytes. The highera and the
lowerS, the better DS. The benefit of DS is thus particularly
important for enumerated type attributes. Figure 3b compares
IndexedFS with RS. The superiority of RS is obvious, except
for 1- and 2-byte-long key attributes. Thus, Figs.3a and 3b
are guidelines for the database designer to decide how to store
each attribute, by considering its size and selectivity.

5 Query processing

Traditional query processing strives to exploit large main
memory for storing temporary data structures (e.g., hash ta-
bles) and intermediate results.Whenmainmemory is not large
enough to hold somedata, state-of-the-art algorithms (e.g., hy-
brid hash join [33]) resort to materialization on disk to avoid
memory overflow. These algorithms cannot be used for a Pi-
coDBMS because:

• Given the write rule and the lifetime of stable memory,
writes in stablememoryareproscribed, even for temporary
materialization.



126 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

• Dedicating a specific RAM area does not help since we
cannot estimate its size a priori. Making it small increases
the risk of memory overflow, thereby leading to writes in
stablememory.Making it large reduces the stablememory
area, already limited in a smartcard (RAM rule). More-
over, even a large RAM area cannot guarantee that query
execution will not produce memory overflow [9].

• State-of-the-art algorithms are quite sophisticated, which
precludes their implementation in a PicoDBMS whose
code must be simple, compact, and secure (compactness
and security rules).

To solve this problem, we propose query processing tech-
niques that do not use any working RAM area nor incur any
writes in stable memory. In the following, we describe these
techniques for simple and complex queries, including aggre-
gation and remove duplicates. We show the effectiveness of
our solution through a performance analysis.

5.1 Basic query execution without RAM

We consider the execution ofSPJ (Select/Project/Join)
queries. Query processing is classically done in two steps. The
query optimizer first generates an “optimal”query execution
plan (QEP). The QEP is then executed by the query engine
which implements anexecution modeland uses a library of
relational operators [17]. The optimizer can consider differ-
ent shapes of QEP:left-deep, right-deepor bushy trees(see
Fig.4). In a left-deep tree, operators are executed sequentially
and each intermediate result is materialized. On the contrary,
right-deep trees execute operators in a pipeline fashion, thus
avoiding intermediate result materialization. However, they
require materializing in memory all left relations. Bushy trees
offer opportunities to deal with the size of intermediate results
and memory consumption [38].

In a PicoDBMS, the query optimizer should not consider
any of these execution trees as they incur materialization. The
solution is to only use pipeliningwithextreme right-deep trees
where all the operators (including select) are pipelined.As left
operands are always base relations, they are already materi-
alized in stable memory, thus allowing us to execute a plan
with no RAM consumption. Pipeline execution can be easily
achieved using the well-knownIterator Model [17]. In this
model, each operator is aniterator that supports three proce-
dure calls:opento prepare an operator for producing an item,
next to produce an item, andcloseto perform final clean-up.
A QEP is activated starting at the root of the operator tree and
progressing towards the leaves. The dataflow in the model is
demand-driven: a child operator passes a tuple to its parent
node in response to anextcall from the parent.

Let us now detail how select, project, and join are per-
formed. These operators can be executed either sequentially
or with a ring index. Given the access rule, the use of indices
seems always to be the right choice. However, extreme right-
deep trees allow us to speed-up a single select on the first base
relation (e.g.,Drug.typein our example), but using a ring in-
dex on the other selected attributes (e.g.,Visit.date) may slow
down execution as the rings need to be traversed to retrieve
their value. Project operators are pushed up to the tree since
no materialization occurs. Note that the final project incurs

Fig. 4.Several execution trees for query Q1

an additional cost in case of ring attributes. Without indices,
joining relations is done by a nested-loop algorithm since no
other join technique can be applied without ad hoc structures
(e.g., hash tables) and/or working area (e.g., sorting). The cost
of indexed joins depends on the way indices are traversed.
Consider the indexed join betweenDoctor (ntuples) andVisit
(m tuples) on their key attribute. Assuming a unidirectional
index, the join cost is proportional ton∗m starting withDoc-
tor and tom startingwithVisit.Assuming nowa bi-directional
index, the join cost becomes proportional ton + m starting
with Doctor and tom2/2n starting withVisit (retrieving the
doctor associated to each visit incurs traversing half of a ring
in average). In the latter case, a na¨ıve nested loop join can be
more efficient if the ring cardinality is greater than the tar-
get relation cardinality (i.e., whenm > n2). In that case, the
database designer must clearly choose a unidirectional index
between the two relations.

5.2 Complex query execution without RAM

We now consider the execution of aggregate, sort, and du-
plicate removal operators. At first glance, pipeline execution
is not compatible with these operators which are classically
performed on materialized intermediate results. Such materi-
alization cannot occur either in the smartcard due to the RAM
rule or in the terminal due to the security rule. Note that sort-
ing can be done in the terminal since the output order of the



P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 127

Fig. 5.Four ‘complex’ query execution plans

result tuples is not significant, i.e., depends on the DBMS al-
gorithms.

We propose a solution to the above problem by exploiting
two properties: (i) aggregate and duplicate removal can be
done in pipeline if the incoming tuples are still grouped by
distinct values; and (ii) pipeline operators are order-preserving
since they consume (and produce) tuples in the arrival order.
Thus, enforcing an adequate consumption order at the leaf of
the execution tree allows pipelined aggregation and duplicate
removal. For instance, the extreme right-deep tree of Fig.4
delivers the tuples naturally groupedbyDrug.id, thus allowing
group queries on that attribute.

Let us now consider query Q2 of Fig.5. As pictured, exe-
cuting Q2 in pipeline requires rearranging the execution tree
so that relationDoctor is explored first. SinceDoctorcontains
distinct doctors, the tuples arriving to thecountoperator are
naturally grouped by doctors.

The case of Q3 is harder. As the data must be grouped
by type of drugsrather than byDrug.id, an additional join is
required between relationDrug and domaindrug.type. Do-
main values being unique, this join produces the tuples in the
adequate order. If domainDrug.typedoes not exist, an opera-
tor must be introduced to sort relationDrug in pipeline. This
can be done by performingn passes onDrug wheren is the
number of distinct values ofDrug.type.

The case of Q4 is even trickier. The result must be grouped
on two attributes (Doctor.id andDrug.type), introducing the
need to start the tree with both relations! The solution is to
insert a Cartesian product operator at the leaf of the tree in
order to produce tuples ordered byDoctor.id andDrug.type.
In this particular case, the query response time should be ap-
proximatelyn times greater than the same query without the
‘group by’ clause, wheren is the number of distincttypes of
drugs.

Q5 retrieves the distinct couples ofdoctorandtype of pre-
scribed drugs. This query can be made similar to Q4 by ex-
pressing the distinct clause as an aggregate without function
(i.e., the query “select distinct a1, . . . , an from. . . ” is equiva-
lent to “select a1, . . . , an from. . . group by a1, . . . , an”). The
unique difference is that the computation for a given group,
i.e., (distinct result tuple) can stop as soon as one tuple has
been produced.

5.3 Query optimization

Heuristic optimization is attractive. However, well-known
heuristics such as processing select and project first do not
work here. Using extreme right-deep trees makes the former
impractical and invalidates the latter. Heuristics for join order-
ing are even more risky considering our data structures. Con-
versely, there are many arguments for an exhaustive search
of the best plan. First, the search space is limited since: (i)
there is a single algorithm for each operator, depending on the
existing indices; (ii) only extreme right-deep trees are consid-
ered; and (iii) typical queries will not involve many relations.
Second, exhaustive search using depth-first algorithms do not
consume any RAM. Finally, exhaustive algorithms are simple
and compact (even if they iterate a lot). Under the assump-
tion that query optimization is required in a PicoDBMS, the
remarks above strongly argue in favor of an exhaustive search
strategy.

5.4 Performance evaluation

Our proposed query engine can handle fairly complex queries,
taking advantage of the read and access rules5 while satis-
fying the compactness, write, RAM, and security rules. We
now evaluate whether the PicoDBMS performance matches
the smartcard application’s requirements, that is, any query
issued by the application can be performed in reasonable time
(i.e.,maynotexceed theuser’spatience).Since thePicoDBMS
code’s simplicity is an important consideration to conform to
the compactness and security rules, we must also evaluate
which acceleration techniques (i.e., ring indices, query opti-
mization) are really mandatory. For instance, an accelerator
reducing the response time from 10ms to 1ms is useless in
the smartcard context6. Thus, unlike traditional performance
evaluation, our major concern is on absolute rather than rela-
tive performance.

5 With traditional DBMS, such techniques will induce so many
disk accesses that the system would thrash!

6 With traditional DBMS, such acceleration can improve the trans-
actional throughput.



128 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

Fig. 6.Performance results for Q1

Evaluating absolute response time is complex in the smart-
card environment because all platform parameters (e.g., pro-
cessor speed, caching strategy, RAM, and EEPROM speed)
strongly impact on the measurements7. Measuring the per-
formance of our PicoDBMS on Bull’s smartcard technology
is attractive but introduces two problems. First, Bull’s smart-
cards compatible with database applications are still proto-
types [39]. Second, we are interested in providing the most
general conclusions (i.e., as independent as possible of smart-
card architectures). Therefore, we prefer tomeasure our query
engine on two oldfashioned computers (a PC 486/25Mhz and
aSunSparcStation1+) whichwe felt roughly similar to forth-
coming smartcard architectures. For each computer, we vary
the system parameters (clock frequency, cache) and perform
the experimentation tests. The performance ratios between
all configurations were roughly constant (i.e., whatever the
query), the slowest configuration (Intel 486withnocache) per-
forming eight times worse than the fastest (RISC with cache).
In the following, we present response times for the slowest
architecture to check the viability of our solutions in the worst
environment.

We generated three instances of a simplified healthcare
database: thesmall, medium, and largedatabases containing,
respectively, (10, 30, 50) doctors, (100, 500, 1,000) visits,
(300, 2,000, 5,000) prescriptions, and (40, 120, 200) drugs.Al-
though we tested several queries, we describe below only the
twomost significant.QueryQ1,which contains three joins and
two selects onVisit andDrug (with selectivities of 20% and
5%), is representative of medium-complexity queries. Query
Q4, which performs an aggregate on two attributes and re-
quires the introductionof aCartesianproduct, is representative
of complex queries. For each query, we measure the perfor-
mance for all possible query execution plans, excluding those
which induce additional Cartesian product, varying the stor-
age choices (with and without select and join ring indices).
Figures 6 and 7 show the results for both best and worst plans
on databases built with or without join indices.

Considering SPJ queries, the PicoDBMS performance
clearly matches the application’s requirements as soon as join
rings are used. Indeed, the performance with join rings is at

7 With traditional DBMS, very slowdisk access allows us to ignore
finer parameters.

Fig. 7.Performance results for Q4

most 146ms for the largest database andwith the worst execu-
tion plan.With small databases, all the acceleration techniques
canbediscarded,whilewith larger ones, join rings remainnec-
essary to obtain good response time. In that case, the absolute
gain (110ms) between the best and the worst plan does not
justify the use of a query optimizer.

The performance of aggregate queries is clearly the worst
because they introduce a Cartesian product at the leaf of the
execution tree. Join rings are useful for medium and large
databases. With large databases, the optimizer turns out to
be necessary since the worst execution plan with join rings
achieves a rather long response time (20.6s).

The influence of ring indices for selects (not shown) is in-
significant.Dependingon the selectivity, it canbring slight im-
provement or overhead on the results.Although it may achieve
an important relative speed-up for the select itself, the abso-
lute gain is not significant considering the small influence of
select on the global query execution cost (which is not the case
in disk-based DBMS). Select ring indices are, however, use-
ful for queries with aggregates or duplicate removal, that can
result in a join between a relation and the domain attribute.
In that case, the select index plays the role of a join index,
thereby generating a significant gain on large relations and
large domains.

Thus, this performanceevaluation shows that our approach
is feasible and that join indices are mandatory in all cases
while query optimization turns out to be useful only with large
databases and complex queries.

6 Transaction management

Like any data server, a PicoDBMS must enforce the well-
known transactionalACID properties [8] to guarantee the con-
sistency of the local data it manages as well as be able to
participate in distributed transactions.We discuss below these
properties with respect to a PicoDBMS.

• Atomicity: local atomicitymeans that the set of actions
performed by the PicoDBMS on a transaction’s behalf
is made persistent following theall or nothing scheme.
Global atomicity: this means that all data servers – includ-
ing the PicoDBMS – accessed by a distributed transaction



P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 129

agree on the same transaction outcome (either commit or
rollback). The distinguishing features of a PicoDBMS re-
garding atomicity are no demarcation betweenmainmem-
ory and persistent storage, the dramatic cost of writes, and
the fact that they cannot be deferred.

• Consistency: this property ensures that the actions per-
formed by the PicoDBMS satisfy all integrity constraints
defined on the local data. Considering that traditional in-
tegrity constraint management can be used, we do not dis-
cuss it any further.

• Isolation: this property guarantees the serializability of
concurrent executions. A PicoDBMS manages personal
data and is typically single-user8. Furthermore, smartcard
operating systems do not even support multithreading.
Therefore, isolation is useless here.

• Durability: durability means that committed updates are
never lost whatever the situation (i.e., even in case of a
media failure). Durability cannot be enforced locally by
the PicoDBMS because the smartcard is more likely to be
stolen, lost or destroyed than a traditional computer. In-
deed, mobility and smallness play against safety. Conse-
quently, durability must be enforced through the network.
Themajor issue is thenpreserving theprivacyof datawhile
delegating the durability to an external agent.

The remainder of this section addresses local atomicity,
global atomicity, and durability.

6.1 Local atomicity

There are basically two ways to perform updates in a DBMS.
The updates are either performed onshadow objectsthat are
atomically integrated in the database at commit time or done
in place(i.e., the transaction updates the shared copy of the
database objects) [8].We discuss these two traditional models
below.

• Shadow update: This model is rarely employed in disk-
based DBMSs because it destroys data locality on disk
and increases concurrent updates on the catalog. In a Pi-
coDBMS, disk locality and concurrency are not a concern.
This model has been shown to be convenient for smart-
cards equippedwith a small Flashmemory [25]. However,
it is poorly adapted to pointer-based storage models like
RS since the object location changes at every update. In
addition, the cost incurred by shadowing grows with the
memory size. Indeed, either the granularity of the shadow
objects increases or the paths to be duplicated in the cata-
log become longer. In both cases, the writing cost – which
is the dominant factor – increases.

• Update in-place: write-ahead logging (WAL) [8] is re-
quired in this model to undo the effects of an aborted
transaction. Unfortunately, the relative cost of WAL is
much higher in a PicoDBMS than in a traditional disk-
based DBMS which uses buffering to minimize I/Os. In a
smartcard, the log must be written for each update since
eachupdatebecomes immediately persistent.This roughly
doubles the cost of writing.

8 Even if the data managed by the PicoDBMS are shared among
multiple users (e.g., as in the healthcare application), the PicoDBMS
serves a single user at a time.

Despite its drawbacks,update in-placeis better suited than
shadow updatefor a PicoDBMS because it accommodates
pointer-based storage models and its cost is insensitive to the
rapid growth of stable memory capacity.We also propose two
optimizations toupdate in-place:

• Pointer-based logging: traditionalWAL logs the values of
all modified data. RS allows a finer granularity by logging
pointers in place of values. The smallest the log records,
the cheapest theWAL. The logging process must consider
two types of information:

• Values: in case of a tuple update, the log record must con-
tain the tuple address and the old attribute values, that is a
pointer for all RS stored attributes and a regular value for
FS stored attributes. In case of a tuple insertion or deletion,
assuming each tuple header contains a status bit (i.e., dead
or alive), only the tuple address has to be logged in order
to recover its state.

• Rings: tuple insertion, deletion, and update (of a ring at-
tribute) modify the structure of each ring traversing the
corresponding tuplet. Since a ring is a circular chain of
pointers, recovering its state means recovering thenext
pointer oft’s predecessor (let us call ittpred). The infor-
mation to restore intpred.nextis eithert’s address ift has
been updated or deleted, ort.nextif t has been inserted.t’s
address already belongs to the log (see above) andt.next
does not have to be logged sincet’s content still exists in
stable storage at recovery time. The issue is how to iden-
tify tpred at recovery time. Logging this information can
be saved at the price of traversing the whole ring starting
from t, until reachingt again. Thus, ring recovery comes
for free in terms of logging.

• Garbage-collecting values: insertion and deletion of do-
main values (domain values are never modified) should
be logged as any other updates. This overhead can be
avoided by implementing a deferred garbage collector that
destroys all domain values no longer referenced by any tu-
ple. Garbage-collecting a domain amounts to execute an
ad hoc semi-join operator between the domain and all re-
lations varying on it which discards the domain values that
do not match9. The benefit of this solution is threefold: (i)
the lazy deletion of unreferenced values does not entail the
storage model coherency; (ii) garbage-collecting domain
values is required anyway by RS (even in the absence of
transaction control); and (iii) a deferred garbage-collector
can be implemented without reference counters, thereby
saving storage space. The deferred garbage collector can-
not work in the background since smartcards do not yet
support multi-threading. Themost pragmatic solution is to
launch it manually when the card is nearly full. An alter-
native to this manual procedure is to execute the garbage
collector automatically at each card connection on a very
small subset of the database (so that its cost remains hid-
den to the user). Garbage-collecting the database in such
an incremental way is straightforward since domain values
are examined one after the other.

9 Unlike reachability algorithms that start from the persistent roots
and needmarking [6], the proposed garbage-collector starts from the
persistent leaves (i.e., the domain values) and exploits them one after
the other, in a pipelined fashion (thus, it conforms to the RAM rule).



130 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

The update in-place model along with pointer-based log-
ging and deferred garbage-collector reduces logging cost to its
lowest bound, that is, a tuple address for inserted and deleted
tuples, and the values of updated attributes (again, a pointer
for DS and RS stored attributes).

6.2 Global atomicity

Global atomicity is traditionally enforced by anatomic com-
mitment protocol(ACP). The most well known and widely
usedACP is 2PC [8].While extensively studied [19] and stan-
dardized [21, 29, 41], 2PC suffers from the following weak-
nesses in our context:

• Need for a standard prepared state: any server must ex-
ternalize the standardXa interface [41] to participate to
2PC. Unfortunately, ISO defines a transactional interface
for smartcardsbut it doesnot cover distributed transactions
[24]. In addition, participating to 2PC requires building a
local prepared state that consumes valuable resources.

• Disconnection means aborting: a smartcard can be ex-
tracted from its terminal or its mobile host (e.g., a cellular
phone) can be temporarily unreachable during 2PC.A par-
ticipant’s disconnection leads 2PC to abort the transaction
even if all its operations have been successfully executed.

• Badly adapted to moving participants: the 2PC incurs two
message rounds to commit a transaction. Considering the
high cost of wireless communication, the overhead is sig-
nificant for mobile terminals equipped with a smartcard
reader (e.g., PDA, cellular phones).

As itsname indicates, 2PChas twophases: thevotingphase
and thedecisionphase. The voting phase is the means by
which the coordinator checks whether or not the participants
can locally guarantee the ACID properties of the distributed
transaction. The decision iscommitif all participants voteyes
and abort otherwise. Thus, the voting phase introduces an
uncertainty period at transaction termination that leads to the
aforementioned drawbacks.

Variationsofone-phasecommitprotocols (1PC) havebeen
recently proposed [2, 4, 35]. As stated in [2], 1PC eliminates
the voting phase of 2PC by enforcing the following properties
on the participant’s behavior: (1) all operations are acknowl-
edged before the 1PC is launched; (2) there are no deferred
integrity constraints; (3) all participants are ruled by a rigorous
concurrency control scheduler; and (4) all updates are logged
on stable storage before 1PC is launched. These assumptions
guarantee, respectively, the A, C, I, D properties before the
ACP is launched. Then, theACP reduces to a single phase, that
is broadcasting the coordinator’s decision to all participants
(this decision is commit if all transaction’s operations have
been successfully executed and abort otherwise). If a crash
or a disconnection precludes a participant from conforming
to this decision, the corresponding transaction branch is sim-
ply forward recovered (potentially at the next reconnection).
While the assumptions on the participant’s behavior seemcon-
straining in the general case, they are quite acceptable in the
smartcard context [10]. Property (1) is common to all ACPs
and is enforced by the ISO7816 standard [22]; property (2)
conforms to the fact that PicoDBMS have lighter capabilities

than full-fledged DBMS; and property (3) is satisfied by def-
inition since smartcards do not support parallel executions.
Property (4) is discussed in Sect.6.3.

Eliminating the voting phase of theACP solves altogether
the three aforementioned problems. However, one may won-
der about the interoperability between transaction managers
and data managers supporting different protocols (either 1PC
or 2PC).We have shown in [1] that the participation of legacy
(i.e., 2PC compliant) datamanagers in 1PC is straightforward.
Conversely, the participation of 1PC compliant datamanagers
(e.g., a smartcard) in the 2PC can be achieved by associat-
ing a log agentto each participant. The role of the log agent
is twofold. First, it manages the data manager’s part of the
1PC’s coordinator log, forces it to stable storage during the
2PC prepare phase, and exploits it if the transaction branch
needs to be forward-recovered. Second, it translates the 2PC
interface into that of 1PC. The log agent can be located on the
terminal, so that the benefit of 1PC is lost for the terminal but
it is preserved for the smartcard.

6.3 Durability

Most 1PC protocols assume that the coordinator is in charge
of logging all participants’ updates before triggering the ACP
(all these protocols belong to the coordinator log family).Co-
ordinator log [35] and implicit yes vote[4] assume that the
participants piggyback their log records on the acknowledg-
ment messages of each operation whilecoordinator logical
log [2] assumes that the coordinator logs all operations sent to
each participant. In all cases, the durability of the distributed
transaction relies on the coordinator log. Thus, 1PC is ameans
by which global atomicity and durability can be solved alto-
gether, at the same price.

Two issues remain to be solved: (i) where to store the
coordinator log; and (ii) how to preserve the security rule,
that is, how to make the log content as secure as the data
stored in the smartcard. Since the log must sustain any kind
of failure, it must be stored on the network by a trustee server
(e.g., a public organism, a central bank, the card issuer, etc.).
If some transactions are executed in disconnected mode (e.g.,
on a mobile terminal), the durability will be effective only at
the time the terminal reconnects to the network. Protecting
the log content against attacks imposes encryption. The way
encryption is performed depends on the model of logging.
If the coordinator log is fed by the log records piggybacked
by the participants, the smartcard can encrypt them with an
algorithm based on a private key (e.g., DES [28]). Otherwise
(i.e., if the coordinator logical logscheme is selected), the
smartcard can provide the coordinator with a public key that
will be used by the coordinator itself to encrypt its log [32].

6.4 Transaction cost evaluation

The goal of this section is to approximate the time required by
a representative update transaction. The objective is to confirm
whether or not the write performance of smartcards assumed
in this paper is acceptable for database applications like health
cards. To this end, we estimate the time required to create a
tuple in a relation, including the creation of domain values,



P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 131

the insertion of the tuple in the rings potentially defined on
this relation and the log time. Let us introduce the following
parameters, in addition to those already defined in Sect.4.4:

• nbAttFS: number of FS stored attributes
• nbAttDS: number of DS stored attributes
• nbAttRS: number of RS stored attributes
• w: size of a word (4 bytes in a 32-bit card)
• t: time to write one word in stable storage

(5ms in the worst case)

Cost(insertTuple) =
([(nbAttFS*a + nbAttDS*p + nbAttRS*p)/w] //①
+ (nbAttRS + nbAttDS) * S * [a/w] // ②
+ nbAttRS * [p/w] // ③
+ [p/w] // ④
) * t // ⑤

① Tuple size
② Domain values size. S≈ probability

to create a new domain value
③ Ring pointers to be updated
④ Log record size
⑤ Write time

Let us consider a representative transaction executed on
the healthcare. This transaction inserts a new tuple inDoctor
andVisit and five tuples inPrescriptionandDrug. This is
somehow a worst case for this application in the sense that the
visited doctor is a new one and prescribes five new drugs. The
considered attribute distribution is as follows:

Doctor (nbAttFS=3, nbAttDS=4, nbAttRS=0),
Visit (nbAttFS=2, nbAttDS=3, nbAttRS=2),
Prescription (nbAttFS=1, nbAttDS=1, nbAttRS=2),
Drug (nbAttFS=2, nbAttDS=4, nbAttRS=0).

The average attribute lengtha is fixed to 10 bytes. Figure 8
plots the update transaction execution time depending onS
(S = 0 means that all attribute values already exist in the
domains, whileS = 1 means that all these values need be
inserted in the domains).

The figure is self-explanatory. Note that the logging cost
represents less than 3% of the total cost. This simple analysis
shows that the time expected for this kind of transaction (less
than1s) is clearly compatiblewith thehealthcare application’s
requirements.

7 Conclusion

As smartcards become more and more versatile, multi-
application, and powerful, the need for database techniques
arises. However, smartcards have severe hardware limita-
tions which make traditional database technology irrelevant.
The major problem is scaling down database techniques so
they perform well under these limitations. In this paper, we
addressed this problem and proposed the design of a Pi-
coDBMS, concentrating on the components which require
non-traditional techniques (storage manager, query manager,
and transaction manager).

This paper makes several contributions. First, we an-
alyzed the requirements for a PicoDBMS based on a
healthcare application which is representative of personal

Fig. 8.Performance of a typical update transaction

folder applications and has strong database requirements.
We showed that the minimal functionality should include
select/project/join/aggregate, access right management, and
views as well as transaction’s atomicity and durability.

Second, we gave an in-depth analysis of the problem by
considering the smartcard hardware trends.Basedon this anal-
ysis,weassumedasmartcardwith a reasonable stablememory
of a few megabytes and a small RAM of some kilobytes, and
we derived design rules for a PicoDBMS architecture.

Third, we proposed a new highly compact storage model
that combines flat storage (FS), domain storage (DS), and ring
storage (RS). Ring storage reduces the indexing cost to its
lowest bound. Based on performance evaluation, we derived
guidelines to decide the best way to store an attribute.

Fourth, we proposed query processing techniques which
handle complex query plans with no RAM consumption. This
is achieved by considering extreme right-deep trees which can
pipeline all operators of the plan including aggregates. We
also argued that, if query optimization is needed, the strategy
should be exhaustive search.Wemeasured the performance of
our execution model with an implementation of our query en-
gine on two old-fashioned computers which we configured to
be similar to forthcoming smartcard architectures.We showed
that the resulting performance matches the smartcard applica-
tion’s requirements.

Finally, we proposed techniques for transaction atomic-
ity and durability. Local atomicity is achieved through up-
date in-place with two optimizations which exploit the stor-
age model: pointer-based logging and garbage collection of
domain values. Global atomicity and durability are enforced
by 1PC which is easily applicable in the smartcard context
and more efficient than 2PC.We showed that the performance
of typical update transactions is acceptable for representative
applications like the health card.

This work is done in the context of a new project with
Bull Smart Cards and Terminals. The next step is to port our
PicoDBMS prototype on Bull’s smartcard new technology,
calledOverSoft[12], and to assess its functionality and per-
formance on real-world applications. To this end, a bench-
mark dedicated to PicoDBMSmust be set up.We also plan to
address open issues such as protected logging for durability,
query execution on encrypted data (e.g., stored in an external
Flash), and statistics maintenance on a population of cards.



132 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

References

1. AbdallahM., BobineauC., Guerraoui R., Pucheral P: Specifica-
tion of the transaction service. Esprit project OpenDREAMS-II
n˚ 25262, Deliverable n˚ R13, 1998

2. Abdallah M., Guerraoui R., Pucheral P.: One-phase commit:
does it make sense? Int. Conf. on Parallel and Distributed Sys-
tems (ICPADS), 1998

3. AmmannA.,HanrahanM., KrishnamurthyR.: design of amem-
ory resident DBMS. IEEE COMPCON, 1985

4. Al-Houmaily Y., Chrysanthis P.K.: Two-phase commit in
gigabit-networked distributed databases. Int. Conf. on Parallel
and Distributed Computing Systems (PDCS), 1995

5. Anderson R., Kuhn M.: Tamper resistance – a cautionary note.
USENIXWorkshop on Electronic Commerce, 1996

6. Amsaleg L., Franklin M.J., Gruber O.: Efficient incremental
garbage collection for client-server object database systems. Int.
Conf. on Very Large Databases (VLDB), 1995

7. Bobineau C., Bouganim L., Pucheral P., Valduriez P.: Pi-
coDBMS: scaling down database techniques for the smart-
card (Best Paper Award). Int. Conf. on Very Large Databases
(VLDB), 2000

8. Bernstein P.A., Hadzilacos V., Goodman N.: Concurrency con-
trol and recovery in database systems. Addison-Wesley, Read-
ing, Mass., USA,1987

9. Bouganim L., Kapitskaia O., Valduriez P.: Memory-adaptive
scheduling for large query execution. Int. Conf. on Information
and Knowledge Management (CIKM), 1998

10. Bobineau C., Pucheral P., Abdallah M.: A unilateral commit
protocol for mobile and disconnected computing. Int. Conf. On
Parallel and Distributed Computing Systems (PDCS), 2000

11. van Bommel F.A., Sembritzki J., Buettner H.-G.: Overview on
healthcard projects and standards. HealthCards Int. Conf., 1999

12. Bull S.A.: Bull unveils iSimplify! the personal portable portal.
Available at: http://www.bull.com:80/bullnews/

13. Carrasco L.C.: RDBMS’s for Java cards?What a senseless idea!
Available at: www.sqlmachine.com, 1999

14. DataQuest.: Chip card market and technology charge ahead.
MSAM-WW-DP-9808, 1998

15. Dipert B.: FRAM: Ready to ditch niche? EDN Access Maga-
zine, Cahners, London, 1997

16. Gemplus.: SIM Cards: From kilobytes to megabytes. Available
at: www.gemplus.fr/about/pressroom/, 1999

17. Graefe G.: Query evaluation techniques for large databases.
ACM Comput Surv, 25(2), 1993

18. Graefe G.: The new database imperatives. Int. Conf. on Data
Engineering (ICDE), 1998

19. Gray J., ReuterA.: Transaction processing. Concepts and Tech-
niques. Morgan Kaufmann, San Francisco, 1993

20. IBM Corporation.: DB2 Everywhere – administration and ap-
plication programming guide. IBM Software Documentation,
SC26-9675-00, 1999

21. International Standardization Organization (ISO).: Information
technology - open systems interconnection - distributed trans-
action processing. ISO/IEC 10026, 1992

22. International Standardization Organization (ISO).: Integrated
circuit(s) cards with contacts – part 3: electronic signal and
transmission protocols. ISO/IEC 7816-3, 1997

23. International Standardization Organization (ISO).: Integrated
circuit(s) cards with contacts – part 1: physical characteristics.
ISO/IEC 7816-1, 1998

24. International Standardization Organization (ISO).: Integrated
circuit(s) cards with contacts – part 7: interindustry commands
for structured card query language (SCQL). ISO/IEC 7816-7,
1999

25. Lecomte S., Trane P.: Failure recovery using action log for
smartcards transaction based system. IEEE Online Testing
Workshop, 1997

26. Microsoft Corporation.: Windows for smartcards toolkit for vi-
sual basic 6.0. Available at: www.microsoft.com/windowsce/
smartcard/, 2000

27. Missikov M., Scholl M.: Relational queries in a domain based
DBMS. ACM SIGMOD Int. Conf. on Management of Data,
1983

28. National Institute of Standards and Technology.: Announcing
the Data Encryption Standard (DES). FIPS PUB 46-2, 1993

29. Object Management Group.: Object transaction service. Docu-
ment 94.8.4, OMG editor, 1994

30. OracleCorporation.:Oracle 8i Lite -Oracle Lite SQL reference.
Oracle documentation, A73270-01, 1999

31. Pucheral P., Th´evenin J.M.,ValduriezP.: Efficientmainmemory
data management using the DBGraph storage model. Int. Conf.
on Very Large Databases (VLDB), 1990

32. RSA Laboratories.: PKCS # 1: RSA Encryption Standard. RSA
Laboratories Technical Note, v.1.5, 1993

33. Schneider D., DeWitt D.:A performance evaluation of four par-
allel join algorithms in a shared-nothing multiprocessor envi-
ronment. ACM-SIGMOD Int. Conf., 1989

34. Schneier B., Shostack A.: Breaking up is hard to do: modeling
security threats for smart cards. USENIX Symposium on Smart
Cards, 1999

35. Stamos J.,CristianF.:A low-cost atomic commit protocol. IEEE
Symposium on Reliable Distributed Systems, 1990

36. Sun Microsystems.: JavaCard 2.1 application programming in-
terface specification. JavaSoft documentation, 1999

37. Sybase Inc.: Sybase adaptive server anywhere reference.
CT75KNA, 1999

38. Shekita E., Young H., Tan K.L.: Multi-join optimization for
symmetricmultiprocessors. Int. Conf. onVery LargeDataBases
(VLDB), 1993

39. Tual J.-P.: MASSC: a generic architecture for multiapplication
smart cards. IEEE Micro J, N˚ 0272-1739/99, 1999

40. Valduriez P.: Join indices. ACM Trans. Database Syst, 12(2),
1987

41. X/Open.: Distributed transaction processing: reference model.
X/Open Guide, Version 3. G307., X/Open Company Limited,
1996


