
SVP - a Model Capturing Sets, Streams, and Parallelism

D. Stott Parker *
University of California, Los Angeles

Eric Simon and Patrick Valduriez
Projet Rodin, INRIA, Rocquencourt

Stott@cs.ucla.edu, Eric.Simon@inria.fr, Patrick.Valduriez@inria.fr

Abstract
We describe the SVP data model. The goal of SVP is to
model both set and stream data, and to model parallelism
in bulk data processing. SVP also shows promise for other
parallel processing applications.

SVP models collections, which include sets and streams
as special cases. Collections are represented as ordered
tree structures, and divide-and-conquer mappings are easily
defined on these structures. We show that many useful
database mappings (queries) have a divide-and-conquer
format when specified using collections, and that this
specification exposes parallelism.

We formalize a class of divide-and-conquer mappings
on collections called SVP-transducers. SVP-transducers
generalize aggregates, set mappings, stream transductions,
and scan computations. At the same time, they have
a rigorous semantics based on continuity with respect to
collection orderings, and permit implicit specification of both
independent and pipeline pa.ra.llelism.

1 Introduction
Achieving parallelism in bulk data processing is a
relatively old problem, which has recently enjoyed a

resurgence of interest. This paper proposes a new
approach to addressing the problem. Since many of
the issues involved are complex, we begin with first
principles.

*This research supported by NSF grant IRI-8917907.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

1.1 Parallel Programming

Parallel programming aims at exploiting high-perfor-
mance multiprocessor systems. An important objective
is to be able to express the parallelism available in
-an application. There are essentially three ways to
accomplish this:

l automatically detect parallelism in programs written
with a sequential language (e.g., Fortran, OPS5);

l augment a language with explicit parallel constructs
that exploit the computational capabilities of a
parallel architecture (e.g., C* [17], Fortran90);

l create a new language in which parallelism can be
expressed in an architecture-independent manner.

The first approach can be practical in the short-term,
but is faced by many difficult problems. Among these,
development of a parallelizing compiler is a major chal-
lenge. Methods for automatic program restructuring,
and the parallelization of serial programs can produce
good results for some programs (e.g., certain scientific
programs), but most of the time the resulting speed-up
is quite limited. For instance, experiments conducted

with the OPS5 rule-based language revealed that in
practice, the true speed-up achievable from parallelism
was less than tenfold [7]. A related serious problem
with this approach is that, in the final analysis, the se-
rial programming paradigm does not encourage the use
of parallel algorithms.

The second approach enables the programmer to ex-
press parallel constructs such as task creation and inter-
task synchronization, thereby providing leverage over
parallelism. Although this approach can lead to high-
performance, it is generally too low-level and difficult
for the programmer. Furthermore, the large variety
of parallel architectures result in distinct, architecture-
specific extensions to the original 1anguage.l In order

lLinda [4] is a notable exception of ‘coordination language’
with simple, language-independent parallel constructs, which can
mate easily with many non-parallel languages.

115

to achieve efficient program execution, the programmer
must first become acquainted with the programming
paradigm dictated by the architecture of the target ma-
chine.

The third approach can combine the advantages of the
other two. It can ease the task of programming while
allowing the programmer to express non-sequential
computation in a high-level way [16]. Once the
programmer has specified the algorithmic aspects of
his program using high-level programming constructs,
automatic or semi-automatic methods can be used to
derive a mapping from the computational requirements
of the program to parallel hardware. The basis for
this mapping is data partitioning (also called data-
parallelism), whereby program data can be divided into
fragments on which either the same instructions can
be executed in parallel (with the SIMD computation
model) or different instructions are executed in parallel
(with the MIM D computation model). The regularity
of the data structures available in the language permits
exploitation of different forms of parallelism, such as
independent and pipeline parallelism [9].

In this paper, we follow the third approach, and
propose a model for parallel database programming
where the primary sources for parallelism are paral-
lel set and stream expressions. Parallel programming
environments that follow this approach have recently
been proposed. For example, in Paragon [5], the pri-
mary source for parallelism is parallel array expressions.
Paragon is targeted to scientific programming applica-
tions and offers the essential features of parallel Fortran
languages. Our model is targeted at database applica-
tions, and bulk data processing.

1.2 Parallelism for Bulk Data Processing
There are various forms of parallelism. Figure 1 shows
four simple kinds of parallelism graphically.

independent pipeline fan-out fan-in

Figure 1: Types of Parallelism

A few key ideas can be derived from studying this
figure, and applying the parallelism structures there to
problems in bulk data processing:

l Division of problems is the essence of parallelism.
Dividing into independent subproblems gives inde-
pendent parallelism, while dividing into incremental

.

computations gives pipeline parallelism. Set map-
pings naturally expose independent parallelism (a
given instruction is independently applied to each
element of a set) while stream mappings expose
pipeline parallelism (some instructions are succes-
sively applied to each element of a stream). Thus,
sets and streams suggest a divide-and-conquer for-
mat for specifying mappings which is implicitly also
a format for specifying parallelism.

Divide-and-conquer computations can be represented
as series-parallel graphs. Series-parallel graphs [15]
are defined recursively as graphs having one input
and one output that can be constructed using two
combination rules: series or parallel composition of
the inputs and outputs. A typical series-parallel
graph is shown in Figure 2. It models a situation
where 1 and 2 are performed in parallel before 3,
and 3 is performed before the parallel execution of
4, 5, and (6 followed by 7).

Figure 2: A Series-Parallel Graph

These graphs use only the constructs in Figure 1.
Dividing a problem is represented by fan-out nodes
in the graph, while conquering gathers results into
a set (with independent parallelism), a stream (with
pipeline parallelism), and/or an aggregate (with fan-
in parallelism). Thus, divide-and-conquer solutions
of problems often directly correspond to these four
kinds of parallelism.

l Database applications provide excellent opportuni-
ties for parallel processing. The set-oriented nature
of the relational model makes exploitation of inde-
pendent parallelism natural [19]. In fact, set oper-
ators such as the relational algebra operators can
often be naturally expressed as divide-and-conquer
computations, as we will show in section 2.

These ideas raise hope for a parallel bulk data
processing system that rests upon divide-and-conquer
techniques. However, such a system must deal with
several important technical issues to be viable.

A first problem is that the relational model offers
no way to talk about order among data (e.g., sorted
relations, or ordered tuples). Relational languages are
therefore inadequate for specifying ‘stream processing’,

116

in which ordered sequences of data are processed
sequentially [13]. Pipeline parallelism is generally
used, transparently to the user, in lower-level languages
implementing relational algebra (e.g., PLERA [2], or
PFAD [S]). However, higher-level relational interfaces
do not permit streams to be exploited, preventing
specification of stream computations and also pipeline
parallelism.

A second problem is that parallel data processing
requires effective data partitioning capabilities. Typi-
cally, a relational query (select-project-join expression)
is translated into a low-level form of relational algebra
with explicit (low-level) parallel constructs [2]. Data
partitioning is used to spread the computation of rela-
tional algebra operators among parallel processors [l].
This partitioning is typically defined during the physi-
cal database design and then exploited by a compiler.
Most of the time, a partitioned computation requires
that processors exchange intermediate results in order
to compute the final result.

In our view, data partitioning must be expressible by
the programmer within a parallel database language.
Specifying parallel computations over relations often re-
quires specifying how data partitioning (fan-out paral-
lelism) will be done and how distributed results will be
collected (fan-in parallelism). This view is supported by
recent results on data reduction for Datalog programs
[21], in which rules are replaced by their per-processor
specializations. These specialized rules include appro-
priate hash functions that capture partitioning informa-
tion. This approach is very interesting in that it incurs
no communication costs between processors. However,
determining the appropriate hash functions to perform
data reduction is still an open problem, known to be un-
decidable in some cases. It seems unlikely that database
systems will be able to completely automate partition-
ing decisions.

Database models have been developed before that
permit expression of both ordering among tuples and
data partitioning. For example, the FAD language has
operators that express various forms of fan-out and fan-
in parallelism [6]. FAD is a strongly-typed set-oriented
database language based on functional programming
and relational algebra. It provides a fixed set of higher-
order functions to aggregate functions, like the pump

parametrized aggregate operator and the grouping
operator. The pump operator applies a unary function
to each element of a set, producing an intermediate set
which is then ‘reduced’ to a single datum using a binary
function that combines the intermediate set elements.
Indeed, pump naturally expresses a special case of fan-
out and fan-in parallelism. At the same time, the group

operator permits set partitioning.

1.3 Goals of the Paper

Based on the observations above, our main goal is to
develop a data model, called SVP, that supports both:

l ordered and unordered (stream and set) data repre-
sentations;

l a formal semantics for divide-and-conquer compu-
tations on sets and streams to express independent
(set) and pipeline (stream) parallelism.

This model is intended to serve as a formal foundation
for defining parallel database languages in which paral-
lelism is specified at a high-level.

The SVP data model has the following features:

SVP values either are collections (a generalization
of sets and streams), or are tuples of SVP values.
Collections are represented as ordered binary tree
structures. Intuitively, lists can represent streams,
balanced trees can represent sets, and ordered binary
trees can represent either.

SVP allows restricted divide-and-conquer mappings
on SVP values. In this paper these mappings are
specified with recursive functional equations. They
generalize other specification techniques, including
restricted higher-order mappings like the reduction
operator in APL [lo] and the pump operator in FAD
[6], list comprehensions and elegant variants thereof
[20], and series-parallel computation graphs [15].

Parallelism in the dividing and conquering is spec-
ified using both the structure of the data, and
the structure of the divide-and-conquer mapping:
dividing-parallelism is specified by the data, and
conquering-parallelism is specified by the mapping.
Partitioning can always be used to modify data
structure, and thus affect dividing-parallelism.

The paper is organized as follows. Section 2 investi-
gates the relationships between set and stream process-
ing, and demonstrates with examples how divide-and-
conquer mappings are important for data processing.
Section 3 presents the SVP model and defines SVP val-
ues, types, and mappings. Section 4 then gives exam-
ples of SVP mappings for expressing relational algebra
operators, grouping and aggregate operators. Finally,
Section 5 concludes the paper and summarizes the con-
tributions of the SVP model. A more comprehensive
presentation of SVP is given in [14].

2 Set and Stream Processing
Let us clarify first what set processing and stream
processing are, and then study how they might be
integrated in a parallel processing model.

117

2.1 Sets and Streams
For the purposes of this paper, we will rely on similar
formulations of sets and streams.

Given a set of values D, we will write 2O to denote the
finite or infinite sets on D, and write D l to denote the
finite or infinite streams on D. Sets use the following
notation:

1. {} is a set (the empty set);

2. { 2) is a set, for any value 2;

3. Finite sets are written with set braces, as with:
{1,2,31.

4. The union Sr U Sz is a set, if S1 and SZ are sets.
(We use the symbol ‘u’ for disjoint set union in this
paper, except where indicated otherwise.)

5. The cordinality I] S]I of any set S is the number of
values in the set.

Streams analogously use the following notation:

1.

2.

3.

[] is a stream (the empty stream);

[z] is a stream, for any value z;

Finite streams are written with square braces, as
with: [l, 2,3].

4. The concatenation Sr l S2 is a stream, if Sr and
Sz are streams. (We use the symbol ‘ l ’ for stream
concatenation (‘append') in this paper.)

5. The length 1 S] of any stream S is the number of
values in the stream.

As usual, set union is associative and commutative,
where stream concatenation is only associative.

Although streams are formalized here like strings,
with a concatenation operator, they are accessible like
lists. Specifically, every nonempty stream S satisfies

S = (h -T)

where h is the head of S, and T is the tail of S. Here h
will be a value, and T will be a stream. The constructor
symbol ‘-’ (‘cons') can be viewed as an operator that
combines a value and a stream into a stream. The
single-element stream [z] is actually a shorthand for
(z . [I>, and L VI is a shorthand for (1 . 2 . 3 . [I).
All finite streams are terminated explicitly with [I.

One more bit of notation will be useful. We use
parentheses to set off tuples (vectors). Thus

(a, 1, b)

denotes a 3-tuple (tuple with 3 elements).

2.2 Set and Stream Mappings

Consider the following mappings, using the formaliza-
tion of sets and streams given above. We would like to
be able to formalize these mappings in our model.

The equations

count({)) = 0
co?mt({z}) = 1
count(S~ u S2) = count + count(Sz)

define a set mapping (in this case an aggregate)
recursively. This definition reflects parallelism that
can be obtained by computing cardinalities of subsets
independently. For example, in the computation

count({a, b, c}) = count((a, b}) +- count({c})
= count({a}) +

+ count({c})
= 1+1+1
= 3

we have ultimately three independent
that are ‘fanned-in’ to an aggregate.

Consider now the stream mapping

parallel threads

diiM1)
diffst~ . [I>
diffs(z . y. S) = (y - z) . di@(y . S)

This yields a stream of the differences between adjacent
elements in the input stream. For example:

diffs(98.99.97.97.99.96. [I)

= +1 . A&(99 .97.97 .99.96 . [I)

= +l . - 2 . diffs(97 .97.99.96. [I)

= +l- -2. O.difls(97.99.96.[])
= $1 . -2. 0. $2. difls(99.96.[])

= $1 . - 2 . 0. + 2 . - 3 . difls(96. [I)
= +1* -2. 0. +2* -341.

This mapping implements a kind of ‘automaton’, or
‘transducer’, that scans the stream of values and trans-
lates it to a stream of pairwise differences. These trans-
ducer mappings are important in analyzing streams, but
are (at best) quite challenging to implement with a set-
oriented model.

2.3 Composition of Set and Stream Mappings

Functional mappings can be composed naturally. We
consider a simple example that illustrates how compo-
sition of set and stream mappings allows us to answer
arbitrary queries by composing a few elementary map-
pings.

118

Example: Areas of Convex Polygons

We are given a convex polygon a.5 a stream of points in
(r, y)-coordinate form that trace out the boundary of
the polygon, and the problem is to compute the total
area of the polygon.

This problem can be solved by triangulating the
polygon, i.e., cutting the polygon into triangles, and
computing the total area of the triangles. Specifically
we can transform the stream of points of the polygon

KQ>Yl), (22,Y2), *-* (G-b,Y*)l

into a set of triangles (triples of points)

{ ((t1, Ylh (22, Y2)r (13, Y3)),

((21,Yl),(Z3,Y3),(24,Y4)), **-

cc-, Yl), (%-1, Yn-l), (Ga, Y*>) }

and then compute the sum of the areas of the triangles.

Figure 3: Triangulation of a Convex Polygon

For example the polygon given by the stream of points

[(O, 01, (1,4), (5,6>, (6,3), (4, -41

corresponds to the set of triangles

{ ((O>O>, (LJ)> (%6>>,
((0, Oh (5,6), (6,3)),
((0, Oh (6,3), (4, -1)) I

having respective areas”

2 The Heron formula for the area of a triangle whose sides have
respective lengths a, b, c is given by

+(s - a)(s - b)(s - c)

where s = (u + b + c)/2.

{ 7.0, 10.5, 9.0 }

and a total area of 26.5. See Figure 3. This is expressible
as

PolYPn = [(O, 01, (1,4), (5,6), (6,3), (4, -111
total-area = sum(areas(ts(poIygon)))

where we define ts (triangles) with

Ml)
t+o . [I> 1 ;{
ts(po . PI . [I> = 0
iS(Po . PI . P2 - s> = {(PO, Pl, P2)) u ts(Po . P2 . S).

and the aggregate functions needed are:

suNI> = 0
S~N4)
sum(S1 u S2) : kn(S,) + sum.

areas(O) = 0
a~ea4{(p0,pl,p2))) = {a-4p0,pl,p2))
areas(S1 U Ss) = areas(S1) U areas($).

difq(% Yl), (E2, Y2)) = (t1 - 2212 + (Yl - Y2)2

adpo,pl,p2) = ds(s - a)(s - b)(s -c)

where: a = dist(p0,pl)
b = WPl, P2)

c = ~qP2,po)
s = (a+ b+ c)/2.

The example here hopefully makes two points: First,
a model based on composing mappings on sets and
streams is sufficient to develop expressive database
systems - significantly more expressive than standard
DBMS. Although the example problem above is not
easy to solve with standard DBMS, the structures
involved (sets of streams, etc.) are easy to understand,
and the queries are easy to state, and easy to state
mathematically.

Second, the structure of the data (sets and streams)
directly reflects parallelism in the data processing
required. Both pipeline and independent parallelism are
crucial in data processing, and these kinds of parallelism
can be made evident by the stream or set structure of
the data.

2.4 Perspective: Divide-and-Conquer
Mappings

Our goal is to develop a formal data model that
will support all of the mappings shown earlier. The
challenge comes in developing a model that encourages

119

optimization and extraction of parallelism and supports
at least the set and stream mappings shown earlier.

The mappings above are all ‘divide-and-conquer’ map-
pings, of three kinds:

1.

2.

3.

Aggregates
Aggregates can be described
the format

f(O) =

as functions of sets with

id

h(x)
f(S) e f(S2 1

where 0 is an associative, commutative operator
whose identity is id, and h is a function that yields
values of the type taken by 0.

Set Mappings
Set mappings have the divide-and-conquer form

f(O) = 0
f (1x1) = h(z)

f(Sl u S2) = f(S) u f(S2)

where h is a set-valued function.

Stream Transducers
Stream mappings like dins and triangles are natu-
rally characterized as ‘automata’ that incrementally
translate their input. We will call this kind of map-
ping a transducer.

In general form, we define a stream transducer f in
terms of two function parameters, 6 and h, and an
iterative control structure F:

f(S) = F(qo,S)
F(q, [I> = w?> 11)
F(Q, I. S> = h(q, x> l F(%z, x), S).

Here intuitively there is a set of ‘states’, pa is the
‘initial state’, 6 is a ‘state transition function’ that
maps a (state,input)-pair to a new state, and h(q, z)
is the output stream produced in state q with input
x. So, in particular, h(q, [I) is the output stream
produced in state q when no input remains. Thus F
maps a (state,stream)-pair into a stream.

We call f a stream transducer because its definition
directly mirrors the definition of a finite state
transducer - a finite automaton that produces
output given its current input symbol and current
state.

An obvious question facing us now is:

What is 4 useful generalization of aggregates, set
mappings, and stream transducers, that can be
applied successfully in parallel data processing?

The SVP model described next offers one answer to this
question.

3 The SVP Model

The goals of SVP require a model in which collections
(both stream collections and (multi-)set collections) can
be expressed, and mappings on these collections can be
defined. For simplicity, and without loss of generality,
we limit ourselves to a value-based model - i.e., objects
are not handled by the model currently.

3.1 SVP Values

SVP models two kinds of values: atomic values,
and constructed values. Constructed values represent
complex structures, or nested values, and can be either
tuples or collections. Tuples are typically heterogeneous
structures with a small number of elements, while
collections are typically homogeneous structures with
a large number of elements.

Values are recursively defined as follows:

l Any atom is a SVP value.

l Any finite tuple (vi,. . . , vn) of SVP values vi, . . . , v,,
is a SVP value. A tuple with one atom is called a
1-tuple, a tuple with two atoms is called a 2-tuple,
etc.

l Any collection is a SVP value.

In SVP, collections are recursively defined as follows:

l () is the empty collection.

l (v) is a unit collection if v is a SVP value.

l Sr o Sz is a collection if 5’1 and S2 are nonempty
SVP collections. Collections are forbidden to
properly contain the empty collection.

This definition allows SVP collections to model many
structures of interest, including:

sets
The SVP-collection ((1) o (2)) o ((3) o (4)) repre-
sents the set {1,2,3,4} as a balanced binary tree.

streams and sequences
A stream is a sequence (right-linear tree) that, if
finite, is terminated with [I. The SVP-collection
(1) o ((2) o ((3) o ((4) o [I))) represents the stream
[1,2,3,4] as a list-like structure.

3.2 SVP Types

Database systems support homogeneous collections of
data. SVP does also, resting on a simple polymorphic
type system that defines the following value types:

0 atom

120 6

tuple(T1, . . . , Tn) is a constructed value type, if
each T; is a value type.

collection(T) is a homogeneous collection type, if
T is a value type.

Thus the following are homogeneous collection types:
collection(atom), collection(collection(atom)),
collection(tuple(atom,collection(atom))), etc.

3.3 SVP Mappings

Data models typically specify how all permissible map-
pings can be constructed. We take a different approach.
SVP imposes few restrictions on atomic value mappings
- essentially any mapping on atomic values is permit-
ted. However, SVP requires all collection mappings to
be SVP-transducers. This class of mappings is power-
ful, and suited to bulk data processing on homogeneous
collections. At the same time SVP-transducers are re-
strictive enough to permit optimization and extraction
of parallelism.

3.3.1 Basic SVP Mappings

SVP explicitly provides the following basic mappings:

l Constructors

- tup/ing ((- * .))
If Xl,.. . , z,, are values of types Tl, . . . , T,, then
(Zl,..., zn) is of type tuple(T1, . . . , T,).

- collection (0)
If S1 and Sz are of type collection(T), S1 o S2
is also. The constructor o is used both as a
constructor and as an operator that guarantees
its result is a properly-formed collection, so that
() o S = So () = S, but otherwise S1 o Sz
yields the ordered binary tree with left subtree
5’1 and right subtree 5’2. That is, the expression
Sl o 5’2 evaluates to the structure S1 o Sz precisely
when S1 and Sz are ()-free collections. This
may be slightly confusing at first, but avoids
introducing a new operator.

l Deconstructors
SVP provides the following type-membership predi-
cates for SVP values 0:

- atom(v) - whether 2, is an atomic value.
- tuple(v) - whether 21 is a tuple.
- collection(v) - whether ZJ is a collection.

- emptycollection - whether o is ().
- unitcollection - whether v is (2) for some I.

Furthermore, the following functions are provided:

- unitcollectionvalue(S) - 2, if S = (X).

arity(t) - number n of elements in a tuple t.

t[i] - tuple subscripting. If t is a tuple (xl,. . . , xn)
of type tuple(?;, . . . ,T,), and i is an integer
between 1 and R, then t[i] yields xi, of type x.

Note only tuple deconstructors are allowed to appear
in user-defined mappings. Deconstructors are not
provided for collections. The only conskuct for
iterating over colle&ons is the SVP-transducer.

SVP collections can be regarded as an abstract data
type, whose only defined operations are the collection
constructor, the limited collection deconstructors just
defined, and SVP-transducers introduced next.

3.3.2 SVP-Transducers

SVP-transducers specify mappings of collections as:

1. the mapping of the elements in the input collection;

2. the collecting of the resulting mapped input ele-
ments into an output.

SVP-transducers are capable of implementing all the
example mappings shown earlier.

A mapping f on SVP collections is an SVP-transducer
if it is the composition of one or more functions, each
of which can be written in the following divide-and-
conquer form:

f(S) = J’(Qo, P(S))

JYQ, 0) = ide

J’(Qt lx> > = h(Q,x)
F(Q,SloS2) = F(Q,p(Sl))

0 J'(4Q,Sd, ~4.52) 1.

Here QO is an arbitrary fixed value, p is either the
identity mapping or an SVP-transducer, and h, 0, and
6 are arbitrary SVP mappings of two arguments. We
have written 19 as a binary operator.

We also permit f, F, and h to take additional
arguments not shown explicitly here; in particular f can
be a function of other parameters besides the collection
S (including other collection parameters). Also, the Q
argument can be omitted if it is not used by h or 6.

The mapping p(S) typically performs data partition-
ing on the collection S. Common values for p(S) include
just S (the identity mapping, with no repartitioning),
and the operator partition(P,S), in which P is a predi-
cate defining a splitting of S into two parts Sl o S2, the
first for which P yields the value true, and the latter
the value false (assuming both are nonempty). Parti-
tioning operators will be investigated later.

121

The operator 0 must be of type T x T + T, for some
SVP type T which must be declared. For example, the
o collector here is restricted to work on operands of
type collection, and produce a collection. This type
also restricts the values produced by the h function. For
example, when 6’ is ‘ o ‘, h must produce a collection.

When 0 is a complete operator with a left identity
6, we call 6 a collector. The table below gives
examples of collectors. Parallel evaluation of associative
collector expressions is sometimes called parallel prejit
computation [I2]. Other properties of collectors (such
as Commutativity, Idempotency) can be exploited to
obtain greater parallelism.

min atom -toa A;&

Here o is the collection-forming operator, and ?r is the
append operator for collections. Thus () is the identity
for * , and when S and T are nonempty S*T is the
collection consisting of S but with the rightmost leaf
(2) of S replaced by (z) oT.

In the general SVP-transducer, 8 is permitted to
be an arbitrary operator, and ido an arbitrary value.
However, we shall mainly deal in the rest of the paper
with transducers in which 0 is a collector.

The important restriction this form imposes is that
the computation over the collection be performed
by a divide-and-conquer traversal. Basically, SVP-
transducers provide a (‘large’) control structure that
directs a function on values (‘small’ data manipulation)
to be applied as needed. This control structure can be
viewed as a generalized scan over a collection, together
with gathering of scan results, where both the scan
and the final gathering may be performed using parallel
techniques.

3.3.3 Definition of SVP Mappings
Further mappings can be built using the basic mappings
and SVP-transducers defined above. However, SVP
mappings are restricted in the following ways:

l All mappings arguments are typed, and all mappings
must be well-typed. In particular, constructors and
deconstructors can be applied only to operands of
the appropriate type.

l The only operators that can be applied to collec-
tions are SVP-transducers, and the constructor and
deconstructors defined earlier.

l An SVP mapping used as a parameter can invoke at
most a bounded number of SVP-transducers.

These restrictions limit the power of SVP-mappings.
Without this restriction, transducers can be used (for
example) to implement arbitrary iterative deconstruc-
tors or Turing machines. General query optimization
is infeasible. With the restriction, transducers are re-
stricted to implement only bounded networks of trans-
ductions on collections, and optimization is feasible.

3.4 Properties of the SVP Model

The SVP model was designed to address the goals given
at the outset. This section has provided a variety of
examples using SVP that will help motivate its being the
way it is. To help clarify, however, below are perceptions
about SVP that shaped its current form.

1.

2.

3.

4.

The definition of SVP transducers is a direct gen-
eralization of the earlier definitions of set mappings,
aggregates, and stream transducers. Furthermore, it
is a modest generalization, covering essentials only.

SVP collections are ordered binary trees because
this is enough to let them represent both recursive
problem division, and also sets and streams. The
ordering of the leaves in the tree is the stream
ordering. Otherwise, the actual topology of the tree
is important precisely in that it determines problem
division (and conquering).

When 0 is an associative operator, the expression

xl e z2 e . . . e xn

gives the same result regardless of the way it is
parenthesized, i.e., regardless of the topology of the
expression tree. The result is affected only by the
ordering of the xi. Thus associative operators are
naturally stream mappings. Furthermore, when 0 is
associative and commutative, the result is the same
regardless of the ordering of the xi. Thus associative,
commutative operators are naturally set mappings.

The definition of SVP transducers leads to a very
nice theory, based on the idea of structure preser-
vation. Divide-and-conquer techniques work only
when the data can be divided in a way that repre-
sents some underlying ‘structure’. SVP collections
allow us to model various kinds of structure im-
portant in data processing, including sort ordering
and physical data partitioning. It is also possible
to generalize the classic work of Kahn for contin-
uous functions on sequences [ll] to work for con-
tinuous functions on collections. The basic idea is

122

5. SVP is a model. It is not intended as a full
database system and query language, but rather
the sketch of a larger, full-featured system. It
permits many practical extensions, including n-ary
trees (not just binary) for representing collections,
permitting n-ary problem division, and if-then-else
constructs, permitting early termination of a scan
over a collection. Earlier versions of SVP permitted
these extensions explicitly, but the result was a
more complicated model. The current model is
simple, and encourages a transducer style with more
parallelism.

4 Examples of SVP-Transducers

that prefix-continuous functions on sequences3 are
exactly those functions that yield pipeline paral-
lelism. Stream-continuity gives pipeline parallelism,
and set-continuity gives independent parallelism.

To illustrate the power of SVP, we show how basic
data processing primitives can be expressed as SVP
transducers. These examples have all been implemented
and execute correctly in an SVP prototype written in
Bop, a rewrite rule language developed at UCLA.

4.1 Three Basic Transducers
SVP offers essentially three functionals:

l collect (bottom-up accumulations)

collect(0, id, 0) = id
collect(8, id, (z))
collect(8, id, Sl o Ss) 1 :bllect(B, id, S,)

B collect(0, id, Sz).

l transduce (general transductions on collections)

transduce(h, 6, Q, 0)

transduce(h, 6, Q, (z))
= 0
= h(Q,x)

transduce(h, 6, Q, S1 o S’s) =

transduce(h, 6, Q, Sl)

o transduce(h, 6, J(Q, S,), SZ).

l restructure (top-down reorganization)

restructure@, S) = R(p, p(S))

WJ? 0) = 0

Rh (xl> = (x)
R(P, 5’1 0 S2) = VP> P(S)) 0 R(P, P(SZ)).

3Prefix-continuous functions on sequences are functions that
are monotone with respect to the sequence prefix ordering, so
giving the function more input cannot result in the function’s
producing less output, and also cannot wait indefinitely before
producing an output. Fixed-point results for continuous functions
lead to a rigorous fixed point semantics for networks of SVP-
transducers, even for cyclic networks.

Most SVP transducers are definable in terms of col-
lect, transduce, and restructure. Note that whenever
b(Q,S) = 6’(Q, restructure(p,S)) for all Q and S, the
SVP transducer expression f(S) with the defining re-
cursion

f(S)
JYQ, 0)
J’(Q> (x) 1

= F(&or P(S))
= ide
= h(Q,x)

JYQ, S1 oS2) = F(Q, P(S))

0 F(~(Q,Sd, p(S2) >.

is equivalent to the expression

collect(0, id*, transduce(h, S’, &a, restructure(p, S))).

4.2 Restructuring, Partitioning and Grouping

Often it is useful to transform of one structure to
another. Reorganization can be done both with
restructure and collect in many ways. For example,
sequence - a transducer that maps an input collection
to a flattened sequence - is definable as

sequence(S) = restructure(first-rest, S)

where first-rest is a transducer that partitions a collec-
tion into first and remaining elements. Alternatively:

sequence(S) = collect(*, 0, S)

- collections can be flattened by recursive appending.
The restructure functional is useful for top-down reor-

ganization of collections. For example, if p splits a tree
into two trees of equal cardinality, then restructure(p, S)

produces a balanced version of S. Also, if p partitions
a tree into two subtrees by comparing with a median-
estimate key value, then restructure(p, S) sorts a tree S
by that key.

We can restructure any collection into a balanced
collection (balanced tree) by repeated halving:

balance(S) = restructure(split, S)

split(S) = pcoll(halves(l,count(S),

sequence(S)))

halves(i, n, 0) = (070)
halves(i, n, (x)) = ifi<n/2 then((x),())

else (0, (4 >
halves(i, n, S’l o S2) = halves(i, n, S1)

pcomb halves(i + 1, n, &).

Here we need several operators on partitions:

PC4 (Sl,S2)) = 4 05-Z

(pl,h) pcomb (Ql,Qd = (PloQl, hoQ2).

123

Note pcomb is a binary operator with identity (0, ()),
and is thus a collector.

Collecting is useful for bottom-up restructuring of col-
lections. Partitioning can be performed with collecting:

partition(P, S) =

pcoll(collect(pcomb, (0, ()), parts(P, S))

wrts(P, 0) = 0
parts(P, (2)) = if P(z) then ((I), ())

else (0, (x) 1
parts(P, SI 0 SZ) = parts(P, SI) 0 parts(P, S2)

>

This partitions by splitting collection S into two
subcollections (Si, 5’2) according to predicate P, and
using pcoll to recombine these into a collection.

Grouping can also be expressed as collecting. The
grouping operation takes a set S and a characteristic
function h (say a hash function or a key function) as
input, and produces as output a set of 2-tuples (Ic, Si),
1 5 i 5 p, where k is the value obtained by applying
h to any member of the set Si, and S is partitioned by
the Si subsets. This can be implemented as an SVP-
mapping that applies h to the 2 values in the input and
accumulates the resulting (k, 2) values into buckets [14].

4.3 Algebraic Operators

In FAD [6], the parameterized aggregate operator
pump(h,~,& 3) is defined to yield

ido ifS = {}
h(+l) 6 . . . 6 h(z,) if S = (21,. . .,zn)

where B is an associative, commutative binary operator,
with identity ide. It is definable as an SVP transducer:

wv(h, 0, ide, 0) = id@
pump(h, 6 ids, (4) = h(x)
pump@, 4 6, Sl 0 S2) = pump@, 0, de, Sl)

e wmp(h, 4 ide, 5-4.

The list1 operator in [3] is similar. The APL reduction
operator [lo] allows non-associative, non-commutative
operators. In particular, if 0 is a binary operator and
S (21,22,*..,

S b; e is e/s
z,,) is a vector, the APL reduction of

= ((. . . (ti e 22) 0 . ..) B I*). This
is an aggregation that reflects the ordering of the input.
It can also be written as a SVP-transducer, assuming
the input is in left-linear form:

APLreduction(B, 0) = 0
APLreduction(B, (2)) = 2

APLreduction(0, S1 o S2) = APLreduction(8, S,)

0 APLreduction(0, S2).

Furthermore, any collection can be restructured to left-
linear form with a simple SVP-mapping [14].

4.4 Joins

Surprisingly, important n-ary operations like joins can
be implemented with transducers! In fact, interesting
join algorithms can be developed.

Let us define a general join algorithm. One general
specification for joins would be something like:

combine(R,S) = { RESULT(r,s) 1

TEST(r,s) A .r E R A s E S }.

Most join algorithms use a simple definition for RESULT

(e.g., tuple concatenation) and TEST (e.g., testing
equality of key values). The join partitions the cross
product R x S into equivalence classes. The kind of
equivalence classes used are determined by the join
algorithm, and can be used to introduce ‘groups’ over
which the join is to be done - for example grouping the
tuples with equal key values.

With this in mind, we can produce a generalized
join mapping, in which R has ‘groups’ I&, S has
‘corresponding groups’ Si, and we join over groups:

combine(R, S) = { RESULT(T,S) 1

TEST(v-,s) A r~& A s~,S’i

AR-i = MAPl(P) A P E R
A S; = MAP2(P,S) }.

This generalized join mapping could be implemented
in ‘macro’-like pseudocode as follows:

combine(R,S) = T where

1
T= 0;
for P in R

{
h!i = MAPl(P);
Si = MAP2(P,S);
for r in I&

for s in Si
if (TEST(r,s))

then T = T u RESULT(r,s)

1

1

Here P is a ‘part’ of R (such as a (key value, group)-
pair), and R; and Si are the actual groups the
join is to be done over. MAP1 and MAP2 are
arbitrary functions that convert groups to a suitable
representation. Groups give what is needed for joins to
deal with multiple occurrences of join keys (or even of
tuples); they capture join equivalence classes.

This definition implements various join algorithms
according to the structure chosen for R and S, and the
choice of parameters.

124

If R and S are collections of tuples, MAP1 maps a
tuple P in R to the collection l& = (P), and MAP2

simply takes Si to be the entire collection S, then
we obtain the nested loops algorithm.

If R and S are groups (collections of collections) of
elements with the same join key value, I& is the
group of R with join key i, Si is the group of S
with join key i, we obtain a general indexed join
algorithm. Specifically, if the groups are collections
of elements with the same hash key value, then
the groups represent hash buckets, and we have
the parallel hash join algorithm. The algorithm is
parallel in that all groups can be joined in parallel.

The parameterized set map operator filter(h,&, . . . ,

S,), in FAD [S] yields the value of h applied to each
tuple in the cross product of the sets Si, . . . , S,,, (for
m > 0):

filter(h,&, . . .,Sm) = { h(zl,. . .,zm) 1

I1 E Sl, . . .) InI E s, }.

We can implement filter as a cascade of m - 1
combines implementing nested loops joins, where
the final combine in the cascade applies h as its
RESULT mapping.

The generalized join operator described above can be
implemented with cascaded transductions:

combine(R, S)

combinel(S, 0)
combinel(S, (P))

combinel(S, PI o Pz)

= combinel(S, R)

= 0
= combine2(MAP2(P, S),

MAPl(P))
= combinel(S, PI)

o combinel(S, P2)

combine2(Si, 0) = 0
combine2(Si, (r)) = combine3((r), Si)
combine2($, R+l o &) = combine2($, R+l)

o combine2(Si, &2)

combine3((r), 0)

combine3((r), (s))
= 0
= if TEST(r,s)

then RESULT(r,s)

else ()
combine3((r), $1 OSiz) = combine3((r), $1)

o combine3((r), Siz).

Many other tricks are possible here. For example,
we can implement merge scans on streams (linear
collections) with SVP-transducers. Merging of two
streams is accomplished by making one of the streams
the initial state, and incrementally consuming this state
while simultaneously consuming the other stream [14].

5 Summary

To review what is new about SVP:

l SVP models information with collections. Collec-
tions include many interesting special cases, includ-
ing streams, multisets, and groups, and combine sets
and streams neatly in a single model.

l Collections are represented as trees. Where there
have been many attempts to develop data processing
models using functional operators on sets or on
lists, SVP uses trees. This not only permits us to
handle sets and streams in the same model, but
also gives an explicit way to represent divide-and-
conquer processing and parallel processing.

l SVP permits a natural characterization of structure
preserving mappings on collections, and these map-
pings have important properties that yield paral-
lelism and performance in data processing.

l SVP is simple. It does not rely on sophisticated alge-
braic concepts, or a powerful higher-order function
framework, but on divide-and-conquer and func-
tional composition. Earlier versions of the model
experimented with greater sophistication (in fact a
sizeable running prototype was written that treated
transducers as higher-order functions), but ulti-
mately were discarded in favor of simplicity.

In SVP, database mappings (queries) are formalized as
transducers. These mappings have important proper-
ties:

SVP-transducers implement many useful bulk data
operations: scan computations, relational algebra
operators, arbitrary aggregate operators, including
FAD’s pump operator, arbitrary set mappings, in-
cluding FAD’s filter operator, and many stream map
pings (specifically, stream transductions). More
generally, SVP-transducers implement divide-and-
conquer mappings that appear useful in bulk data
processing.

SVP-transducers provide a natural means of spec-
ifying both independent and pipeline parallelism.
At the same time, they have a rigorous semantics
based on continuity with respect to collection order-
ings, that supports both independent and pipeline
parallelism. Rigorous fixed point semantics can be
derived for networks of SVP-transducers, even for
cyclic networks.

The objective of a database model is to find a class
of structures and mappings on those structures that:
permit conceptualization of complex problems; permit
adaptation and extensibility for new situations; permit

125

efficient implementation; are rigorously defined; are
generally useful. We feel the SVP model meets these
essential criteria, and in addition offers insights on
parallel data processing.

Acknowledgement

We are indebted to Serge Abiteboul, Pa010 Atzeni,
Dennis Shasha, and the referees for important critical
comments and suggestions. We also want to thank
Dave Martin, Ed Stabler, Cliff Walinsky, Members of
the POP Laboratory at UCLA, particularly Shen-Tzay
Huang and Xin Wang, and Members of the Rodin group
at INRIA for fruitful discussions.

References

PI

PI

[31

[41

151

PI

[71

PI

PI

D. Bitton, H. Boral, D. Dewitt, W. Wilkinson,
Parallel Algorithms for the Execution of Rela-
tional Database Operations, ACM Transactions on
Database Systems, 8~3, 1983.

P. Borla-Salamet, C. Chachaty, B. Dageville, Com-
piling Control into Database Queries for Parallel Ex-
ecution, Proc. Int. Conf. on Parallel and Distributed
Information Systems, Miami, Florida, Dec. 1991.

W.H. Burge, Recursive Programming Techniques,
Reading, MA: Addison-Wesley, 1975.

N. Carriero, D. Gelertner, Linda in Context, Com-
munications of the ACM 32: 4, April 1989.

C. Chase et al., Paragon: a Parallel Programming
Environment for Scientific Applications Using Com-
munications Structures, Proc. Int. Conf on Parallel
Programming, St. Charles, Illinois, Aug. 1991.

S. Danforth, P. Valduriez, A FAD for Data-Intensive
Applications, IEEE Trans. Knowledge and Data
Engineering, 4: 1, February 1992.

A. Gupta, C. Forgy, A. Newell, High Speed Imple-
mentations of Rule-Based Systems, ACM Transac-
tions on Computer Systems, 7~2, May 1989.

B. Hart, S. Danforth, P. Valduriez, Parallelizing
FAD, a Database Programming Language, Int.
Symp. on Databases in Distributed and Parallel
Systems, Austin, Texas, Dec. 1988.

W.D. Hillis, G.L. Steele, Data Parallel Algorithms,
Communications of the ACM, 29:12, Dec. 1986.

[II] G. Kahn, The S emantics of a Simple Language
for Parallel Programming, Proc. IFIP 74, North-
Holland, 471-475, August 1974.

[12] R.E. Ladner, M.J. Fischer, Parallel Prefix Compu-
tation, J. ACM 27~4, 831-838, 1980.

[13] D.S. Parker, Stream Data Analysis in Prolog, in
L. Sterling, ed., The Practice of Prolog, MIT Press,
1990.

[14] D.S. Parker, E. Simon, P. Valduriez, SVP, a
Model Capturing Sets, Streams, and Parallelism,
Technical Report CSD-920020, Computer Science
Department, UCLA, April 1992.

[15] I. Rival, ed., Graphs and Order: the role of graphs
in the theory of ordered sets and its applications,
Kluwer Academic Publishers, 1985.

[16] D.B. Skillikorn, Architecture-Independent Parallel
Computation, IEEE Computer 23:12, 38-50 (De-
cember 1990).

[17] Thinking M ac h ines Corporation, Programming in
C*, Version 5.0, Cambridge, Ma, 1989.

[18] P. Valduriez, S. Khoshafian, Parallel Evaluation
of the Transitive Closure of a Database Relation,
International Journal of Parallel Programming, 17:
1, 19-42, 1988.

[19] P. Valduriez, ed., Data Management and Parallel
Processing, London: Chapman and Hall, 1991.

[20] P. Wadler, Comprehending Monads, Proc. 1999
ACM Conf. on LISP and Functional Programming,
Nice, France, 61-78, June 1990.

[21] 0. Wolfson, A. Ozeri, A New Paradigm for Par-
allel and Distributed Rule Processing, Proc. ACM
SIGMOD Int. Conf., Atlantic City, May 1990.

[lo] K.E. Iverson, A Programming Language, NY: J.
Wiley, 1962.

126

