
Efficient Main Memory Data Management Using the DBGraph Storage Model 1

Philippe Pucheral 2, Jean-Marc ThCvenin, Patrick Valduriez

INRIA - Rocquencourt BP. 10578153 Le Chesnay, France

Abstract

The requirements for a main memory data storage model
are both compactness and efficient processing for all
database operations. The DBGraph storage model,
proposed in this paper, achieves these goals. By
representing the entire database in a unique graph-based
data structure, called DBGraph, it fully exploits the direct-
access capability of main memory systems. For
example, Selection, Join and Transitive closure
operations over base or temporary relations are performed
by a DBGraph traversal without tuple comparison and
move. Furthermore, it is decomposable so that only the
useful subset of the database can be loaded from disk
without format conversion. Complex database queries can
be processed by either set-oriented or pipelined mode
depending on the way the graph is traversed. Analysis
shows good storage occupancy and excellent performance
for both update and retrieval operations.

1. INTRODUCTION
The rapidly decreasing cost of RAM makes main memory
database systems (MMDBS) a cost-effective solution to
high-performance data management [Eich89]. Disk-based
database systems have their performance limited by the
I/O bottleneck [Cope86]. In a MMDBS, the useful subset
of the database, called the active database, may be entirely
contained in main memory, thereby eliminating the I/G

1 This Work has been partially supported by the STRETCH
Esprit project.

2 Philippe Pucheral is with SAGEM 93700 Pontoise, France.

Permksion 10 copq wilhoul lkc all or part or lhi5 material is

granted providctl thar the topics arc not matlc or di\trihulcd 101

direct commercial ad\antagc. the VLDB copyright notice and

the title of [he publication and ils date appeal-. and notice i\ $cn

that copying i5 hq permission of the Vq Lay I)ald Haw

Endowment. To copy othcrMisc. or IO rcpuhlish. rcquilw a l’cc

and/or special pamission from the E~~dowmcnt.

Proceedings of the 16th VLDB Conl’crcncc
Brisbane. Australia 1990

bottleneck. Furthermore, by allowing transactions to
commit in safe (battery-backed-up) RAM [Cope89], the
complexity and overhead of recovery management are
significantly reduced. However, designing a MMDBS
requires addressing two main issues: efficient space
utilization and efficient processing of all database
operations. For practical reasons, these issues have been
typically addressed separately.

Efficient space utilization is necessary to hold the active
database entirely in main memory. Towards this goal,
compact data structures such as T-trees [Lehm86a] or
array structures [Amma85] have been proposed to
organize permanent data efficiently in main memory. To
some extent, some work has also considered the
minimization of space occupancy for temporary data
[Bitt86, Lehm86bl.

Efficient data processing requires exploiting the direct
(pointer-based) data access capability of main memory
[DeWi84]. Indices are typically logical pointer-based data
structures optimizing certain database operations. For
example, inverted indices [Card75], join indices [Vald87]
and transitive relationship indices [Agra89] optimize
respectively select, join and transitive closure operations.
These indices “precompile” the operation into a dynamic
data structure. Because they have been designed for disk-
based systems, they are separate from the base data. In a
main memory context, they may well introduce a
significant storage and update overhead. Futhermore,
temporary data are managed differently from base data,
thereby making difficult indexing of temporary data.

In this paper, we address these issues together and
propose an integrated main memory storage model.
Unlike integrated disk-based storage models [Cope85,
Vald86a] or models for dedicated hardware [Miss82,
Miss831 which optimize some operation at the expense of
some others, it provides efficient support for all database
operations with good space occupancy. This model is
based on a graph structure, called DBGruph, to represent
the entire database. The DBGraph storage model (DBG) is
intended to support various higher-level models and
associated languages. However, for simplicity, we will
illustrate its use with relational algebra extended with the
transitive closure operator. The latter operator is of
utmost importance for supporting queries on recursively
defined relations [Vald86b]. An earlier vertion of the
DBGraph storage model, proposed in lPuch89a1, focused
on transitive closure operation. In this paper, the model

663

has been refined and we concentrate on all database
operations.

A DBGraph is a bipartite graph composed of a set of
tuple-vertices, a set of value-vertices and a set of edges
connecting these two sets. Compactness is obtained by
storing each attribute value only once and using the same
edges to precompile all database operations. A DBGraph
can be naturally partitioned into subgraphs that can be
clustered on disk. Therefore, loading a subpart of the
DBGraph into main memory can be done efficiently
without format conversion. Temporary tuples can be
mapped onto the DBGraph using temporary edges so that
either permanent or temporary data can be treated the same
way. Arguments for managing all data uniformly are
provided in [Cope90]. Non-recursive retrieval, such as
select and join, can be efficiently processed by a single
traversal of the graph. Update operations can also be
processed with minimal overhead. Furthermore, complex
queries can be efficiently processed in either set-oriented
or pipelined mode depending on the graph traversal
(breadth-fist versus depth-first), the latter eliminating the
need to store intermediate results.

The paper is organized as follows. Section 2 provides a
formal definition of DBG in terms of graph structure and
primitive operations. In Section 3, we define retrieval and
update operator algorithms based on these primitive
operations. In Section 4. we discuss set-oriented versus
pipelined query processing on a DBGraph. Section 5
argues for a specific implementation of the DBGraph.
Based on such implementation, the storage occupancy and
performance of Join and update operations are analyzed.
Section 6 gives our conclusions.

2. DBGRAPH STORAGE MODEL

In this section, we give a formal description of the
DBGraph storage model (DBG) including its primitive
operations. This provides a sound basis to express any
kind of retrieval and update operation independent of any
conceptual data model or lower-level implementation
choice.

2.1. DBGraph definition

We fist introduce a few notations. We consider a
database DB composed of a set of relations. In most of
our examples we will use only two relations named R and
S. These relations are defined over a number of domains,
each domain j being denoted by Dj. A relation schema is
an aggregation of attributes, each of a given domain of
values. We denote by R.k the km attribute of relation R
and tR.k the value of attribute k for tuple t. Finally, we
denote by T the set of all the tuples of a database DB and
V the set of all the domain values of DB.

We can define an isomorphism between a database DB
and a graph, called DBGraph, as follows (see Figure 1 for
an example). A DBGraph is a bipartite graph containing

a set of tuple-vertices holding all the tuples of T, a set of
value-vertices holding all the domain values of V, and
valued-edges connecting these two sets. Each edge (t, v,
R.k) of the DBGraph is an indirected valued edge
connecting a tuple-vertex t with a value-vertex v. The
valuation R.k indicates that t belongs to relation R and
that v is the value of its kth attribute. Thus, a tuple-
vertex is linked by one edge to each of its attribute
values. Conversely a value-vertex is linked by an edge to
each tuple that references it for one of its attributes. The
DBGraph concept can be formally defined as follows:

Definition : DBGraph

The DBGraph of a database DB is a valued bipartite
graph G(X, A) where X=(T,V) is the set of vertices
of G, A is the set of edges of G and the edge
(t, v, R.k) E A iff t E T, v E V and tR.k = v.

A DBGraph is bipartite since T and V constitute a
partition of X and there is no edge connecting two
vertices of T or two vertices of V. Thus, a DBGraph
traversal involves an alternance of tuples and values.
Each couple of tuples having the same value for one of
their attributes are connected by a path of length two.
Finally, tuple vertices (resp.value vertices) may be
grouped on a relation basis (resp.domain basis) since the
relations form a partition of T (resp. V).

R.1, R.2 S.I...... S.Z...

Figure 1: analogy between a database and its DBGraph

2.2. Primitive Operations

We now define primitive operations to traverse and
update a DBGraph. Complex database operations can be
expressed in a simple and uniform fashion by
composition of these operations, independent of the
physical DBGraph implementation. This provides a
high-level description of all algorithms which should
result in higher modularity.

l the succ-val operation delivers the subset AR of tuple
vertices corresponding to all the tuples of relation R
whose kth attribute value is equal to a given value v. It

684

is an application from V to T that determines the subset
of T vertices connected to the vertex v by edges valued
by R.k.

AR = succ-val(v, R.k)
where AR = {t E Tlv E V and (t,v,R.k)k)E A}

the succ-tup operation is an application from T to V
that determines the V vertex connected to a given T
vertex by an edge valued by R.k.

v = succ-tup(t, R.k) where v E V and (1, v, R.k) E A

These two operations may be combined since their
result and input arguments are compatible. Thus, any
DBGraph traversal can be expressed by a combination of
them. Similarly, any database update can be expressed by

combination of the following operations.

the insert-tup operation performs all the DBGraph
updates caused by the addition of a new tuple
t(q, .--, vn) in a given relation R. Tuple t is inserted
in T and each of its attribute values is inserted in V if
and only if this value does not already exist. Thus, the
uniqueness of values in V is ensured. Finally, the edges
connecting this tuple and its attribute values are added
to A.

G’(X’JI’) = insert-tup (t(v1, vn), R, G(X,A))
where X’ =(T’,V’) with T = T v t,

V’= VU{Vl, . ..) vn}.
and A’= A u i ft,vlP.l),..., ft,v,P.n) I

the delete-tup operation performs all the DBGraph
updates caused by the deletion of a tuple t(v 1, . . . , vn).
Tuple t is deleted from T. Each of its attribute values
is deleted from V if and only if no other tuple references
the same value. The edges connecting this tuple to its
attribute values are removed.

G’(X’,A’) = delete-tup (t(v1, v,), R, G(X,A))
where X’ = (T’,V’) with T = T - t,

V’ = V - { v 1 Q (t’,v,S.k) E A, t’=t J,
and A’ = A - { (t,vlR.l), (t,v,R.n) }

the modify-tup operation performs all the DBGraph
updates caused by the modification of one attribute of a
tuple t. The old attribute value is deleted from V if it is
no longer referenced and the new one is inserted in V if
it does not already exist. Finally, tuple t is disconnected
from its old attribute value and connected to the new
one.

G’(X’,A’) = modify tup (t(.,., vi = v’i ,...), R, G(XA))
where X’ = (T’,V’) withT = T,

V’ = (V U V’i)

- {vi if V (t’,vi,S.k) E A, t’=t and S.k=R.i},
and A’ = (A - (t,vi,R.i)) u (t,v’i,R.i)

3. DATABASE OPERATIONS

DBG is intended to support set-oriented database
languages based on different data models. In this section,
we use relational algebra extended with transitive closure
as a paradigm to validate DBG. We show how relational
operators can be composed easily using the DBGraph
primitive operations.

3.1. Select

The select operator, denoted by OQ, applied to relation
R, determines the subset R. of T veruces corresponding t,
all the tuples of relation R which satisfy the qualification
Q. For simplicity, we assume that Q is a simple
comparison predicate (R.k 8 c) where c is a constant and 8
is a comparator. Thus, R, contains all the tuple vertices
connected to a value satisfying Q, by an edge valued by
R.k. The select operator is then expressed as:

RF CTQ(R) where R ~{tET/(vOc)istrue
and 3 (1, v. R.k) E A}

The execution of the select operation is similar to that
using inverted indices. The set of values satisfying the
selection criteria is first determined. Then the matching
tuples are obtained by applying the succ-val primitive to
this set of values.

Function 0~ (R) : R,
begin

R @
Ae :*zSeiect (V) .
for each v & AV’do

AR := succ-vu@, R.k);
Rcr := R, u AR

end for
end

SelectQ(V) builts the set AV = (v E V / (v 8 c) is true).
This function can be optimized using indices on V (see
details in Section 5). The generalization of Q to handle
conjunctions or disjunctions of predicates requires unions
or intersections of the R, sets corresponding to each
predicate.

3.2. Join

The join operator, denoted by @M, applied to R and S
determines the set RSa of couples of T vertices
corresponding to the matching tuples. We consider a join
predicate M of the form (R.k = S.1) where R.k and S.l
take values on the same domain Dj. The DBGraph
definition insists that the matching tuples are connected
by a path of length two, as shown below.

RSa= @M(R, S)
where RSa = {(tl s2) I tlE T, t2E T,

3 (tl, v, R.k) E A, 3 (t2. v, S.1) E A}

An obvious way to perform the join is to first scan Dj.
Then, for each value of this domain, two successive

685

applications of the succ-val primitive deliver the subsets
AR and AS where AR (resp. AS) contains the tuples of R
(resp. S) connected to this value by an edge valued by the
join attribute. Finally, the Cartesian product of AR and
AS gives the join result since each tuple of AR match
with each tuple of AS.

Function JoinlM(R,S) : RS@
begin

RSa := @;
for each vEDj do

R:= succ-val(v, R.k);
AS:= succ val(v, S.1);
RS

end or B
:= R&g u (AR X AS)

end

As domains are shared among relations, Card(Dj) can be
high compared to Card(R) or Card(S) (Card denotes the
cardinality of a set). Another join method, based on a
different traversal of the DBGraph, outperforms the
previous one in this case. It consists of first scanning the
smallest operand relation. Then, the join attribute value
of each tuple of this relation is retrieved through the
succ-tup primitive. Finally, the application of the
succ-val primitive gives access to the subset of tuples of
the other operand relation having the same value of join
attribute.

Function Join2 (R,S): RS@
I* We assume P ard(R) < Card(S) < Card(Dj} *I
begin

RS@ := 0;
for each tER do

v := succ-tup(t, R.k);
AS:= succ val(v, S.1);
RS

P
:= Rsa u (t XAS)

end or
end

In both algorithms, the union RSa u (AR X AS)
(resp RSa u (t X AS)) can be profitably replaced by a
concatenation because the generation of duplicates in
RS@ is impossible. Union, intersection and difference
operations can all be supported by a customized version
of the join operator, as suggested in IBrat84, Thev891.

3.3. Other retrieval and update operators

The project operator nP(R) consists of applying the
primitive operation v:=succ-tup(t, R.k) for each tuple
tE R, to successively retrieve the value of each
attribute k specified in the project list P. Because of its
simplicity, the project algorithm need not be discussed.

Updating a relation involves the insert-tup, delete-tup
and modify-tup primitives. Each of these primitives
performs the DBGraph updates induced respectively by an
insertion, a deletion or a modification of a tuple. Thus, a
set-oriented update operation is simply a loop with call
to these primitive operations. Integrity constraint

checking for update operations will be discussed in
Section 5.

3.4. TRANSITIVE CLOSURE

Transitive closure is a basic operator for efficiently
computing queries against recursively defined relations
[Banc86, Vald86bl. Building the transitive closure of
relation R on attributes R.k and R.l consists in
computing the least fixpoint of the following equation:

R+ = R U Zp (@M (R+,R)) with p = (R+.k,R.l)

andM = (R+.l = R.k)

An efficient algorithm, called Semi-Naive [Banc85],
consists of a loop of relational operators. The algorithm
incorporating selection can be expressed as follows :

Function TC (R): R+
s /* compute t e TC of R according to the initial

query selection Q *I
begin

/* OQ is applied to the basic relation *I
AR := Q
R+ :=

(R);
Al@ I+ before processing recursion *I

while AR’ # @ do
AR := c3 (ARR);
AR := Ai@- R+.
R+ :=R+ vdk;

end while
end

The difference AR := AR - R+ guarantees the
algorithm’s termination in the case of cyclic data.

The DBGraph can be exploited to perform transitive
closure more naturally and more efficiently. The idea is to
perform a recursive traversal on the sub-part of DBGraph
corresponding to relation R. To make recursion easier to
express, we introduce the notion of Relation-Closure-
Graph (RCGraph). The RCGraph of R on the attributes
R.k and R.l is a graph in which all vertices represent
tuples of R (see Figure 2). Two vertices tl and t2 are
connected by an edge if the corresponding tuples match
according to the join predicate (R.k=R.l). In fact, each
edge connecting two tuples in the RCGraph corresponds
to a path of length two in the DBGraph. Two vertices ti
and tj are transitively connected if there exists a path
(Ii<->tk, tk<-->tl, tn<->tj) in the RCGraph.
Thus, there is a direct mapping between the transitive
closure of R and the transitive closure of its RCGraph.

686

DBQRAPH
T V

tuple-vertices value-vertices

RCGRAPH JOhO

1 r. “...
I IX A . ..<.. ,,

f.ikffl

AVd

JW
Jack

R.l - R.2 __..-

For simplicity, only the edges involved in the
RCGraph are shown in the DBGraph.

Figure 2: Mapping between RCGraph and DBGraph

A select on R determines a set AR of entry vertices in
the RCGraph. Then, the transitive closure of the
RCGraph consists of, for each t of AR, finding all the
vertices (called the descendants oft) reachable from t by a
path. Similar to many graph traversal algorithms, a
visited vertex is marked to avoid passing twice through
the same path. Such marking eliminates the difference
operation of the previous algorithm. The result of each
RCGraph traversal is a spanning tree of root t over the
descendants of t. Actually, the RCGraph is virtual and all
RCGraph traversals are translated into DBGraph
traversals.

For performance reasons, we slightly modify the
succ-val operation to incorporate marking at traversal
time. The resulting operation, called SIKC val*(v,R.k),
delivers and marks all non marked tuple ve&es connected
to the value v by one edge valued by R.k. The use of the
succ-tup and succ-val* primitives defines a traversal of
the DBGraph following a breadth-first search (EFS)
strategy [Sedg84], as follows :

Function BFS(t): D
I* D is the set of descendants oft *I
begin

AD := t;

while dD #(?J do
AD’ := 0;
for each t'E dD do

v’ := succ tup (t: R.k);,
ALI’ := L1LT’ u succ-val (v’, R.1);

end for
AD := AD’;
D:=DuAD;

end while
end

The transitive closure operation is performed by simply
traversing links, Furthermore testing the termination
condition is greatly simplified by marking. The unions
D:=DuAD and AD’:=AD’usucc~val*(v’, R.1) can be
efficiently implemented by a concatenation since marking
the tuples avoid duplicate generation. Using weighted
graphs [Gard88], this algorithm can be extended to

support shortest path problems, path enumeration and
more generally all computations that can be expressed as
traversal recursion iRose.863.

4. QUERY PROCESSING

For clarity of exposition, the database operations
introduced in Section 3 have been described in a set-
oriented way, independent of their integration in a query
execution plan. A combination of these operators induces
a breadth-first search traversal of the DBGraph. Each
operation produces a temporary result which must be
materialized and consumed by the next operation.
However, a pipelined execution of a query can be obtained
by a depth-first search traversal of the DBGraph. A depth-
first search strategy has two major advantages. First
temporary results need not be generated, thereby saving
space for permanent data. Second, tuples already produced
can be displayed while the query processing is still in
progress. The pipelined evaluation mode is restricted to
the subpart of a query involving selection, join and
projection operators since difference, intersection,
aggregate and sort operators are purely set-oriented.

4.1. Set-oriented processing

Set-oriented processing requires the management of
temporary results. In most data storage models, it is often
impossible to speed up operations on’temporary results
using indices. As join operations are frequently preceded
by selections, this limitation is severe. However it is
possible to maintain the join indices validity after
selection [Vald87]. Typically, a selection delivers a list
of OID’s referencing the relevant tuples that is then semi-
joined with the join index in order to produce a new valid
join index on the temporary relations.

In the DBGraph model, temporary results are
materialized by temporary vertices connected through
temporary links with the tuples of the basic relations
from which they are extracted, as shown in Figure 3. The
degree (number of edges) of a temporary vertex is equal to
the number of basic tuples involved in the temporary
result. The main advantage is that temporary results
preserve the links to basic tuples. Consequently,
operations on temporary relations are speed up by a
DBGraph traversal in a way similar to operations on basic
relations. For example, consider the query @M(oQ(R),S)
with Q=(RZ=“mouse”) and M=(R.2=S.l), illustrated in
Figure 3. Scanning the temporary result OQ(R)

determines a set of entry vertices in the DBGraph that can
be directly exploited by the join operator, using the Join2
algorithm introduced in Section 3.2.

687

.
tuple-vertices value-vertices

M : R.2 = S.1 s.1I...... s.2, *

Figure 3: DBGraph extended to temporary results

This temporary result representation has two other.
advantages. First, it is quite compact since it does not
contain any value. Thus, it enforces the hypothesis that
the active database fit in main memory. Second, the
project operations are posponed until the end of the query
evaluation. This simplifies query optimization
[Amma85].

4.2. Pipelined processing

Let us consider a generic query QR of the form (CJQR~
A Rl@R2 A R@R3 A . . . A Rn-l@Rn). The number of
joins in QR determines the length of a pertinent-path
connecting a tuple of R 1 to a tuple of Rn where the edges
valuations are determined by the join predicates. A
pertinent-path covers all the vertices from which a result
tuple is produced. The selection on Rl in QR
determines a set of entry value-vertices in the DBGraph.
Each of these values is the root of one or more paths in
the DBGraph. These paths are explored one after the
other and a result tuple is produced each time the
extremity of a pertinent-path is reached. Backtracking is
applied at the extremity of each pertinent path or when a
path fails. This execution mode can be directly translated
in the program shown in Figure 4.

AV = SelectQ(V)
AR1 = succ-val (v. R1.i)
for each tl E AR1 do

/* join Rl@R2
vl = succ-tup (11, RI .j)
AR2 = succ-val (vi, R2.k)
for each (2 E AR2 do

I* join R2@0R3
v2 = succ-tup ((2, R2.1)
AR3 = succ-val (~2, R3.m)

.

fo; each t E AR do
/* generason of anresult tuple
produce-tup ((1, (2,. . ., t,,)

Figure 4: Execution plan for QR

In the general case, the relation-connection-graph of a
query [Ullm80] may contain chains, loops, cycles and
forks, where loops stand for selections and the other arcs
stand for joins (see Figure 5).

U U R U

chain loop cycle fork
Figure 5 : relation connection graph structure

The query used above involves a chain with one loop
on the first relation of this chain. Loops on other
relations can be handled in two ways. One solution is to
apply these selections first to mark the selected tuple
vertices and then to explore the pertinent-paths without
considering unmarked vertices. The second solution
consists in checking the selection criteria for each tuple
vertex reached during the pertinent-paths exploration. A
cycle is handled as a chain whose last operation is an
inter-attribute selection between attributes of two
relations already joined. A fork is a special case of a
chain where two joins are handled in the same loop. The
corresponding sequences of instructions are given in
Figure 6. They may constitute part of more complex
execution plans [Thev89].

CYCLE
for each (1 ER do

vl = succ-tup ((1, R.i)
AS = succ-vu1 (vi, S.j)
for each 12~ AS do

v-2 = succ~tup ((2, S.k)
AU = succ-val (~2, U.1)
for each (3 E AU do

v3 = succ-tup ((3, U.m)
v4 = succ-tup ((1, R.n)
if v3 = v4 then

produce -tup 01, (2, (3)

FORK
for each 11 ES do

vl = succ-tup ((1, S.i)
AR = succ-val (VI. R.j)
v
Lib

= succ-tup ((1, S.k)
= succ-val (9, U.1)

for each t2~ LIR do
for each t3 E AU do

produce -tup 01, (2, (3)

Figure 6: cycle and fork execution plans

The temporal complexity of a depth-first search is
O(max(Card(X),Card(A))) while that of a breadth-first
search is O(Card(A)) [Gibb85]. Thus pipelined and set-
oriented strategies have similar complexity on a
DBGraph.

688

5. IMPLEMENTATION AND PERFORMANCE

5.1. DBGraph Implementation

There are many ways to implement a graph. We detail
below a particular DBGraph implementation which
achieves both data compactness and efficient processing of
database operations in an MMDBS context. This
DBGraph implementation is shown in Figure 7.

Domain values are stored only once to preserve
compactness. Since the domains form a partition of the
set of values V, all the values varying over the same
domain can be clustered in a separate segment. Taking
advantage of vertical partitionning, the values of one
domain can be loaded independent of the others.
Similarly, since the relations form a partition of the set
of tuples T, the tuples of one relation can be stored in
one segment. Each object stored in a segment has a
unique and invariant identifier (OID). Thus, tuples and
values can be referenced by OID’s.

In the formal definition of a DBGraph, edges of A are
not oriented and may be traversed in both directions. In
the implementation, an edge (t. v, R.k) is split in two
arcs (t->v) and (v->t) by means of OID’s. A tuple is
implemented as an array of OID’s referencing each of its
attributes values. The valuation R.k of an arc (t->v)
is implicit since tuple t belongs to the segment
containing relation R and the OID corresponding to this
arc is stored in place of the kth attribute of tuple t. An
arc (v-X) is implemented by an OID stored in an
inverted list attached to the value v. The valuation R.k of
this arc is represented by the fact that inverted lists are
divided in as many sublists as there are attributes sharing
this value. Thus, all arc valuations are determined by the
relations and domains schema. They remain implicit at
the instance level and do not compromise the DBGraph
compactness.

The simplest way to store the inverted sublists is to
have them one after the other behind their corresponding
value. However this solution precludes fetching in
memory the inverted sublists corresponding to one
attribute R.k independent of the others. Instead,
following the vertical partitionning strategy adopted for
domain values, all the inverted sublists corresponding to
one attribute R.k are grouped in one segment. With each
domain value is associated a sublist array containing the
OID’s referencing all the sublists attached to this value.
It contains one entry per attribute R.k varying on that
domain and is indexed by R.k. Inverted lists
corresponding to key attributes contain only one OID. In
this case, much space is saved by storing the OID directly
in the sublist array.

The temporary relation results horn a join between R and S.
The attribute S.4 is assumed to be a key attribute.

Figure 7: A possible DBGraph implementation

Indices may be added on domain values to speed up
selections on all attributes varying on the same domain.
The index structure can be any one recommanded for
MMDBS lLehm86bl. We choose indices containing only
OID’s referencing the key values in order to reduce the
storage cost for variable length keys [Amma85].

When processing a query in a set-oriented way, a
temporary link is always traversed along the same
direction. Thus, it can be implemented by an arc instead
of an edge to reduce the cost of building the temporary
result. Each temporary vertex t’ resulting from a
selection on a base relation R is connected to a single
tuple t of R. It can be implemented by either keeping the
OID oft (this allows to reach t from t’) or marking t in a
bit string of length Card(R) (this allows to reach t’
from t). The only way to implement a temporary vertex
resulting from a join is as a tuple of OID’s representing
arcs from the temporary vertex to tuples of T. Thus, the
temporary links issued from selection can be implemented
in both directions while those issued from join are
implemented in a single way. Consequently, the join
operations have to be ordered properly to avoid joins of
join results. For instance, a sequence of joins
(RBS)@(UBV) will be reordered in (((R@S)@U)@V)
before execution lPuch89bl.

5.2. Storage cost evaluation

In this section, DBG is compared with the classical Flat
File organization (FF) in terms of storage cost. FF is
chosen for it is well known and provides good storage
performance. For both organizations, we consider the
storage cost of n attributes varying on the same domain
Dj and coming from one or several relations.

The DBG storage cost evaluation incorporates the
values stored in the domain Dj, their attached sublist array
and inverted sublists, the domain index and the OID’s
stored in place of the n attributes in the relations. For
simplicity, we assume that the domain index is stored as
an array of OID’s sorted on the referenced domain values
[Amm85].

689

The FF storage cost evaluation incorporates the values
of the n attributes stored in the relations, k selection
indices with k>O and j join indices with j20. The
selection indices are supposed to be stored as arrays of
couples (value, OID) sorted on the values, where the OID
references the inverted sublist attached to the value. To
simplify evaluation of join index size, we consider joins
on key attributes. In this frequent case, each tuple of one
relation matches with at most one tuple of the other
relation.

5.2.1. Evaluation parameters

We introduce the following parameters :

1 average length of the Dj values
a size of an OID (address)
Curd(R), Card(S) cardinality of relation R (resp. S);
SR, SS selectivity factor of one attribute of R &sp Sk

SR = Card(Xi(R))lCard(R), whereq denotes
project on attribute i;

s *vg average attribute selectivity factor for the
attributes varying over domain Dj;

L overlaping factor expressing the intersection
between the values taken by the n attributes
varying over domain Dj (I/n IL II); L=lln
when each domain value is shared by the n
attributes and L=l when the n attributes do not
share any value.

when needed, we use
simplify the formulas;

Xard(Rel) 7 g Card(Reli) to

The cardinality of domain Dj can be approximated by
L wlvg Card(Re1)). In the same way, the average
cardinality of a selection index can be expressed
‘wW,vg Card(Rel))ln and the one of a join index by
Z(Card(Rel))ln, where CCard(Rel)ln is the average
cardinality of a relation.

5.3.2. DBGraph versus Flat File storage
model

The storage cost incurred by DBG yields:

Cost (DBG) =
/* size of the domain values and their sublist array

L zs*vg Card(Rel)) (1 + n a)
/* size of all inverted sublists

+ a CCard(Rel)
/* size of the OID columns in the relations

+ a CCard(Re1)
P size of the domain index

+ L ~&lvg Card(Re1)) a

= CCard(Rel) (2a + L S ,vgfl+*fn+l))

For FF using k selection indices and j join indices, the
storage cost is :

cost (FFk.) =
I* size of the attribute values and their sublist array

1 CCard(Re1)
I* size of k selection indices

+ k fSQVg CC*WW fl + a) + uZ%ard(R4
n)

n
I* size of j join indices

+ j CCard@el) 2a
n

= CCard(Re1) (I+ i (Savg (I+ a) + a) + i 2a)

The cost equality between the two storage models is
expressed by the following equation:

COSt (FFkj) = COSt (DBG)

S
n 1 + a (k + 2j -2n)

avg =
n L (1 + a (n+l)) - k (I+ a)

Comparisons between FF without index and DBG are
shown in Figure 8. The plotted curves indicate the most
compact organization according to different values of the
Savg and 1 parameters, where 1 is expressed in units of a.

s

DBGraph mmcmnpaa

’ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ,

vahls of the fixed panlnx&Y :n=Z, L=l (DBGl)
n=2, M.75 @BG2)
n=2, LO.5 (DBG3)

Figure 8: Compactness of DBG versus FF
without index

Each curve divides the plan into a gain area for FF and a
gain area for DBG. Curve DBGl shows that, when L=l,
DBG is in general more space consuming than FF
without index. This is because there is no shared values
between the attributes varying on the same domain. The
lower L is, the more compact DBG is. Low Savg and
high 1 (e.g., enumerated type attribute) favor DBG while
high s,vg and low 1 (e.g., short key attribute) favor FF.
DBG’s higher storage cost on several attributes must be
compared with the large gains obtained on a few
enumerated type domains. For example, DBG and FF
yield almost the same cost to store the relations of the
Wisconsin benchmark [Bitt83].

Figure 9 compares DBG versus FF using j join indices
(with j=O or 1) and k selection indices (with k=O, 1 or 2).
The parameter L is set to I, which is the worst case for
DBG.

690

s avg t FF~J FRO
5.3.2. Join of two base relations

Join2 scans the smallest relation (assumed to be R) and
for each tuple checks whether there is an inverted list
associated with the join attribute of the second relation
(S). If there is one, a Cartesian product between the
current tuple of R and the inverted list is performed,
yielding :

11.
1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 ,

Value of the fmd paamam : r&=2, L=l .
FFm comsponds to k=2, j=O and FF 0 caresponds to k=l, j=O.
FFol wmqcmds to k=O, J=l and

% FFm is then equivalatt to LWVCDBG
corresponds to k=O, j=O,.

of the figure 8.

Figure 9: DBGraph versus Flat file organization with
idiCeS

DBG becomes rapidly best as indices are added to FF.
Since the number of indices determines the performance
of query execution in a main memory context, the
superiority of DBG is obvious. Note that DBG provides
the same indexation level as one selection index per
attribute and one join index per possible join in FF. The
overhead involved by a selection index is strongly
dependent of the value lenght 1. Curves FFol and F’Flo
show that selection indices are much more space
consuming than join indices. This is mainly due to the
fact that join indices contains only OID’s instead of
values.

5.3. Join evaluation

We compare algorithm Join2 (described in Section 3.2)
with two algorithms : the well-known join algorithm
using inverted indices (II) and the join index based
algorithm (JI) [Vald87]. Both algorithms use an efficient
data structure to speed up join processing. They are
compared in the case of permanent and temporary operand
relations. Algorithm Join1 is not considered since it does
not handle temporary relations well. Detailed comparisons
between Join1 and Join2 can be found in lFuch89bl.

5.3.1. Evaluation parameters

We use the following parameters in addition to those
introduced in Section 5.2.1. The semi-join selectivity
factor JR 5 of relation R, is defined by :
JRS = Card(Semi-join(R,S))ICard(R). The average
cardinality of the inverted lists attached to the join
attribute values of relation S is defined by IISS. The
cardinality of the R@ S result is thus :
Card(R@S) = JRSCard(R)lSS. The join algorithm
execution times are evaluated in terms of memory access
unit (denoted by u). The other system parameters are :

d: time for decoding an OID, assumed to be 3u ,
0 : time for comparing two OID, assumed to be 2u,
v: time for comparing two values, assumed to be 2~1

where 1 is the average size of a value
w: time for writing a word in memory, %axr&obeu.

time(Join2) =
/* scan the smallest relation

Card(R)
P call succ-tup to get the join attribute value

ffu + 4
P check the existence of an inverted sublist for
the join attribute of S

+ 0)
P number of R tuples matching with an S tuple

+ JRS Card(R)
P access to the inverted sublist for the S join
attribute

fd
P Cartesian product dm inverted list and ancID

+ (u + (u + 2W)lSS))

= Card(R) (6 + JRS (4 + 31s~)) u

The join algorithm using an inverted index scans the
smallest relation (assumed to be R) and for each tuple
searches the join attribute value in the index of the second
relation (S). Then a Cartesian product is performed
between the current tuple of R and the inverted list found
in the index of S. This gives:

time(II) =
/* scan the smallest relation

Card(R)
/* access the join attribute value

(u
p searches the join attribute value in heindex of S

+ v logz(SSCard(S)))
p number of R tuples matching with an S tuple

+ JRS Card(R)
/* access to the inverted sublist for the join
attribute of S

(d
P Cartesian product of an inverted list and an OID

+ (u + (u + 2W)iSS)

= Card(R) (1 + 21 log2(SSCard(S)) + JRS (4 + 3lSS)) u

The join index algorithm needs only to copy the join
index, which gives :

time(JI) =
/* join index cardinality (in the general case)

JRS Card(R)lSS
P copy an OID couple

2 (u + w)

= Card(R) (4JRS ISS) u

691

To reduce the significant number of parameters in the
evaluation, the algorithms comparaisons are expressed in
ratio form :

time(II) =
time(Join2)

1 + 21 log2 (SSCard(S)) + JRS (4 + 3lSS) -
6 + JRS (4 + 3lSS)

time(Join2)
= 6 + JRS (4 + 3tSS)

time(JI) 4JRS’sS

The first ratio depends on the parameters JRS, SS and
Card(S) and the second one depends only of JRS and Ss.
They are plotted in Figures 10 and 11.

4 II/Join2
c-4

bound of the ratio
when Card(S) = 10 000

1 y

Ratio3

Ratio2

Ratio 1

Equality
I , , , . , , , , . ,

0.1
b

0.5 1
sS

Value of the fixed parameter: I= 1.
Ratio1 corresponds to Card(S)=1000 and JRS =l.
Ratio2 corresponds to Card(.S)=lOOOO and JRS =l.
Ratio3 corresponds to Card(S)=10000 and JRS ->O.

Figure 10: II versus Join2

A Join2lJI
5-

4-

3-

2-

11

Ratio2

Ratio1

c

0:1. = . r . ’ ’ ’ .) 0.5 1-

Ratio1 corresponds to JRS =l.
Ratio2 corresponds to JRS =0.5.

Figure 11: Join2 versus JI

The form of the curves in Figure 10 denotes the
importance of the logarithmic index search time in
algorithm II and demonstrates the superiority of Join2.
Moreover, the time for comparing two values has been
minimized by setting 1 to 1. The slope of the curves

Ratio1 and Ratio2 in Figure 11 depends on JRS. The
superiority of JI over Join2 is quite natural since JI
constitutes a minimal bound for a join between two
permanent relations (a simple copy of the result need be
done). Low values of JRS favor IJ because Join2
accesses many irelevant tuples. Note that this drawback
is avoided by Joinl. Curve Ratiol, corresponding to
J RS =l, defines the lowest bound for the ratio
time(Join2)ltime(JI). In summary, the curves analysis
shows that : time(JI) < time(Join2) < time(II) for all
joins involving two permanent relations. High values for
JRS minimizes these differences by increasing the time to
produce the join result common to all algorithms.

5.3.3. Join involving temporary relations

Algorithms Join2 and JI are now compared for the join
AR@S, where AR is a temporary relation (based on R)
and S is a base relation. Relation AR is materialized by a
list of OIDs referencing tuples of R. Algorithms Join2
and JI, renamed Join2Tp and JITp, have to be slightly
modified to work on temporary results. Algorithm II has
the same behaviour as Join2 when dealing with temporary
operands, thus the difference between the two algorithms
should remain constant for both permanent and temporary
relations. Therefore we concentrate on the comparison
between Join2 and JI.

Algorithm Join2Tp scans AR and decodes each OID to
access the corresponding tuple of R. The join of this
tuple of R with relation S is performed like in Join2,
which gives :

time(Join2Tp) =
/* scan the temporary relation AR

Card(AU)
PreadanddecodeanOiDE AR

ffu + 4
P apply SUCCJI~ to get the join attribute value

+ (u + d)
P check the existence of an inverted sublist for
the join attribute of S

+ 0)
/* number of AR tuples matching with an S tuple

+ JRS Card(AR)
P access to the inverted sublist for the join
attribute of S

fd
/* Cartesian product of an inverted list and an OID

+ (u + (u + 2w)lSs))

= Card(AR) (10 + JRS (4 + 3iSS)) u

Algorithm JIT~ performs a semi-join between the join-
index and AR in order to select in the join index the
couples of OID’s such that the R-OID belongs to AR.
This operation can be optimized using two versions of
the join index, each one sorted on the OID’s of one
relation [Vald87]. Thus, checking whether the OID

692

belongs to AR can be done by a dichotomic search,
yielding :

time(JITp) =
/* scan of the temporary relation AR

Card(AR)
/*readanODE AR

fu
/* dichotomic search of this OID in the join-index

+ o logz(JRS Card(R)tSS))
/* copy the couples of the join-index matching for

the semi-join
+ 2(u + w) JRS Card(AR)lSS

= Card(AR) (1+2 log2JRS Card(R)lSS) + 4JRStSS) u

The ratio between time(JITp) and time(Join2Tp),
shown in Figure 12, is given by the formula:

time(JITp) =
time(Join2Tp)

1 + 2 logz(JRS Card(R)lSS) + 4JRSiSS

10 + JRS (4 + 3lSS)

t
JITp IJoin2Tp

1 , , , , , , , , , ,)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 s,

Ratio1 corresponds to JRS =l. Card(R)=lOOO.
Ratio2 corresponds to J~s=0.1, Cord(R)=lOOOO.
Ratio3 corresponds to JRS =l, Card(R)=lOOOO.

Figure 12: J1~p versus Join2Tp

For JR s varying from 0.1 to 1, the ratio
time(JITp)ltime(Join2Tp) is between 1.5 and 2.5. The
superiority of Join2 over Join-Index is mainly due to the
logarithmic search time in the join index. The difference
between the two algorithms increases with Card(R) (see
Ratio3 compared to Ratiol), since Card(R) determines the
size of the join-index. This logarithmic search time is
predominant when JRS is low. However, when JRS is
high, the time to produce the result common to both
algorithms becomes significant. This explains the
logarithmic shape of the curves. The curves shape is
amplified by SS (see Ratio2 compared to Ratio3)
because the effects of Ss and JRS are combined through

the factor JRSISS. In summary, Join2 outperforms JI for
joins involving at least one temporary relation, which is
the general case.

5.4. Update performance

Updating the attribute R.k of a tuple t in a DBGraph
consists of deleting an existing link with value vl and
creating a new link with value v2. This incures an OID
update in tuple t and the update of the inverted sublists
associated with values vl and v2. If value v2 (resp. VI)
is not shared, it is also necessary to insert v2 (resp.
suppress vl) in the domain, update the domain index and
create (resp. delete) the corresponding inverted sublist
attached to that value. The resulting update cost is
roughly equivalent to the cost of updating an indexed
attribute in FF. Creating (resp deleting) a tuple t consists
of creating (resp. deleting) links with each of its attribute
values.

Generally integrity constraints must be checked for
update operations. A large class of integrity constraints
can be efficiently checked on the fly during the DBGraph
domain updates without incuring any additional cost.
This powerful mechanism is illustrated below on two
widely used integrity constraints.

l unique key constraints.- at tuple insertion time, if an
OID already exists in the inverted sublist associated
with the domain value corresponding to the key
attribute, then the constraint is violated and the
insertion fails.

l referential constraints: if an attribute S.j references a
key attribute R.k, each tuple t inserted in S must
Satisfy the predicate @t’E R/ tS.j'f'R.k)e Conversely,
each tuple t deleted from R must satisfy the predicate
(t/k s/ t’R.k# tS.j)m hmt.hg a tuple t in s requires to
update the inverted sublist associated with the domain
value corresponding to attribute t.j. If the inverted
sublist of attribute R.k attached to the same domain
value is empty, then the referential constraint is
violated and the insertion fails. Similarly, when
deleting a tuple t from R, the inverted sublist of
attribute S.j attached to the value of attribute R.k must
be empty in order to satisfy the referential constraint.

6. CONCLUSIONS

In this paper, we proposed the DBGraph storage model
(DBG) for efficient main memory data management. This
model achieves both compactness and efficient processing
for all database operations. Although it is intented for
various higher level data models, we stayed in the
relational realm for simplicity.

The definition of DBG was given independent of any
implementation detail in terms of graph structure and
primitive operations on that structure. This facilitated the

693

description of complex operation algorithms in an
abstract form. By storing tuples and values separately and
linking them through OID’s, a DBGraph precompiles
select, join and transitive closure over the entire database.
We proposed an efficient implementation of the DBGraph
in terms of objects (tuples, values, indices) clustered into
segments.

DBG exhibits four important properties. First, a
DBGraph can be partitioned so that the active database can
be entirely maintained in main memory. Taking
advantage of the DBGraph’s vertical partitioning, the
proposed implementation allows clustering of partitions
into disk segments and efficient loading in main memory
without format conversion. Second, all database
operations can be performed by a DBGraph traversal
without tuple comparison and move. Third, the temporary
tuples are integrated in the DBGraph and thus can be
processed as efficiently as permanent tuples. Fourth,
pipelined (resp. set-oriented) query processing can be
obtained by depth-first (resp. breadth-first) traversal of the
DBGraph. Although more difficult to implement,
pipelined processing should be preferred since it
minimizes space occupancy for temporary results.

Our analysis showed that DBG provides good storage
occupancy. Compared to the flat file organization (FF)
without index (the simplest compact way of storing data),
DBG is less efficient for short attribute values with high
domain selectivity (i.e., many different values). As
indices are added to FF, DBG rapidly becomes best in all
cases.

Our performance analysis has concentrated mainly on
join for it is the most critical performance-related
operation in relational systems. Join on a DBGraph takes
advantage of pointer-based data access as in [Shek90]. We
first compared the DBG algorithm Join2 versus the join
algorithm using inverted indices (II) and the join
algorithm using join indices (JI) when the operand
relations are both permanent. The results indicate that
Join2 always outperforms II but, for good join
selectivity, JI outperforms Join2. However, in the more
likely case that one relation is temporary (e.g., after a
select), Join2 generally outperforms JI. The update
performance of DBG is roughly equivalent to that of FF
with inverted indices. In addition, DBG has the ability of
checking important integrity constraints (unique key,
referential) with no overhead during updates.

Performance advantages of DBG for other operations
(select, transitive closure, etc.) are reported in [Puch89bl .
Its excellent performance for graph traversal operations
such as transitive closure should be compared to that of
more specialized data structures [Agra89] which also
represent relationships between tuples directly.
Implementation of DBG is on-going on top of a UNIX-
based object manager. It will enable us to validate the
analytical results with performance measurements.

Furthermore, it will give us a basis to extend DBG for
complex object support.

ACKNOWLEDGEMENTS

The authors wish to thank Karima Bennis, Michel
Freville and Sylvie Renard for fruitful discussions and for
their active participation in prototyping the DBGraph
storage model.

REFERENCES

L%wW

[Amma

[Bitt831

[Bitt861

[Card751

~C~pe8~1

OW361

[Cope891

Agrawal R., Bargia A., and Jagadish H.,
“Efficient Management of Transitive Closure
Relationships in Large Data and Knowledge
Bases”, ACM SIGMOD Int. Conf.,
Portland, Oregon, May 1989.

Ammann A., Hanrahan M., and
Krishnamurthy R., “Design of a Memory
Resident DBMS”, IEEE COMPCON, San
Fransisco, California, February 1985.

Bancilhon F., “An Amateur’s Introduction to
Recursive Query Processing Strategies”,
ACM SIGMOD Int. Conf., Washington,
D.C., May 1986.

Bitton D., Dewitt D.. Turbyfill C.,
“Benchmarking Database Systems : a
Systematic Approach”, Int. Conf. on VLDB,
Florence, Italy, November 1983.

Bitton D., Turbyfill C., “Performance
Evaluation of Main Memory Database
Systems”, Cornell University, TR 86-73 1.

Bratbergsengen K., “Hashing Methods and
Relational Algebra Operations”, Int. Conf. on
VLDB, Singapore, August 1984.

Cardenas A., “Analysis and Performance of
Inverted Data Base Structures”, CACM, Vol.
18, No. 5, May 1975.

Copeland G., Khoshafian S., “The
Decomposition Storage Model”, ACM
SIGMOD Int. Conf., Austin, Texas, May
1985.

Copeland G., Khoshafian S., Smith M.,
Valduriez P., “Buffering Schemes for
Permanent Data”, Int. Conf. on Data
Engineering, Los Angeles, California,
February 1986.

Copeland G., Keller T., Krishnamurthy R.,
Smith M., “The Case for Safe RAM”, Int.
Conf. on VLDB, Amsterdam, the
Netherlands, August 1989.

694

[Cope901

[Dew&t]

[Eich89]

F-d@1

[Gibb85]

&ehm86a]

Copeland G., Franklin M., Weikum G.,
“Uniform Object Management”, Int. Conf. on
EDBT, Venice, Italy, March 1990.

Dewitt D., Katz R., Olken F., Shapiro L.,
Stonebraker M., Wodd D., “Implementation
Techniques for Main Memory Database
Systems”, ACM SIGMOD Int. Conf.,
Boston, June 1984.

Eich M.H., “Main Memory Database
Research Directions”, Int. Workshop on
Database Machines, Deauville, France, June
1989.

Gardarin G., Pucheral P., “A Graph Operator
to Process Efficiently Linear Recursive Rules
in a Main Memory Oriented DBMS”, 3rd
Database Symposium, Recife-Pemambuco,
Brazil, Mars 1988.

Gibbons A., “Algorithmic Graph Theory”,
Cambridge University Press, 1985.

Lehman T., Carey M., “A Study of Index
Structures for Main Memory Database
Management Systems”, Int. Conf. on VLDB,
Kyoto, Japan, August 1986.

[Lehm86b] Lehman T., Carey M., “Query Processing in
Main Memory Database Management
Systems”, ACM SIGMOD Int. Conf.,
Washington, D.C., May 1986.

[Miss821 Missikov M., “A Domain Based Internal
Schema for Relational Database Machines”,
ACM SIGMOD Int. Conf., New-York, June
1982.

[Miss831 Missikov M., Scholl M., “Relational Queries
in a Domain Based DBMS”, ACM SIGMOD
Int. Conf., San Jose, May 1983.

[Puch89a] Pucheral P., Thevenin J.-M., “A Graph Based
Data Structure for Efficient implementation
of Main Memory DBMS’s”, Int. Workshop
on Database Machines, Deauville, France,
June 1989.

[Puch89b] Pucheral P., “Extensibilite et Performance
dun SGBD Base sur un G&ant d’objets”,
PhD Dissertation, University of Paris 6,
December 1989.

[Rose861 Rosenthal A. , Heiler S., Dayal U., Manola
F., “Traversal Recursion : A Practical
Approach to Suporting Recursive
Applications”, ACM SIGMOD Int. Conf.,
Austin, Texas, May 1986.

[Sedg84] Sedgewick R. : “Algorithms”, Addison-
Wesley Pub., 1984.

[Shek901

mev89]

[Ullm82]

[Vald86a]

[vald86b]

IMa

Shekita E., Carey M., “A Performance
Evaluation of Pointer-Based Joins”, ACM
SIGMOD Int. Conf., Atlantic City, New
Jersey, May 1990.

Thevenin J.-M., “Architecture dun Systeme
de Gestion de Bases de Don&es Grande
Memoire”, PhD Dissertation, University of
Paris 6, December 1989.

Ullman J., “Principle of Database Systems”,
Computer Science Press, 1982.

Valduriez P. , Khoshafian S., Copeland G.,
“Implementation Techniques of Complex
Objects”, Int, Conf. on VLDB, Kyoto, Japan,
August 1986.

Valduriez P., Boral H., “Evaluation of
Recursive Queries Using Join Indices”, Int.
Conf. on Expert Database Systems,
Charleston, April 1986.

Valduriez P., “Join Indices”, ACM TODS,
Vol. 12, No 2, June 87.

695

