The VLDB Journal (2001) 10: 120-132 / Digital Object Identifier (DOI) 10.1007/s007780100047

PicoDBMS: Scaling down database techniques for the smartcard

Philippe Pucheral', Luc Bouganim', Patrick Valduriez 2, Christophe Bobineau

! University of Versailles, PRiSM Laboratory, Versailles, France;
E-mail: {philippe.pucheral;luc.bouganim;christophe.bobine@prism.uvsq.fr
2 University Paris 6, LIP6 Laboratory, Paris, France; E-mail: patrick.valduriez@Iip6.fr

Edited by A. El Abbadi, G. Schlageter, K.-Y. Whang. Received: 15 October 2000 / Accepted: 15 April 2001
Published online: 23 July 2001(© Springer-Verlag 2001

Abstract. Smartcards are the most secure portable computingervice providers. This should make smartcards one of the
device today. They have been used successfully in applicationsorld’s highest-volume markets for semiconductors [14].
involving money, and proprietary and personal data (such as As smartcards become more and more versatile, multi-
banking, healthcare, insurance, etc.). As smartcards get mow@gpplication, and powerful (32-bit processor, more than 1 MB
powerful (with 32-bit CPU and more than 1MB of stable of stable storage), the need for database techniques arises. Let
memory in the next versions) and become multi-application,us consider a health card storing a complete medical folder
the need for database management arises. However, smaitcluding the holder’s doctors, blood type, allergies, prescrip-
cards have severe hardware limitations (very slow write, ventions, etc. The volume of data can be important and the queries
little RAM, constrained stable memory, no autonomy, etc.)fairly complex (select, join, aggregate). Sophisticated access
which make traditional database technology irrelevant. Theights managementusing views and aggregate functions are re-
major problem is scaling down database techniques so theguired to preserve the holder’s data privacy. Transaction atom-
perform well under these limitations. In this paper, we give anicity and durability are also needed to enforce data consistency.
in-depth analysis of this problem and propose a PicoDBMSMore generally, database management helps to separate data
solution based on highly compact data structures, query exmanagement code from application code, thereby simplifying
ecution without RAM, and specific techniques for atomicity and making application code smaller. Finally, new applica-
and durability. We show the effectiveness of our techniquegions can be envisioned, like computing statistics on a large
through performance evaluation. number of cards, in an asynchronous and distributed way. Sup-
porting database management on the card itself rather than on
Key words: Smartcard applications — PicoDBMS — Storage an external device is the only way to achieve very high secu-
model — Execution model — Query optimization — Atomicity rity, high availability (anywhere, anytime, on any terminal),
— Durability and acceptable performance.

However, smartcards have severe hardware limitations
which stem from the obvious constraints of small size (to
fit on a flexible plastic card and to increase hardware se-
curity) and low cost (to be sold in large volumes). Today’s
) microcontrollers contain a CPU, memory — including about
1 Introduction 96 kB of ROM, 4 kB of RAM, and up to 128 kB of stable stor-

age like EEPROM — and security modules [39]. EEPROM
Smartcards are the most secure portable computing device tés used to store persistent information; it has very fast read
day. The first smartcard was developed by Bull for the FrencHime (60-100ns) comparable to old-fashion RAM but very
banking system in the 1980s to significantly reduce the losseslow write time (more than 1 ms/word). Following Moore’s
associated with magnetic stripe credit card fraud. Since therlaw for processor and memory capacities, smartcards will get
smartcards have been used successfully around the world iapidly more powerful. Existing prototypes, like Gemplus’s
various applications involving money, proprietary data, andPinocchio card [16], bypass the current memory bottleneck
personal data (such as banking, pay-TV or GSM subscribeby connecting an additional chip of 2 MB of Flash memory to
identification, loyalty, healthcare, insurance, etc.). While to-the microcontroller. Although a significant improvement over
day’s smartcards handle a single issuer-dependent applicatiotfday’s cards, this is still very restricted compared to other
the trend is toward multi-application smartcardStandards portable, less secure, devices such as Personal Digital Assis-
for multi-application support, like the JavaCard [36] and Mi- tants (PDA). Furthermore, smartcards are not autonomous,
crosoft's SmartCard for Windows [26], ensure that the cardi.e., have no independent power supply, thereby precluding
be universally accepted and be able to interact with severaksynchronous and disconnected processing.

! Everyone would probably enjoy carrying far fewer cards.

P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

121

These limitations (tiny RAM, little stable storage, very 2 Smartcard applications

costly write, and lack of autonomy) make traditional database

techniquesirrelevant. Typically, traditional DBMS exploit sig- Inthis section, we discuss the major classes of emerging smart-
nificant amounts of RAM and use caching and asynchronou§ard applications and their database requirements. Then, we
I/0s to reduce disk access overhead as much as possible. Withstrate these requirements in further detail with the health
the extreme constraints of the smartcard, the major problem igard application, which we will use as reference example in
scaling down database techniques. While there has been muéhe rest of the paper.

excellent work on scaling up to deal with very large databases,
e.g., using parallelism, scaling down has not received much at-

tention by the database research community. However, scaling 1 Database management requirements

down in general is becoming very important for commodity
computing and is quite difficult [18].
Some DBMS designs have addressed the problem of sca

Table 1 summarizes the database management requirements
gf the following typical classes of smartcard applications:

ing down. Light versions of popular DBMS like Sybase Adap- e Money and identificatianexamples of such applications

tive Server Anywhere [37], Oracle 8i Lite [30] or DB2 Every-
where [20] have been primarily designed for portable comput-
ers and PDA. They have a small footprint which they obtain
by simplifying and componentizing the DBMS code. How-
ever, they use relatively high RAM and stable memory and do
not address the more severe limitations of smartcards. ISOL's
SQLJava Machine DBMS [13] is the first attempt towards a

smartcard DBMS while SCQL [24], the standard for smartcard e
database language, emerges. While both designs are limited to

single select, they exemplify the strong interest for dedicated
smartcard DBMS.
In this paper, we address the problem of scaling down

database techniques and propose the design of what we call a

PicoDBMS. This work is done in the context of a new project

with Bull Smart Cards and Terminals. The design has beene

made with smartcard applications in mind, but its scope ex-
tends as well to any ultra-light computer device based on a
secured monolithic chip. This paper makes the following con-
tributions:

e We analyze the requirements for a PicoDBMS based on a
typical healthcare application and justify its minimal func-
tionality.

¢ We give anin-depth analysis of the problem by considering
the smartcard hardware trends and derive design principles
for a PicoDBMS.

e We propose a new pointer-based storage model that inte-
grates data and indices in a unique compact data structure.

e We propose query execution techniques which handle
complex query plans (including joins and aggregates) with
no RAM consumption.

e We propose transaction techniques for atomicity and dura-
bility that reduce the logging cost to its lowest bound and
enable a smartcard to participate in distributed transac-
tions.

e \We show the effectiveness of each technique through per-
formance evaluation.

This paper is an extended version of [7]. In particular, the

are credit cards, e-purse, SIM for GSM, phone cards, trans-
portation cards. They are representative of today’s applica-
tions, with very few data (typically the holder’s identifier
and some status information). Querying is not a concern
and access rights are irrelevant since cards are protected by
PIN-codes. Their unique database management require-
ment is update atomicity.

Downloadable databasethese are predefined packages
of confidential data (e.g., diplomatic, military or business
information) that can be downloaded on the card — for ex-
ample, before traveling — and be accessed from any termi-
nal. Data availability and security are the major concerns
here. The volume of data can be important and the queries
complex. The data are typically read-only.

User environmentthe objective is to store in a smartcard
an extended profile of the card’s holder including, among
others, data regarding the computing environment (PC’s
configuration, passwords, cookies, bookmarks, software
licenses, etc.), an address book as well as an agenda. The
user environment can thus be dynamically recovered from
the profile on any terminal. Queries remain simple, as data
are not related. However, some of the data are highly pri-
vate and must be protected by sophisticated access rights
(e.g., the card’s holder may wantto share a subset of her/his
address book or bookmark list with a subset of persons).
Transaction atomicity and durability are also required.

e Personal folderspersonal folders may be of a different na-

ture: scholastic, healthcare, car maintenance history, loy-
alty. They roughly share the same requirements, which
we illustrate next with the healthcare example. Note that
gueries involving data issued from different folders can
make sense. For instance, one may be interested in discov-
ering associations between some disease and the scholastic
level of the card holder. This raises the interesting issue of
maintaining statistics on a population of cards or mining
their content asynchronously.

section on transaction management is new. The paper is orga-2 The health card application

nized as follows. Section 2 illustrates the use of take-away

databases in various classes of smartcard applications afithe health card is very representative of personal folder appli-

presents in more detail the requirements of the health cardations and has strong database requirements. Several coun-
application. Section 3 analyzes the smartcard hardware cortries (France, Germany, USA, Russia, Korea, etc.) are devel-
straints and gives the problem definition. Sections 4—6 preseriping healthcare applications on smartcards [11]. The initial
and assess the PicoDBMS’ storage model, query executioitiea was to give to each citizen a smartcard containing her/his
model, and transaction model, respectively. Section 7 conidentification and insurance data. As smartcard storage ca-
cludes. pacity increases, the information stored in the card can be

122 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

Table 1. Typical applications’ profiles existing smartcard products and current prototypes [16, 39],
@ and thus, should be valid for a while. We also discuss how the
5 3 main constraints of the smartcard will evolve in a near future.
£ 5
§ 3¢
© T o i
g > 2 % E‘ 8 3.1 Smartcard constraints
o n = 9 P
% c 3 3 E ¢ 2 Currentsmartcards include in a monolithic chip, a 32 bits RISC
Applications Volume w S O < £ & processor at about 30 MIPS, memory modules (of about 96 kB
Money & identification tmy v of ROM, 4 kB of static RAM, and 128kB of EEPROM), Secu-
Downloadable DB high v v v rity components (to prevent tampering), and take their electri-
User ervironment mediume VA cal energy from the terminal [39]. ROM is used to store the op-
. erating system, the JavaCard virtual machine, fixed data, and
Personal folder high v v v v v v vV

standard routines. RAM is used as working memory for main-
taining an execution stack and calculating results. EEPROM
extended to the holder’s doctors, emergency data (blood typdS used to store persistent information. EEPROM has very fast
allergies, vaccination, etc.), surgical operations, prescriptiongi€ad time (60-100 ns/word) comparable to old-fashion RAM,
insurance data and even links to heavier data (e.g., X-ray exaniut a dramatically slow write time (more than 1 ms/word).
ination, scanner images, etc.) stored on hospital servers. Dif- The main constraints of current smartcards are therefore:
ferent users may query, modify, and create data in the holder'§) the very limited storage capacity; (ii) the very slow write
folder: the doctors who consult the patient’s past records anime in EEPROM,; (iii) the extremely reduced size of the RAM;
prescribe drugs, the surgeons who perform exams and operéV) the lack of autonomy; and (v) a high security level that
tions, the pharmacists who deliver drugs, the insurance agent§ust be preserved in all situations. These constraints strongly
who refund the patient, public organizations which maintaindistinguish smartcards from any other computing devices, in-
statistics or study the impact of drugs correlation in populationcluding lightweight computers like PDA.
samples, and finally the holder her/himself. Letus now consider how hardware advances canimpacton
We can easily observe that: (i) the amount of data is sigthese constraints, in particular, memory size. Current smart-
nificant (more in terms of cardinality than in terms of volume cards rely on a well-established and slightly out-of-date hard-
because most data can be encoded); (i) queries can be rath&gre technology (0.34m) in order to minimize the production
complex (e.g., a doctor asks for the last antibiotics prescribe@ost (less than five dollars) and increase security [34]. Further-
to the patient); (iii) sophisticated access rights managemerfnore, up to now, there was no real need for large memories
using views and aggregate functions are highly required (e.gin smartcard applications such as the holder’s identification.
a statistical organization may access aggregate values only bgcording to major smartcard providers, the market pressure
not the raw data); (iv) atomicity must be preserved (e.g., whergenerated by emerging large storage demanding applications
the pharmacist delivers drugs); and (v) durability is manda-Will lead to a rapid increase of the smartcard storage capac-
tory, without compromising data privacy (logged data storedity. This evolution is however constrained by the smartcard
outside the card must be protected). tiny die size fixed to 25 m#in the ISO standard [23], which
One may wonder whether the holder’s health data oughpushes for more integration. This limited size is due to security
to be stored in a smartcard or in a centralized database. THeonsiderations (to minimize the risk of physical attack [5]) and
benefit of distributing the healthcare database on smartcardgactical constraints (e.g., the chip should not break when the
is threefold. First, health data must be made highly availablesmartcard is flexed). Another solution to relax the storage limit
(anywhere, anytime, on any terminal, and without requiringis to extend the smartcard storage capacity with external mem-
a network connection). Second, storing sensitive data on &'y modules. This is being done by Gemplus which recently
centralized server may damage privacy. Third, maintaining éannounced Pinocchio [16], a smartcard equipped with 2MB
centralized database is fairly complex due to the variety ofof Flash memory linked to the microcontroller by a bus. Since
data sources. Assuming the health data is stored in the smafftardware security can no longer be provided on this memory,
card, the next question is why the aforementioned databasiés content must be either non-sensitive or encrypted.
capabilities need to be hosted in the smartcard rather than the Anotherimportantissue is the performance of stable mem-
terminals. The answer is again availability (the data must bedry. Possible alternatives to the EEPROM are Flash memory
exploited on any terminal) and privacy. Regarding privacy,and Ferroelectric RAM (FeRAM) [15] (see Table 2 for perfor-
since the data must be confined in the chip, so must the querpance comparisons). Flash is more compact than EEPROM
engine and the view manager. As the smartcard is the uniquend represents a good candidate for high capacity smartcards
trusted part of the system, access rights and transaction maft6]. However, Flash banks need to be erased before writing,
agement cannot be delegated to an untrusted terminal. which is extremely slow. This makes Flash memory appro-
priate for applications with a high read/write ratio (e.g., ad-
dress books). FeERAM is undoubtedly an interesting option for
3 Problem formulation smartcards as read and write times are both fast. Although its
theoretical foundation was set in the early 1950s, FERAM is
In this section, we make clear the smartcard constraints ifjust emerging as an industrial solution. Therefore, FERAM is
order to derive design rules for the PicoDBMS and state theexpensive, less secure than EEPROM or Flash, and its integra-
problem. Our analysis is based on the characteristics of botkion with traditional technologies (such as CPUs) remains an

P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 123

Table 2. Performance of stable memories for the smartcard methods of the PicoDBMS as well as the way transaction

Memory type EEPROM FLASH FeRAM atomicity is achieved.
e Non-autonomous compared to other computers, the

Read time (/word) 60to 150ns 70to 200ns 150 to 200ns smartcard has no independent power supply, thereby pre-
Write time (/word) 1toSms 5to10s 150to 200ns cluding disconnected and asynchronous processing. Thus,
Erase time (/bank) None 500to 800ms None all transactions must be completed while the card is in-
Lifetime) (Jcell) 10° write 10° erase 10'° to 10'2 serted in a terminal (unlike PDA, write operations cannot
cycles cycles write cycles be cached in RAM and reported on stable storage asyn-

. . . chronously).
* A memory cell can be overwritten a finite number of time. y)

issue. Thus FeRAM could be considered a serious alternativa-3 Problem statement

onI;gi:\/grlle%ng;oggggizjn;rgt?(])hs, we assume in this pape&;) summarize, our goal is? to design a PicoDBMS including
a smartcard with a reasonable stable storage area (a fe e following components:
megabytes of EEPRORJland a small RAM area (some kilo- e Storage managemanages the storage of the database and
bytes). Indeed, there is no clear interestin having alarge RAM the associated indices.
area, given that the smartcard is not autonomous, thus pre-s Query managerprocesses query plans composed of se-
cluding asynchronous write operations. Moreover, more RAM lect, project, join, and aggregates.
means less EEPROM as the chip size is limited. e Transaction managerenforces the ACID properties and
participates to distributed transactions.

e Access right manageprovides access rights on base data

3.2 Impact on the PicoDBMS architecture and on complex user-defined views.

We now analyze the impact of the smartcard constraints on Thus, the PicoDI_SMS.hosted .in th? chip provides the min-
the PicoDBMS architecture, thus justifying why traditional Ml Subset of functionality that is strictly needed to manage
database techniques, and even lightweight DBMS techniqued & Secure way the data shared by all onboard applications.

are irrelevant. The smartcard’s properties and their impact arehggfer dc?nmtﬂzng?ﬁigzlgartgz ﬁygéﬁqfcoéﬁ;%%@l;?ga?gg S&lge

¢ Highly securesmartcard’s hardware security makes it the needed, without threatening security. In the rest of this pa-
ideal storage support for private data. The PicoDBMS musiper, we concentrate on the components which require non-
contribute to the data security by providing access righttraditional techniques (storage manager, query manager, and
management and a view mechanism that allows complexransaction manager) and ignore the access right manager for
view definitions (i.e., supporting data composition and ag-which traditional techniques can be used.
gregation). The PicoDBMS code must not presentsecurity When designing the PicoDBMS’s components, we must
holes due to the use of sophisticated algorithms follow several design rules derived from the smartcard’s prop-

e Highly portable the smartcard is undoubtedly the most erties:
portable personal computer (the wallet computer). The
data located on the smartcard are thus highly available.
They are also highly vulnerable since the smartcard can
be lost, stolen or accidentally destroyed. The main conse-
quence is that durability cannot be enforced locally.

e Limited storage resourceslespite the foreseen increase
in storage capacity, the smartcard will remain the lightest ®
representative of personal computers for a long time. This
means that specific storage models and execution tech-*
nigues must be devised to minimize the volume of per-
sistent data (i.e., the database) and the memory consump?®
tion during execution. In addition, the functionalities of
the PicoDBMS must be carefully selected and their im-
plementation must be as light as possible. The lightest the ®
PicoDBMS, the biggest the onboard database.

e Stable storage is main memogmartcard stable memory
provides the read speed and direct access granularity of a
main memory. Thus, a PicoDBMS can be considered as % PicoDBMS storage model
main memory DBMEVMMDBMS). However the dramatic
cost of writes distinguishes a PicoDBMS from a tradi-
tional MMDBMS. This impacts on the storage and acces

e Compactness ruleminimize the size of data structures
and the PicoDBMS code to cope with the limited stable
memory area (a few megabytes).

¢ RAM rule minimize the RAM usage given its extremely

limited size (some kilobytes).

Write rule minimize write operations given their dramatic

cost & 1 ms/word).

Read rule take advantage of the fast read operations (

100 ns/word).

Access ruletake advantage of the low granularity and

direct access capability of the stable memory for both read

and write operations.

Security rule never externalize private data from the chip

and minimize the algorithms’ complexity to avoid security

holes.

In this section, following the design rules for a PicoDBMS, we
Sdiscuss the storage issues and propose a very compact model
2 Considering Flash instead of EEPROM will not change our con-based on a combination of flat storage, domain storage, and
clusions. It will just exacerbate them. ring storage. We also evaluate the storage cost of our storage

3 Most security holes are the results of software bugs [34]. model.

124 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

Relation R Relation S Relation S att, e —
~ g p "N Satt,
\\ / I'\. I] - I)
Ty vale 7’" - tuple, ‘l/ i H-:_f’ Domain
/ Value 2 .I.. | B Value :
e | - Value
pad vawe « e —— [! /,/
Fig. 1. Domain storage :
’ ’ B Value,

(a) Ring index on a regular attribute

4.1 Flat storage .
Relation S sp Rr.a Relation R

The simplest way to organize datéflist storage (FS)where
tuples are stored sequentially and attribute values are embe: s
ded in the tuples. Although it does not impose it, the SCQL
standard [24] considers FS as the reference storage model f ' /
smartcards. The main advantage of FS is access locality. How d Pl

ever, in our context, FS has two main drawbacks: B

Tt

e Space consumingvhile normalization rules preclude at-]
tributes conjunction redundancy to occur, they do not (b) Ring index on a foreign key attribute
avoid attribute value duplicates (e.g., the attribDigc-
tor.Specialtymay contain many duplicates).

o Inefficient in the absence of index structures, all opera-

tions are computed sequentially. While this is convenientyq; he stored by domain but with FS. Variable-size attributes
for old fashion cards (some kilobytes of storage and a_ generally larger than a pointer — can also be advantageously
mono-relation select operator), this is no longer acceptigred in domains even if they do not contain duplicates. The
able for future cards where storage capacity is likely t0penefit is not storage savings but memory management sim-
exceed 1 MB and queries can be rather complex. plicity (all tuples of all relations become fixed-size) and log

Adding index structures to FS may solve the second probSompactness (see Sect. 6).
lem while worsening the first one. Thus, FS alone is not ap-
propriate for a PicoDBMS.

Fig. 2. Ring storage

4.3 Ring storage

4.2 Domain storage We now address index compactness along with data compact-
ness. Unlike disk-based DBMS that favor indices which pre-

serve access locality, smartcards should make intensive use
Qé secondary (i.e., pointer-based) indices. The issue here is to

Let us first deal with data compactness. Since locality is nomake thes_e indices as compactas possible. Letusfirstconsider
longer an issue in our context, pointer-based storage modef%eIeCt !nd|ces. A selectindex is ty_plcaIIy m_ade Of.tW(.) parts: a
inspired by MMDBMS [3, 27 3’1] can help reducing the data collection of values and a collection of pointers linking each

storage cost. The basic idea is to preclude any duplicate valyé!ue t0 all tuples sharing it. Assuming the indexed attribute
varies on a domain, the index’s collection of values can be

from occuring. This can be achieved by grouping values in ; . . ;

domains (sets of unique values). We call this mattermain saved since it gxactly corresporjds to_the domain extension.

storage (DS)As shown in Fig. 1, tuples reference their at- Thg extra cost |.ncurred by the index is then reduced to the
’ jpointers linking index values to tuples.

tribute values by means of pointers. Furthermore, a domai Let ton furth daetth int | tf
can be shared among several attributes. This is particularl etus go one step Iurther and get these pointers aimost for
free. The idea is to store thegalue-to-tuplgpointers in place

efficient for enumerated types, which vary on a small and de . L ; ;
yp y of the tuple-to-valuepointers within the tuples (i.e., pointers

termined set of valués : . \ ;
One may wonder about the cost of tuple creation updatesmred in the tuples to reference their attribute values in the
and deletion since they may generate insertion and’ deletio omains). Th|s_y|elds to an index structure which makes_armg
rom the domain values to the tuples. Hence, we caihig

of values in domains. While these actions are more complex q Fig. 2a) H the rina ind lso b dt
than their FS counterpart, their implementation remains mord"dex(see Fig. 2a). However, the ring index can also be used to

efficient in the smartcard context, simply because the amourficcess the domain values from the tuples and thus serve as data
of data to be written is much smaller. To amortize the S"ghtstorage model. Thus we calhg storage (RS)he storage of

overhead of domain storage, we only store by domain all largé d0main-based attribute indexed by a ring. The index storage
cost is reduced to its lowest bound, that is, one pointer per

attributes (i.e., greater than a pointer size) containing dupli- ; o i .
cates. Obviously, attributes with no duplicates (e.g., keys) nee omain value, whatever the_ cardmahty ofthe '”dex?d relation.
' ' his important storage saving is obtained at the price of extra
4 Compression techniques can be advantageously used in conjunvork for projecting a tuple to the corresponding attribute since
tion with DS to increase compactness [17]. retrieving the value of a ring stored attribute means traversing

Based on the critique of FS, it follows that a PicoDBMS stor-
age model should guarantee both data and index compactne

P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 125

on average half of the ring (i.e., up to reaching the domain§ ,

value). 10 i
Join indices [40] can be treated in a similar way. A join 08
predicate of the formR.a = S.b) assumes thak.a andS.b ‘ FS /'__'__,-
vary on the same domain. Storing bdttw andS.b by means 0.6
of rings leads to defining a join index. In this way, each domaing 4 / DS more compact
value is linked by two separate rings to all tuples fréand 0.2 /
S sharing the same join attribute value. However, most joins ™ /
are performed on key attribute,a being a primary key and 0.0 et
S.b being the foreign key referencing.a. In our model, key 0246810 13 16 19 22 25 28 31 "bves
attributes are not stored by domain but with FS. Nevertheless (a) Without index

sinceR.ais the primary key oR, its extension forms precisely g
a domain, even if not stored outside®f Since attributes'.b
take their values irR.a’s domain, they referencB.a values
by means of pointers. Thus, the domain-based storage mod?8 }
naturally implements for freewnidirectional join indexrom 06

S.bto R.a (i.e.., eachS .tuple is linked by a pointer to each 04 RS more compact

R tuple matching with it). If traversals from.a to S.b need /

to be optimized too, di-directional join indexis required.
This can be simply achieved by defining a ring indexsh 0,0 L Nt
Figure 2b shows the resulting situation where eRdiple is 0 2 46810 13 16 19 22 25 28 31 nbyles
linked by aring to allS tuples matching with it and vice versa. (b) With index

The cost of a bi-directional join index is restricted to a single

pointer perR tuple, whatever the cardinality &f. Note that ~ Fi9- 3. Storage models’ tradeoff

this situation resembles the well-known Codasyl model.

The costequality between FS and DS gives: (a—p)/a.
4.4 Storage cost evaluation The cost equality between IndexE& and RS gives:

Our storage model combines FS, DS, and RS. Thus, the issue S=a/p

is to determine the best storage for each attribute. If the at-

tributes need not be indexed, the choice is obviously between Figure 3a shows the different values$anda for which

FS and DS. Otherwise, the choice is between RS and FSwithag gnd DS are equivalent. Thus, each curve divides the plan

traditional index. Thus, we compare the storage cost for a sinyyig 5 gain area for FS (above the curve) and a gain area for DS
gle attribute, indexed or not, for each alternative. We introduce(under the curve). For values efess than 3 (i.e., the size of a
the following parameters: pointer), FS is obviously always more compact than DS. For
o CardRel cardinality of the relation holding the attribute. higher values ofi, DS becomes rapidly more compact than FS
e a: average length of the attribute (expressed in bytes). except for high values &f. For instance, considerirffj= 0.5,
e p: pointer size (3 bytes will be required to address “large” that is the same value is shared by only two tuples, DS out-
memory of future cards). performs FS for alk larger than 6 bytes. The higheand the
e 5. selectivity factor of the attribute.S = Card- lower S, the better DS. The benefit of DS is thus particularly
Dom/CardRe] whereCardDomis the cardinality of the important for enumerated type attributes. Figure 3b compares
attribute domain extension (in all modelS)measures the IndexedFS with RS. The superiority of RS is obvious, except
redundancy of the attribute (i.e., the same attribute valugor 1- and 2-byte-long key attributes. Thus, Figs.3a and 3b
appears il /S tuples). are guidelines for the database designer to decide how to store

Cost(FS)= CardRel*a J/ attribute storage cost in each attribute, by considering its size and selectivity.

/I the relation

Cost(DSF CardRel*p /I attribute storage cost in)
/I the relation 5 Query processing
+ S*CardRel*a // values storage cost in
/l the domain Traditional query processing strives to exploit large main

memory for storing temporary data structures (e.g., hash ta-
bles) and intermediate results. When main memory is not large
enough to hold some data, state-of-the-art algorithms (e.g., hy-

Cost(IndexedrS) = Cost(FS) // flat attribute storage cost
+ S*CardRel*a // value storage cost in the

+ CardRel* Z lnc!ei< ¢ i brid hash join [33]) resort to materialization on disk to avoid
ararel’p I phom ear storage costin memory overflow. These algorithms cannot be used for a Pi-
the index coDBMS because:
Cost(RS) = Cost(DS) /I domain-based attribute
/I storage cost e Given the write rule and the lifetime of stable memory,
+ S*CardRel*p // pointer storage cost in writes in stable memory are proscribed, even fortemporary

/I the index materialization.

126 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

e Dedicating a specific RAM area does not help since we [—— Materialization
cannot estimate its size a priori. Making it small increaseg @ / \ — Pipelining
the risk of memory overflow, thereby leading to writes in doc
- - N [><i|
stable memory. Making it large reduces the stable memory \
area, already limited in a smartcard (RAM rule). More- / o @/ \
over, even a large RAM area cannot guarantee that query 5
execution will not produce memory overflow [9]. fj,M visit Vs ;;?G
e State-of-the-art algorithms are quite sophisticated, which . \ G o
precludes their implementation in a PicoDBMS whose / presc. / /
code must be simple, compact, and secure (compactne.;arug visit doc drug presc.
and security rules).
To solve this problem, we propose query processing techt OLeft deep tree @Bushy tree
nigues that do not use any working RAM area nor incur any b b
writes in stable memory. In the following, we describe these| (3) // \ 0 / \
techniques for simple and complex queries, including aggret o
gation and remove duplicates. We show the effectiveness df ~ doc 14 doc
our solution through a performance analysis. 0{7 \ <
% 7\
. . . visit P4 visit 14
5.1 Basic query execution without RAM v / hY
o 4]
))) 7 presc.
We consider the execution 08PJ (Select/Project/Join d resc dru
queries. Query processing is classically done in two steps. The rug P ' 9
query optimizer first generates an “optimajliery execution GRight deep tree ®Extreme right deep tree
pla_n (Q.EP)' The QEP is the.n executed by the qu_ery engin Healthcare Database schema: Doctor (Docld, name, specialty, ..}
which implements aexecution modeand uses a library of | e Prescription (visld, Drugld, gty. ..]
relational operators [17]. The optimizer can consider differ- Wisit (Visld, Docld, date, diagnostic,)
ent shapes of QEReft-deep right-deepor bushy treegsee Drug (Drugld, name, type, .]
Fig.4). In a left-deep tree, operators are executed sequentialluery @7: Who prescribes antibitics in 1999

and each intermediate result is matgnahzgd. _On the qontra%ig_ 4. Several execution trees for query Q1
right-deep trees execute operators in a pipeline fashion, thus
avoiding intermediate result materialization. However, they

require materializing in memory all left relations. Bushy trees an additional cost in case of ring attributes. Without indices,
offer opportunities to deal with the size of intermediate resultsjoining relations is done by a nested-loop algorithm since no
and memory consumption [38]. other join technique can be applied without ad hoc structures

In a PicoDBMS, the query optimizer should not consider (e.g., hash tables) and/or working area (e.g., sorting). The cost
any of these execution trees as they incur materialization. Thef indexed joins depends on the way indices are traversed.
solution is to only use pipelining witxtreme right-deep trees Consider the indexed join betweBwctor (ntuples) and/isit
where all the operators (including select) are pipelined. As left(;, tuples) on their key attribute. Assuming a unidirectional
operands are always base relations, they are already matefqdex, the join cost is proportional tox m starting withDoc-
alized in stable memory, thus allowing us to execute a planor and tom starting withVisit. Assuming now a bi-directional
with no RAM consumption. Pipeline execution can be easilyindex, the join cost becomes proportionalite- m starting
achieved using the well-knowtterator Model[17]. In this with Doctor and tom?/2n starting withVisit (retrieving the
model, each operator is derator that supports three proce- doctor associated to each visit incurs traversing half of a ring
dure callsopento prepare an operator for producing an item, in average). In the latter case, avehested loop join can be
nextto produce an item, andoseto perform final clean-up. more efficient if the ring cardinality is greater than the tar-
A QEPis activated starting at the root of the operator tree andget relation cardinality (i.e., whem > n2). In that case, the

progressing towards the leaves. The dataflow in the model igatabase designer must clearly choose a unidirectional index
demand-driven: a child operator passes a tuple to its paremetween the two relations.

node in response torgextcall from the parent.

Let us now detail how select, project, and join are per-
formed. These operators can be executed either sequentialy/2 Complex query execution without RAM
or with a ring index. Given the access rule, the use of indices
seems always to be the right choice. However, extreme righttWe now consider the execution of aggregate, sort, and du-
deep trees allow us to speed-up a single select on the first bapdicate removal operators. At first glance, pipeline execution
relation (e.g.Drug.typein our example), but using a ring in- is not compatible with these operators which are classically
dex on the other selected attributes (éVgsit.datg may slow performed on materialized intermediate results. Such materi-
down execution as the rings need to be traversed to retrievalization cannot occur either in the smartcard due to the RAM
their value. Project operators are pushed up to the tree sinaeile or in the terminal due to the security rule. Note that sort-
no materialization occurs. Note that the final project incursing can be done in the terminal since the output order of the

P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 127

“\M
A\ \
drug / \ // \\

presc U\ Presc i

2 4
@ Viﬁ: \duc @dTUQ thg.type

Q2: Number of anfibiotics Q3 Number of prescription
prescribed par doctor in 1999 per type of drug

\
/M\M /M\M
drug // \ drug / \

dlistinch

presc ™ presc ™
7\ VAN
visit /x visit /X
doc doc \
@ drug.type drug.type

Q5 Disfinet doclars
and type of drug

Q4 Nurber of prescriplions
per doclor and type of drug

Fig. 5. Four ‘complex’ query execution plans

The case of Q4 is even trickier. The result must be grouped
on two attributes Poctor.id and Drug.typg, introducing the
need to start the tree with both relations! The solution is to
insert a Cartesian product operator at the leaf of the tree in
order to produce tuples ordered Byctor.id and Drug.type
In this particular case, the query response time should be ap-
proximatelyn times greater than the same query without the
‘group by’ clause, where is the number of distindypes of
drugs

Q5 retrieves the distinct couplesaidctor andtype of pre-
scribed drugsThis query can be made similar to Q4 by ex-
pressing the distinct clause as an aggregate without function
(i.e.,the querySelectdistinctg, . .. ,a,, from... ”isequiva-
lentto“selectq, ... ,a, from... groupbya,...,a,"). The
unique difference is that the computation for a given group,
i.e., (distinct result tuplg can stop as soon as one tuple has
been produced.

5.3 Query optimization

Heuristic optimization is attractive. However, well-known
heuristics such as processing select and project first do not
work here. Using extreme right-deep trees makes the former
impractical and invalidates the latter. Heuristics for join order-
ing are even more risky considering our data structures. Con-
versely, there are many arguments for an exhaustive search
of the best plan. First, the search space is limited since: (i)
there is a single algorithm for each operator, depending on the
existing indices; (ii) only extreme right-deep trees are consid-
ered; and (iii) typical queries will not involve many relations.
Second, exhaustive search using depth-first algorithms do not
consume any RAM. Finally, exhaustive algorithms are simple
and compact (even if they iterate a lot). Under the assump-
tion that query optimization is required in a PicoDBMS, the
remarks above strongly argue in favor of an exhaustive search

result tuples is not significant, i.e., depends on the DBMS alstrategy.

gorithms.

We propose a solution to the above problem by exploiting

two properties: (i) aggregate and duplicate removal can b& 4 performance evaluation
done in pipeline if the incoming tuples are still grouped by

djstinct values; and (ii) pipeline operators are order-preservinq)ur proposed query engine can handle fairly complex queries,
since they consume (and produce) tuples in the arrival orderr king advantage of the read and access fuldsile satis-

Thus, enforcing an adequate consumption order at the leaf ing the compactness, write, RAM, and security rules. We

the execution tree allows pipelined aggregation and duplipat ow evaluate whether the PicoDBMS performance matches
(rjeerpogril;[hiotr Irllztsa:;te,r:ﬂe i’grergde[b”ght.'g?ﬁpst;ﬁﬁ O.fn FI9-4he smartcard application’s requirements, that is, any query

roll\J/ uerieuspon thatuattriﬁgte upedbiug.d, thu WING issued by the application can be performed in reasonable time
group g : (i.e., may notexceed the user’s patience). Since the PicoDBMS

Let us now consider query Q2 of Fig. 5. As pictured, €X€- code’s simplicity is an important consideration to conform to

cuting Q2 ir.] pipeline.requires regrranging the executipn T®%he compactness and security rules, we must also evaluate
so that relatiorDoctor is explored first. SincBoctorcontains |\ .12 < oleration techniques (i.e.. ring indices, query opti-

distinct doctors, the tuples arriving to theuntoperator are mization) are really mandatory. For instance, an accelerator

naturally grouped by doctors. (%ﬁducing the response time from 10ms to 1 ms is useless in

b tThg gfg?uoggﬁ;rstﬂggdsr' 'rAuS ﬁzeaia;"’écm?;:a?eo?ﬁ:pe e smartcard contektThus, unlike traditional performance
ylyp 9 L rug.id, an : J evaluation, our major concern is on absolute rather than rela-
required between relatiobrug and domaindrug.type Do- tive performance

& .

main values being unique, this join produces the tuples in th
adequate order. If domabrug.typedoes not exist, an opera-
tor must be introduced to sort relati@rug in pipeline. This
can be done by performing passes orug wheren is the
number of distinct values drug.type

5 With traditional DBMS, such techniques will induce so many
disk accesses that the system would thrash!

& with traditional DBMS, such acceleration can improve the trans-
actional throughput.

128 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

1.0 i - Nz 205 B30 1610
% | Wnoring -worst s Wnoring - worst {
: 0.8/ D no ring - best -E— 20 & no ring - best »
£ | e ring -worst £ Z1ing - worst %
S [ring - best 5 [Clring - b f
= 0,6 = 154 En00-besl f///
g _
5 |
0,41 - 10 %
0,24 5 /
- %
| n i
0,0 - o _"_I 0 / | y /_-f} I
Small DB Medium DB Large DB Small DB Medium DB Large DB
Fig. 6. Performance results for Q1 Fig. 7. Performance results for Q4

Eva|uating absolute response timeis Comp|ex inthe smartmost 146 ms forthe Iargest database and with the worst execu-

card environment because all p|atform parameters (e_g_7 prdj.on plan. With small databases, all the acceleration teChniqueS
cessor speed, caching strategy, RAM, and EEPROM speedgn be discarded, while with larger ones, join rings remain nec-
Strong|y impact on the measureméntMeasuring the per- essary to obtain gOOd response time. In that case, the absolute
formance of our PicoDBMS on Bull's smartcard technology 9ain (110ms) between the best and the worst plan does not
is attractive but introduces two problems. First, Bull's smart-justify the use of a query optimizer.

cards compatible with database applications are still proto- The performance of aggregate queries is clearly the worst
types [39] Second, we are interested in providing the mosbecause they introduce a Cartesian product at the leaf of the
general conclusions (i.e., as independent as possible of sma@xecution tree. Join rings are useful for medium and large
card architectures). Therefore, we prefer to measure our quer§atabases. With large databases, the optimizer turns out to
engine on two oldfashioned computers (a PC 486/25Mhz an@€ necessary since the worst execution plan with join rings
a Sun SparcStatiaht) which we felt roughly similar to forth- ~ achieves a rather long response time (20.6).

coming smartcard architectures. For each computer, we vary The influence of ring indices for selects (not shown) is in-
the system parameters (clock frequency, cache) and perforgignificant. Depending on the selectivity, it can bring slightim-
the experimentation tests. The performance ratios betweeBrovementor overhead onthe results. Although it may achieve
all configurations were roughly constant (i.e., whatever thean important relative speed-up for the select itself, the abso-
guery), the slowest configuration (Intel 486 with no cache) perJUte gain is not significant considering the small influence of
forming eight times worse than the fastest (RISC with cache)select on the global query execution cost (which is not the case
In the following, we present response times for the slowestn disk-based DBMS). Select ring indices are, however, use-
architecture to check the viability of our solutions in the worst ful for queries with aggregates or duplicate removal, that can
environment. result in a join between a relation and the domain attribute.

We generated three instances of a simplified healthcaré that case, the select index plays the role of a join index,
database: themall, medium, and largéatabases containing, thereby generating a significant gain on large relations and
respectively, (10, 30, 50) doctors, (100, 500, 1,000) visits,/arge domains.

(300, 2,000, 5,000) prescriptions, and (40, 120, 200) drugs. Al- Thus, this performance evaluation shows that our approach
though we tested several queries, we describe below only this feasible and that join indices are mandatory in all cases
two most significant. Query Q1, which contains three joins andwhile query optimization turns out to be useful only with large
two selects onVisit andDrug (with selectivities of 20% and databases and complex queries.

5%), is representative of medium-complexity queries. Query

Q4, which performs an aggregate on two attributes and re-

quiresthe introduction of a Cartesian product, is representativé Transaction management

of complex queries. For each query, we measure the perfor-

mance for all possible query execution plans, excluding those.ike any data server, a PicoDBMS must enforce the well-
which induce additional Cartesian product, varying the stor-known transactional ACID properties [8] to guarantee the con-
age choices (with and without select and join ring indices).sistency of the local data it manages as well as be able to
Figures 6 and 7 show the results for both best and worst plangarticipate in distributed transactions. We discuss below these
on databases built with or without join indices. properties with respect to a PicoDBMS.

Considering SPJ queries, the PicoDBMS performance . . i
clearly matches the application’s requirements as soon as join® Atomicity. local atomicitymeans that the set of actions
rings are used. Indeed, the performance with join rings is at Performed by the PicoDBMS on a transaction's behalf

is made persistent following thall or nothing scheme.
7 With traditional DBMS, very slow disk access allows us to ignore Global atomicity this means that all data servers —includ-
finer parameters. ing the PicoDBMS — accessed by a distributed transaction

P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

agree on the same transaction outcome (either commit or

129

Despite its drawbackspdate in-placés better suited than

rollback). The distinguishing features of a PicoDBMS re- shadow updatdor a PicoDBMS because it accommodates
garding atomicity are no demarcation between main memspointer-based storage models and its cost is insensitive to the
ory and persistent storage, the dramatic cost of writes, andapid growth of stable memory capacity. We also propose two

the fact that they cannot be deferred.

e Consistencythis property ensures that the actions per-
formed by the PicoDBMS satisfy all integrity constraints
defined on the local data. Considering that traditional in-
tegrity constraint management can be used, we do not dis-
cuss it any further.

e Isolationt this property guarantees the serializability of

optimizations taupdate in-place

e Pointer-based loggingraditional WAL logs the values of

all modified data. RS allows a finer granularity by logging
pointers in place of values. The smallest the log records,
the cheapest the WAL. The logging process must consider
two types of information:

concurrent executions. A PicoDBMS manages personal e Values in case of a tuple update, the log record must con-

data and is typically single-useiFurthermore, smartcard
operating systems do not even support multithreading.
Therefore, isolation is useless here.

e Durability: durability means that committed updates are
never lost whatever the situation (i.e., even in case of a
media failure). Durability cannot be enforced locally by

the PicoDBMS because the smartcard is more likely to be e

stolen, lost or destroyed than a traditional computer. In-
deed, mobility and smallness play against safety. Conse-
quently, durability must be enforced through the network.
The majorissue isthen preserving the privacy of data while
delegating the durability to an external agent.

The remainder of this section addresses local atomicity,
global atomicity, and durability.
6.1 Local atomicity

There are basically two ways to perform updates in a DBMS.
The updates are either performedsiradow objectthat are

atomically integrated in the database at commit time or done ®

in place(i.e., the transaction updates the shared copy of the
database objects) [8]. We discuss these two traditional models
below.

e Shadow updateThis model is rarely employed in disk-
based DBMSs because it destroys data locality on disk
and increases concurrent updates on the catalog. In a Pi-
coDBMS, disk locality and concurrency are not a concern.
This model has been shown to be convenient for smart-
cards equipped with a small Flash memory [25]. However,
it is poorly adapted to pointer-based storage models like
RS since the object location changes at every update. In
addition, the cost incurred by shadowing grows with the
memory size. Indeed, either the granularity of the shadow
objects increases or the paths to be duplicated in the cata-
log become longer. In both cases, the writing cost —which
is the dominant factor — increases.

e Update in-place write-ahead loggingWAL) [8] is re-
quired in this model to undo the effects of an aborted
transaction. Unfortunately, the relative cost of WAL is
much higher in a PicoDBMS than in a traditional disk-
based DBMS which uses buffering to minimize 1/0s. In a
smartcard, the log must be written for each update since
each update becomes immediately persistent. This roughly

tain the tuple address and the old attribute values, thatis a
pointer for all RS stored attributes and a regular value for
FS stored attributes. In case of a tuple insertion or deletion,
assuming each tuple header contains a status bit (i.e., dead
or alive), only the tuple address has to be logged in order
to recover its state.

Rings tuple insertion, deletion, and update (of a ring at-
tribute) modify the structure of each ring traversing the
corresponding tuplé. Since a ring is a circular chain of
pointers, recovering its state means recoveringribe
pointer oft’s predecessor (let us calltf,.q). The infor-
mation to restore im,,.q.nextis eithert’s address it has
been updated or deleted tarextif ¢ has been inserteds
address already belongs to the log (see above).apdt
does not have to be logged sincecontent still exists in
stable storage at recovery time. The issue is how to iden-
tify ¢,req at recovery time. Logging this information can
be saved at the price of traversing the whole ring starting
from ¢, until reachingt again. Thus, ring recovery comes
for free in terms of logging.

Garbage-collecting valuesnsertion and deletion of do-
main values (domain values are never modified) should
be logged as any other updates. This overhead can be
avoided by implementing a deferred garbage collector that
destroys all domain values no longer referenced by any tu-
ple. Garbage-collecting a domain amounts to execute an
ad hoc semi-join operator between the domain and all re-
lations varying on it which discards the domain values that
do not match. The benefit of this solution is threefold: (i)
the lazy deletion of unreferenced values does not entail the
storage model coherency; (ii) garbage-collecting domain
values is required anyway by RS (even in the absence of
transaction control); and (iii) a deferred garbage-collector
can be implemented without reference counters, thereby
saving storage space. The deferred garbage collector can-
not work in the background since smartcards do not yet
support multi-threading. The most pragmatic solution is to
launch it manually when the card is nearly full. An alter-
native to this manual procedure is to execute the garbage
collector automatically at each card connection on a very
small subset of the database (so that its cost remains hid-
den to the user). Garbage-collecting the database in such
anincremental way is straightforward since domain values
are examined one after the other.

doubles the cost of writing.

% Unlike reachability algorithms that start from the persistent roots

8 Even if the data managed by the PicoDBMS are shared amongnd need marking [6], the proposed garbage-collector starts from the
multiple users (e.g., as in the healthcare application), the PicoDBM$ersistent leaves (i.e., the domain values) and exploits them one after

serves a single user at a time.

the other, in a pipelined fashion (thus, it conforms to the RAM rule).

130 P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard

The update in-place model along with pointer-based log-than full-fledged DBMS; and property (3) is satisfied by def-
ging and deferred garbage-collector reduces logging cost to itmition since smartcards do not support parallel executions.
lowest bound, that is, a tuple address for inserted and deleteldroperty (4) is discussed in Sect.6.3.
tuples, and the values of updated attributes (again, a pointer Eliminating the voting phase of the ACP solves altogether
for DS and RS stored attributes). the three aforementioned problems. However, one may won-

der about the interoperability between transaction managers
and data managers supporting different protocols (either 1PC
6.2 Global atomicity or 2PC). We have shown in [1] that the participation of legacy

(i.e., 2PC compliant) data managers in 1PC is straightforward.
Global atomicity is traditionally enforced by atomic com- Conversely, the participation of 1PC compliant data managers
mitment protocol(ACP). The most well known and widely (e.g., a smartcard) in the ZPC can be achieved by associat-
used ACP is 2PC [8]. While extensively studied [19] and stani"9 @l0g agentto each participant. The role of the log agent

dardized [21, 29, 41], 2PC suffers from the following weak- 'S twofold. F_irst, it manages the data managers part of the
nesses in our context: 1PC'’s coordinator log, forces it to stable storage during the

2PC prepare phase, and exploits it if the transaction branch

o Need for a standard prepared Stamqy server must ex- needs to be forward-recovered. Second, it translates the 2PC
ternalize the standarda interface [41] to participate to interface into that of 1PC. The log agent can be located on the
2PC. Unfortunate|y, ISO defines a transactional interfacéerminal, so that the benefit of 1PC is lost for the terminal but
for smartcards butit does not cover distributed transactiond! is preserved for the smartcard.

[24]. In addition, participating to 2PC requires building a
local prepared state that consumes valuable resources. -

e Disconnection means aborting smartcard can be ex- 6.3 Durability
tracted from its terminal or its mobile host (e.qg., a cellular
phone) can be temporarily unreachable during 2PC. A parMost 1PC protocols assume that the coordinator is in charge
ticipant's disconnection leads 2PC to abort the transactior®f logging all participants’ updates before triggering the ACP
even if all its operations have been successfully executed@ll these protocols belong to the coordinator log fami9-

« Badly adapted to moving participanthie 2PC incurs two ~ ordinator log [35] andimplicit yes votg4] assume that the
message rounds to commit a transaction. Considering thBarticipants piggyback their log records on the acknowledg-
high cost of wireless communication, the overhead is sig-ment messages of each operation whiterdinator logical
nificant for mobile terminals equipped with a smartcard 09 [2] assumes that the coordinator logs all operations sent to
reader (e.g., PDA, cellular phones). each participant. In all cases, the durability of the distributed

transaction relies on the coordinator log. Thus, 1PC is ameans

Asits name indicates, 2PC has two phasestthiegphase by which global atomicity and durability can be solved alto-
and thedecisionphase. The voting phase is the means bygether, at the same price.
which the coordinator checks whether or not the participants Two issues remain to be solved: (i) where to store the
can locally guarantee the ACID properties of the distributedcoordinator log; and (ii) how to preserve the security rule,
transaction. The decisioné@mmitif all participants voteyes that is, how to make the log content as secure as the data
and abort otherwise. Thus, the voting phase introduces anstored in the smartcard. Since the log must sustain any kind
uncertainty period at transaction termination that leads to thef failure, it must be stored on the network by a trustee server
aforementioned drawbacks. (e.g., a public organism, a central bank, the card issuer, etc.).

Variations ofone-phase commtrotocols (PC) have been If some transactions are executed in disconnected mode (e.g.,
recently proposed [2, 4, 35]. As stated in [2], 1PC eliminateson a mobile terminal), the durability will be effective only at
the voting phase of 2PC by enforcing the following propertiesthe time the terminal reconnects to the network. Protecting
on the participant’s behavior: (1) all operations are acknowl-the log content against attacks imposes encryption. The way
edged before the 1PC is launched; (2) there are no deferregncryption is performed depends on the model of logging.
integrity constraints; (3) all participants are ruled by a rigorouslf the coordinator log is fed by the log records piggybacked
concurrency control scheduler; and (4) all updates are loggetly the participants, the smartcard can encrypt them with an
on stable storage before 1PC is launched. These assumptioalgorithm based on a private key (e.g., DES [28]). Otherwise
guarantee, respectively, the A, C, |, D properties before thdi.e., if the coordinator logical logscheme is selected), the
ACP islaunched. Then, the ACP reduces to a single phase, thatnartcard can provide the coordinator with a public key that
is broadcasting the coordinator’s decision to all participantswill be used by the coordinator itself to encrypt its log [32].
(this decision is commit if all transaction’s operations have
been successfully executed and abort otherwise). If a crash
or a disconnection precludes a participant from conforming6.4 Transaction cost evaluation
to this decision, the corresponding transaction branch is sim-
ply forward recovered (potentially at the next reconnection).The goal of this section is to approximate the time required by
While the assumptions on the participant’s behavior seem cora representative update transaction. The objective is to confirm
straining in the general case, they are quite acceptable in thehether or not the write performance of smartcards assumed
smartcard context [10]. Property (1) is common to all ACPsin this paper is acceptable for database applications like health
and is enforced by the ISO7816 standard [22]; property (2)ards. To this end, we estimate the time required to create a
conforms to the fact that PicoDBMS have lighter capabilitiestuple in a relation, including the creation of domain values,

P. Pucheral et al.: PicoDBMS: Scaling down database techniques for the smartcard 131

the insertion of the tuple in the rings potentially defined on @ B Cost for log | |

this relation and the log time. Let us introduce the following g 04 OCostforrings | |

parameters, in addition to those already defined in Sect.4.4: = = Cost for domain I I

: 5 | DO cCostfortuple | |

e nbAttFS number of FS stored attributes £ 03f |

e nbAttDS: number of DS stored attributes o I

e nbAttRS number of RS stored attributes 5 -

o w: size of a word (4 bytes in a 32-bit card) o2] § |

o t: time to write one word in stable storage ! & I

(5ms in the worst case) 1 : - |

Cost(insertTuple) = 0,11

([((nbAttFS*a + nbAttDS*p + nbAttRS*p)/w] /O I

+ (NbARS + nbAttDS* S * [a/w] /0 |

+ NbAttRS * [p/w] /10 0- -

+ [p/w] /10 0 05 1 S
)*t /I'g Fig. 8. Performance of a typical update transaction

O Tuple size

O Domain values size. & probability
to create a new domain value

0 Ring pointers to be updated

folder applications and has strong database requirements.
We showed that the minimal functionality should include
N select/project/join/aggregate, access right management, and
O Logrecord size views as well as transaction’s atomicity and durability.
O Write time Second, we gave an in-depth analysis of the problem by
Let us consider a representative transaction executed ogonsidering the smartcard hardware trends. Based on this anal-
the healthcare. This transaction inserts a new tupl@dotor ~ Ysis, we assumed a smartcard with areasonable stable memory
and Visit and five tuples irPrescriptionand Drug. This is of a few megabytes and a small RAM of some kilobytes, and
somehow a worst case for this application in the sense that the/e derived design rules for a PicoDBMS architecture.
visited doctor is a new one and prescribes five new drugs. The Third, we proposed a new highly compact storage model
considered attribute distribution is as follows: that combines flat storage (FS), domain storage (DS), and ring
storage (RS). Ring storage reduces the indexing cost to its

agﬁtor ((2225523 ' Qgﬁgggig ' Qgﬁgggig lowest bound. Based on performance evaluation, we derived
Prescription (nbAttFS:i, nbAttDS:i, nbAttRS%z) guidelines to decide the best way to store an attribute. _
Drug (NbAHFS=2, nbAttDS=4, nbAttRS=0) Fourth, we proposed query processing techniques which

handle complex query plans with no RAM consumption. This
The average attribute lengifis fixed to 10 bytes. Figure 8 is achieved by considering extreme right-deep trees which can
plots the update transaction execution time depending on pipeline all operators of the plan including aggregates. We
(S = 0 means that all attribute values already exist in thealso argued that, if query optimization is needed, the strategy
domains, whileS = 1 means that all these values need beshould be exhaustive search. We measured the performance of
inserted in the domains). our execution model with an implementation of our query en-
The figure is self-explanatory. Note that the logging costgine on two old-fashioned computers which we configured to
represents less than 3% of the total cost. This simple analysise similar to forthcoming smartcard architectures. We showed
shows that the time expected for this kind of transaction (lesshat the resulting performance matches the smartcard applica-
than 1s)is clearly compatible with the healthcare application’'sion’s requirements.
requirements. Finally, we proposed techniques for transaction atomic-
ity and durability. Local atomicity is achieved through up-
date in-place with two optimizations which exploit the stor-
7 Conclusion age model: pointer-based logging and garbage collection of
domain values. Global atomicity and durability are enforced
As smartcards become more and more versatile, multiby 1PC which is easily applicable in the smartcard context
application, and powerful, the need for database techniqueand more efficient than 2PC. We showed that the performance
arises. However, smartcards have severe hardware limitasf typical update transactions is acceptable for representative
tions which make traditional database technology irrelevantapplications like the health card.
The major problem is scaling down database techniques so This work is done in the context of a new project with
they perform well under these limitations. In this paper, weBull Smart Cards and Terminals. The next step is to port our
addressed this problem and proposed the design of a PRicoDBMS prototype on Bull’'s smartcard new technology,
coDBMS, concentrating on the components which requirecalled OverSoft[12], and to assess its functionality and per-
non-traditional techniques (storage manager, query manageigrmance on real-world applications. To this end, a bench-
and transaction manager). mark dedicated to PicoDBMS must be set up. We also plan to
This paper makes several contributions. First, we an-address open issues such as protected logging for durability,
alyzed the requirements for a PicoDBMS based on aguery execution on encrypted data (e.g., stored in an external
healthcare application which is representative of personaFlash), and statistics maintenance on a population of cards.

132 P. Pucheral et al.:
References 22.
1. Abdallah M., Bobineau C., Guerraoui R., Pucheral P: Specifica-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Anderson R., Kuhn M.: Tamper resistanea cautionary note.

tion of the transaction service. Esprit project OpenDREAMS-II 23.

n° 25262, Deliverable n° R13, 1998

. Abdallah M., Guerraoui R., Pucheral P.: One-phase commit:
does it make sense? Int. Conf. on Parallel and Distributed Sys-24.

tems (ICPADS), 1998

. AmmannA., Hanrahan M., Krishnamurthy R.: design of a mem-

ory resident DBMS. IEEE COMPCON, 1985

. Al-Houmaily Y., Chrysanthis P.K.: Two-phase commit in 25.

gigabit-networked distributed databases. Int. Conf. on Parallel
and Distributed Computing Systems (PDCS), 1995

USENIX Workshop on Electronic Commerce, 1996

. Amsaleg L., Franklin M.J., Gruber O.: Efficient incremental
garbage collection for client-server object database systems. Int27.

Conf. on Very Large Databases (VLDB), 1995

. Bobineau C., Bouganim L., Pucheral P., Valduriez P.: Pi-
coDBMS: scaling down database techniques for the smart-28.

card (Best Paper Award). Int. Conf. on Very Large Databases
(VLDB), 2000

. Bernstein P.A., Hadzilacos V., Goodman N.: Concurrency con-
trol and recovery in database systems. Addison-Wesley, Read-30.

ing, Mass., USA,1987

. Bouganim L., Kapitskaia O., Valduriez P.: Memory-adaptive 31.

scheduling for large query execution. Int. Conf. on Information
and Knowledge Management (CIKM), 1998

Bobineau C., Pucheral P., Abdallah M.: A unilateral commit 32.

protocol for mobile and disconnected computing. Int. Conf. On
Parallel and Distributed Computing Systems (PDCS), 2000
van Bommel F.A., Sembritzki J., Buettner H.-G.: Overview on
healthcard projects and standards. Health Cards Int. Conf., 1999
Bull S.A.: Bull unveils iSimplify! the personal portable portal.
Available at: http://www.bull.com:80/butiews/

Carrasco L.C.: RDBMS’s for Java cards? What a senseless idea!
Available at: www.sglmachine.com, 1999
DataQuest.: Chip card market and technology charge ahead.
MSAM-WW-DP-9808, 1998

Dipert B.: FRAM: Ready to ditch niche? EDN Access Maga-
zine, Cahners, London, 1997

Gemplus.: SIM Cards: From kilobytes to megabytes. Available
at: www.gemplus.fr/about/pressroom/, 1999

Graefe G.: Query evaluation techniques for large databases.
ACM Comput Surv, 25(2), 1993

Graefe G.: The new database imperatives. Int. Conf. on Data39.

Engineering (ICDE), 1998

Gray J., Reuter A.: Transaction processing. Concepts and Tech40.

nigues. Morgan Kaufmann, San Francisco, 1993

IBM Corporation.: DB2 Everywhere — administration and ap- 41.

plication programming guide. IBM Software Documentation,
SC26-9675-00, 1999

International Standardization Organization (ISO).: Information
technology - open systems interconnection - distributed trans-
action processing. ISO/IEC 10026, 1992

26.

29.

33.

34.

35.

36.

37.

38.

PicoDBMS: Scaling down database techniques for the smartcard

International Standardization Organization (ISO).: Integrated
circuit(s) cards with contacts — part 3: electronic signal and
transmission protocols. ISO/IEC 7816-3, 1997

International Standardization Organization (ISO).: Integrated
circuit(s) cards with contacts — part 1: physical characteristics.
ISO/IEC 7816-1, 1998

International Standardization Organization (ISO).: Integrated
circuit(s) cards with contacts — part 7: interindustry commands
for structured card query language (SCQL). ISO/IEC 7816-7,
1999

Lecomte S., Trane P.: Failure recovery using action log for
smartcards transaction based system. |IEEE Online Testing
Workshop, 1997

Microsoft Corporation.: Windows for smartcards toolkit for vi-
sual basic 6.0. Available at: www.microsoft.com/windowsce/
smartcard/, 2000

Missikov M., Scholl M.: Relational queries in a domain based
DBMS. ACM SIGMOD Int. Conf. on Management of Data,
1983

National Institute of Standards and Technology.: Announcing
the Data Encryption Standard (DES). FIPS PUB 46-2, 1993
Object Management Group.: Object transaction service. Docu-
ment 94.8.4, OMG editor, 1994

Oracle Corporation.: Oracle 8i Lite - Oracle Lite SQL reference.
Oracle documentation, A73270-01, 1999

Pucheral P., T8venin J.M., Valduriez P.: Efficient main memory
data management using the DBGraph storage model. Int. Conf.
on Very Large Databases (VLDB), 1990

RSA Laboratories.: PKCS # 1: RSA Encryption Standard. RSA
Laboratories Technical Note, v.1.5, 1993

Schneider D., DeWitt D.: A performance evaluation of four par-
allel join algorithms in a shared-nothing multiprocessor envi-
ronment. ACM-SIGMOD Int. Conf., 1989

Schneier B., Shostack A.: Breaking up is hard to do: modeling
security threats for smart cards. USENIX Symposium on Smart
Cards, 1999

Stamos J., Cristian F.: A low-cost atomic commit protocol. IEEE
Symposium on Reliable Distributed Systems, 1990

Sun Microsystems.: JavaCard 2.1 application programming in-
terface specification. JavaSoft documentation, 1999

Sybase Inc.: Sybase adaptive server anywhere reference.
CT75KNA, 1999

Shekita E., Young H., Tan K.L.: Multi-join optimization for
symmetric multiprocessors. Int. Conf. onVery Large Data Bases
(VLDB), 1993

Tual J.-P.: MASSC: a generic architecture for multiapplication
smart cards. IEEE Micro J, N° 0272-1739/99, 1999

Valduriez P.: Join indices. ACM Trans. Database Syst, 12(2),
1987

X/Open.: Distributed transaction processing: reference model.
X/Open Guide, Version 3. G307., X/Open Company Limited,
1996

