
Distributed and Parallel Databases, 18, 223–251, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10619-005-4257-4

Preventive Replication in a Database Cluster∗

ESTHER PACITTI pacitti@lina.univ-nantes.fr

CÉDRIC COULON coulon@lina.univ-nantes.fr

PATRICK VALDURIEZ patrick.valduriez@inria.fr
INRIA and LINA, University of Nantes, France

M. TAMER ÖZSU tozsu@uwaterloo.ca
University of Waterloo, Canada

Abstract. In a database cluster, preventive replication can provide strong consistency without the limitations
of synchronous replication. In this paper, we present a full solution for preventive replication that supports
multi-master and partial configurations, where databases are partially replicated at different nodes. To increase
transaction throughput, we propose an optimization that eliminates delay at the expense of a few transaction aborts
and we introduce concurrent replica refreshment. We describe large-scale experimentation of our algorithm based
on our RepDB∗ prototype (http://www.sciences.univ-nantes.fr./lina/ATLAS/RepDB) over a cluster of 64 nodes
running the PostgreSQL DBMS. Our experimental results using the TPC-C Benchmark show that the proposed
approach yields excellent scale-up and speed-up.

Keywords: database cluster, partial replication, preventive replication, strong consistency, TPC-C
benchmarking

1. Introduction

High-performance and high-availability of database management have been traditionally
achieved with parallel database systems [23], implemented on tightly-coupled multipro-
cessors. Parallel data processing is then obtained by partitioning and replicating the data
across the multiprocessor nodes in order to divide processing. Although quite effective, this
solution requires the database system to have full control over the data and is expensive in
terms of software and hardware.

Clusters of PC servers now provide a cost-effective alternative to tightly-coupled multi-
processors. They have been used successfully by, for example, Web search engines using
high-volume server farms (e.g., Google). However, search engines are typically read-
intensive, which makes it easier to exploit parallelism. Cluster systems can make new
businesses such as Application Service Providers (ASP) economically viable. In the ASP
model, customers’ applications and databases (including data and DBMS) are hosted at

∗Work partially funded by the MDP2P project of the ACI “Masses de Donniées” of the French Ministry of
Research.

224 PACITTI ET AL.

the provider site and need be available, typically through the Internet, as efficiently as if
they were local to the customer site. Notice that due to autonomy, it is possible that the
DBMS at each node are heterogeneous. To improve performance, applications and data can
be replicated at different nodes so that users can be served by any of the nodes depending
on the current load [1]. This arrangement also provides high-availability since, in the event
of a node failure, other nodes can still do the work. However, managing data replication
in the ASP context is far more difficult than in Web search engines since applications can
be update-intensive and both applications and databases must remain autonomous. The
solution of using a parallel DBMS is not appropriate as it is expensive, requires heavy
migration to the parallel DBMS and hurts database autonomy.

In this paper, we consider a database cluster with similar nodes, each having one or
more processors, main memory (RAM) and disk. Similar to multiprocessors, various
cluster system architectures are possible: shared-disk, shared-cache and shared-nothing
[23]. Shared-disk and shared-cache require a special interconnect that provide a shared
space to all nodes with provision for cache coherence using either hardware or software.
Shared-nothing (or distributed memory) is the only architecture that supports our autonomy
requirements without the additional cost of a special interconnect. Furthermore, shared-
nothing can scale up to very large configurations. Thus, we strive to exploit a shared-nothing
architecture.

The major problem of data replication is to manage the consistency of the replicas in the
presence of updates [6]. The basic solution in distributed systems that enforces strong replica
consistency1 is synchronous (or eager) replication (typically using the Read-One-Write
All—ROWA protocol [11]). Whenever a transaction updates a replica, all other replicas
are updated inside the same distributed transaction. Therefore, the mutual consistency of
the replicas is enforced. However, synchronous replication is not appropriate for a database
cluster for two main reasons. First, all the nodes would have to homogeneously implement
the ROWA protocol inside their local transaction manager, thus violating DBMS autonomy.
Second, the atomic commitment of the distributed transaction should rely on the two-phase
commit (2PC) protocol [11] which is known to be blocking (i.e. does not deal well with
nodes’ failures) and has poor scale up.

A better solution that scales up is lazy replication [14], where a transaction can commit
after updating a replica, called primary copy, at some node, called master node. After the
transaction commits, the other replicas, called secondary copies, are updated in separate
refresh transactions at slave nodes. Lazy replication allows for different replication con-
figurations [12]. A useful configuration is lazy master where there is only one primary
copy. Although it relaxes the property of mutual consistency, strong consistency is assured.
However, it hurts availability since the failure of the master node prevents the replica to
be updated. A more general configuration is (lazy) multi-master where the same primary
copy, called a multi-owner copy, may be stored at and updated by different master nodes,
called multi-owner nodes. The advantage of multi-master is high-availability and high-
performance since replicas can be updated in parallel at different nodes. However, conflict-
ing updates of the same primary copy at different nodes can introduce replica incoherence.

Preventive replication [13] is an asynchronous solution that enforces strong consistency.
Instead of using atomic broadcast, as in synchronous group-based replication [9], preventive
replication uses First-In First-Out (FIFO) reliable multicast which is a weaker constraint.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 225

It works as follows. Each incoming transaction is submitted, via a load balancer, to the
best node of the cluster. Each transaction T is associated with a chronological timestamp
value C, and is multicast to all other nodes where there is a replica. At each node, a delay
time d is introduced before starting the execution of T. This delay corresponds to the upper
bound of the time needed to multicast a message. When the delay expires, all transactions
that may have committed before C are guaranteed to be received and executed before T,
following the timestamp chronological order (i.e. total order). Hence, this approach prevents
conflicts and enforces consistency. Its implementation over a cluster of 8 nodes showed
good performance [13].

However, the original proposal has two main limitations. First, it assumes that databases
are fully replicated across all cluster nodes and thus propagates each transaction to each
cluster node. This makes it unsuitable for supporting large databases and heavy workloads
on large cluster configurations. Second, it has performance limitations since transactions
are performed one after the other, and must endure waiting delays before starting. Thus,
refreshment is a potential bottleneck, in particular, in the case of bursty workloads where
the arrival rates of transactions are high at times. This paper addresses these important
limitations. It is based on the solution initially proposed in [4] with significant extensions
regarding replication configurations, concurrency management, proofs of algorithms and
performance evaluation.

In this paper, we provide support for partial replication, where databases are partially
replicated at different nodes. Unlike full replication, partial replication can increase access
locality and reduce the number of messages for propagating updates to replicas. To increase
transaction throughput, we propose a refreshment algorithm that potentially eliminates the
delay time, and we introduce concurrent replica refreshment. We describe the implemen-
tation of our algorithm in our RepDB∗ prototype [19] over a cluster of 64 nodes running
the PostgreSQL DBMS. Our experimental results using the TPC-C Benchmark show that
it yields excellent scale-up and speed-up.

The rest of the paper is organized as follows. Section 2 introduces the global architec-
ture for processing user requests against applications into the cluster system. Section 3
defines the basic concepts for fully and partial replication. Section 4 describes preventive
refreshment for partially replication, including the algorithm and architecture. Section 5
proposes some important optimizations to the refreshment algorithm that improves trans-
action throughput. Section 6 describes our validation and experimental results. Section 7
discusses related work. Section 8 concludes.

2. Database cluster architecture

In this section, we introduce the architecture for processing user requests against appli-
cations into the cluster system and discuss our general solutions for placing applications,
submitting transactions and managing replicas. Therefore, the replication layer is identified
together with all other general components.

In this paper, we exploit a shared-nothing architecture. This is the only architecture
that allows sufficient node autonomy without the additional cost of special interconnects.
In our shared-nothing architecture, each cluster node is composed of five layers (see

226 PACITTI ET AL.

Figure 1. Peer-to-peer cluster architecture.

figure 1): Request Router, Application Manager, Transaction Load Balancer and Replication
Manager. A user request may be a query or update transaction on a specific application.
The general processing of a user request is as follows.

When a user request arrives at the cluster, traditionally through an access node, it is sent
randomly to a cluster node i. There is no significant data processing at the access node,
avoiding bottlenecks. Within that cluster node, the user is authenticated and authorized
through the Request Router, available at each node, using a multi-threaded global user
directory service. Notice that user requests are managed completely asynchronously. Next,
if a request is accepted, then the Request Router chooses a node j, to submit the request. The
choice of node j involves selecting all nodes in which the required application is available,
and, among these nodes, the node with the lightest load. Therefore, eventually i may be
equal to j. The Request Router then routes the user request to an application node using a
traditional load balancing algorithm.

Notice, however, that the database accessed by the user request may be placed at another
node k since applications and databases are both replicated and not every node hosts a
database system. In this case, the choice regarding node k will depend on the cluster
configuration and the database load at each node.

A node load is computed by a current load monitor available at each node. For each node,
the load monitor periodically computes application and transaction loads using traditional
load balancing strategies. For each type of load, it establishes a load grade and multicasts
the grades to all the other nodes. A high grade corresponds to a high load. Therefore, the
Request Router chooses the best node for a specific request using the node grades (light
node is better as discussed below).

The Application Manager is the layer that manages application instantiation and execu-
tion using an application server provider. Within an application, each time a transaction is
to be executed, the Transaction Load Balancer layer is invoked which triggers transaction

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 227

execution at the best node, using the load grades available at each node. The “best” node
is defined as the one with lighter transaction load. The Transaction Load Balancer ensures
that each transaction execution obeys the ACID (atomicity, consistency, isolation, durabil-
ity) properties [14], and then signals to the Application Manager to commit or abort the
transaction.

The Replication Manager layer manages access to replicated data and assures strong
consistency in such a way that transactions that update replicated data are executed in the
same serial order at each node. We employ data replication because it provides database
access parallelism for applications. Our preventive replication approach avoids conflicts at
the expense of a forced waiting time for transactions, which is negligible due to the fast
cluster network system.

3. Replication model

In this section, we define all the terms and concepts of lazy replication for fully and
partially replicated databases necessary to understand our solutions. Then, we present the
consistency criteria for the three types of configurations: Lazy-Master, Multi-master and
Partially replicated.

3.1. Configurations

We assume that a replica is an entire relational table. Given a table R, we may have three
kinds of copies: primary, secondary and multi-master. A primary copy, denoted by R, is
stored at a master node where it can be updated while a secondary copy, denoted by ri, is
stored at one or more slave nodes i in read-only mode. A multi-master copy, denoted by
Ri, is a primary copy that may be stored at several multi-master nodes i. Figure 2 shows
various replication configurations, using two tables R and S.

Figure 2(a) shows a bowtie (lazy master) configuration where there are only primary
copies and secondary copies. This configuration is useful to speed-up the response times
of read-only queries through the slave nodes, which do not manage the update transaction
load. However, availability is limited since, in the case of a master node failure, its primary
copies can no longer be updated.

Figure 2. Replication configurations.

228 PACITTI ET AL.

Figure 2(b) shows a fully replicated configuration. In this configuration, all nodes manage
the update transaction load because whenever R or S is updated at one node, all other copies
need be updated asynchronously at the other nodes. Thus, only the read-only query loads
are different at each node. Since all the nodes perform all the transactions, load balancing
is easy because all the nodes have the same load (when the specification of the nodes is
homogeneous) and availability is high because any node can replace any other node in case
of failure.

Figures 2(c) and (d) illustrate partially replicated configurations where all kinds of copies
may be stored at any node. For instance, in figure 2(c), node N1 carries the multi-master
copy R1 and the primary copy S, node N2 carries the multi-master copy R2 and the secondary
copy s1, node N3 carries the multi-master copy R3, and node N4 carries the secondary copy
s2. Compared with full replication, only some of the nodes are affected by the updates
on a multi-master copy (only those that hold common multi-master copies). Therefore,
transactions do not have to be multicast to all the nodes. Thus, the nodes and the network
are less loaded and the overhead for refreshing replicas is significantly reduced.

With partial replication a transaction T may be composed of a sequence of read and
write operations followed by a commit (as produced by the SQL statement in figure 3) that
updates multi-master copies. This is more general than in [13] where only write operations
are considered. We define a refresh transaction as the sequence of write operations of
a transaction, as written in the Log History. In addition, a refreshment algorithm is the
algorithm that manages, asynchronously, the updates on a set of multi-master and secondary
copies once one of the multi-master (or primary) copies is updated by T for a given
configuration.

Given a transaction T received in the database cluster, there is an origin node chosen by
the load balancer that triggers refreshment, and a set of target nodes that carries replicas
involved with T. For simplicity, the origin node is also considered a target node. For instance,
in figure 2(b) whenever node N1 receives a transaction that updates R1, then N1 is the origin
node and N1, N2, N3 and N4 are the target nodes. In figure 2(c), whenever N3 receives a
transaction that updates R3, then the origin node is N3 and the target nodes are N1, N2 and N3.

To refresh multi-master copies in the case of full replication, it is sufficient to multicast
the incoming transactions to all target nodes. But in the case of partial replication, even
if a transaction is multicast towards all nodes, it may happen that the nodes are not be
able to execute it because they do not hold all the replicas necessary to execute T locally.
For instance, figure 2(c) allows an incoming transaction at node N1, such as the one in
figure 3 to read s1 in order to update R1. This transaction can be entirely executed at N1 (to
update R1) and N2 (to update R2). However it cannot be executed at node N3 (to update R3)

Figure 3. Incoming transaction at node N1.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 229

because N3 does not hold a copy of S. Thus, refreshing multi-master copies in the case of
partial replication needs to take into account replica placement.

3.2. Consistency criteria

Informally a correct refreshment algorithm guarantees that any two nodes holding a
common set of replicas, R1, R2, . . . , Rn, must always produce the same sequence of
updates on R1, R2, . . . , Rn. For each configuration and its sub-configurations, we provide
a criterion that must be satisfied by the refreshment algorithm in order to be correct. Group
communication systems provide multicast services that differ in the final order in which
messages are delivered at each node. We use these known orders [14] as a guide to express
our correctness criteria. An example of each configuration is presented in Section 3.1.

Lazy-Master configuration (figure 2(a)). In Lazy-Master configurations, inconsistency
may arise if slave nodes can commit their refresh transactions in an order different than their
corresponding master nodes. The following correctness criterion prevents this situation.

Definition 3.1 (Total order). Two refresh transactions RT1 and RT2 are said to be in total
order if any slave node that commits RT1 and RT2, commits them in the same order.

Proposition 3.1. For any cluster configuration C that meets a lazy-master configuration
requirement, the refresh algorithm that C uses is correct if and only if the algorithm enforces
total order.

Multi-Master configuration (Figure 2(d)). In Multi-Master configurations, inconsisten-
cies may arise whenever the serial execution orders of two transactions at two nodes are
not equal. Therefore, transactions must be executed in the same serial order at any node.
Thus, Global FIFO Ordering is not sufficient to guarantee the correctness of the refreshment
algorithm. Hence the following correctness criterion is necessary:

Definition 3.2 (Total order). Two transactions T1 and T2 are said to be executed in Total
Order if all multi-owner nodes that commit both T1 and T2 commit them in the same
order.

Proposition 3.2. For any cluster configuration C that meets a multi-master configuration
requirement, the refresh algorithm that C uses is correct if and only if the algorithm enforces
total order.

Partially-Replicated configurations (Figures 2(c) and (d)). In a Partially-Replicated con-
figuration, the inconsistency issues are similar to those found in each component sub-
configuration, namely multi-master and lazy-master. That is, two transactions T1 and T2

must be executed in the same order at the multi-owner nodes, and, in addition, their cor-
responding refresh transactions RT1 and RT2 must commit in the same order in which
the origin node commit T1 and T2. Therefore, the following correctness criterion prevents
inconsistencies:

230 PACITTI ET AL.

Proposition 3.3. If a cluster configuration C meets partially replicated configuration
requirement, then the refresh algorithm that C uses is correct if and only if for each
sub-configuration SC correctness is enforced (see Propositions 3.1 and 3.2).

Proposition 3.4. For any cluster configuration C that meets the partially replicated
requirements, the refresh algorithm that C uses is correct if and only if the algorithm enforces
total order.

4. Preventive refreshment

In this section, we first present the basic refreshment algorithm originally designed for full
replication. Then we present the extension of the algorithm to manage partial replication.
Afterwards we show the correctness of the algorithm for both fully and partially replicated
configurations. Finally, we describe the Replication Manager architecture that implements
these algorithms.

4.1. Full replication

We assume that the network interface provides global FIFO reliable multicast: messages
multicast by one node are received at the multicast group nodes in the order they have been
sent [7]. We denote by Max, the upper bound of the time needed to multicast a message
from a node i to any other node j. It is essential to have a value of Max that is not over
estimated. The computation of Max resorts to scheduling theory [22] and takes into account
several parameters such as the global reliable network itself, the characteristics of the
messages to multicast and the failures to be tolerated. We also assume that each node has a
local clock. For fairness, clocks are assumed to have a drift and to be ε-synchronized. This
means that the difference between any two correct clocks is not higher that ε (known as the
precision).

To define the refreshment algorithm, we need the formal correctness criterion presented
in Section 3.2 to define strong copy consistency. Inconsistencies may arise whenever the
serial orders of two transactions at two nodes are not equal. Therefore, they must be executed
in the same serial order at any two nodes. Thus, global FIFO ordering is not sufficient to
guarantee the correctness of the refreshment algorithm.

Each transaction is associated with a chronological timestamp value C. The principle of
the preventive refreshment algorithm is to submit a sequence of transactions in the same
chronological order at each node. Before submitting a transaction at node i, we must check
whether there is any older transaction en route to node i. To accomplish this, the submission
time of a new transaction at node i is delayed by Max+ε. Thus the earliest time a transaction
is submitted is C + Max + ε (henceforth delivery time).

Whenever a transaction Ti is to be triggered at some node i, node i multicasts Ti to all
nodes 1, 2, . . . , n, including itself. Once Ti is received at some other node j (i may be
equal to j), it is placed in the pending queue in FIFO order with respect to the triggering
node i. Therefore, at each multi-master node i, there is a set of queues, q1, q2, . . . , qn,
called pending queues, each of which corresponds to a multi-master node and is used by the

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 231

Figure 4. Refreshment architecture.

refreshment algorithm to perform chronological ordering with respect to the delivery times.
Figure 4 shows part of the components necessary to run our algorithm. The Refresher reads
transactions from the top of pending queues and performs chronological ordering with
respect to the delivery times. Once a transaction is ordered, then the refresher writes it to
the running queue in FIFO order, one after the other. Finally Deliver keeps checking top of
the running queue to start transaction execution, one after the other, in the local DBMS.

Let us illustrate the algorithm by an example. Suppose we have two nodes i and j, masters
of the copy R. So at node i, there are two pending queues: q(i) and q(j) corresponding to
multi-master nodes i and j. T1 and T2 are two transactions which update R, respectively on
node i and on node j. Let us suppose that Max is equal to 10 and ε is equal to 1. So, on node i,
we have the following sequence of execution:

– At time 10: T2 arrives at node i with a timestamp C2 = 5

• q(i) = [T2 (5)], q(j) = []
• T2 is chosen by the Refresher to be the next transaction to perform at delivery time 16

(5 + 10 + 1), and the time is set to expire at time 16.

– At time 12: T1 arrives from node j with a timestamp C1 = 3

• q(i) = [T2 (5)], q(j) = [T1 (3)]
• T1 is chosen by the Refresher to be the next transaction to perform at delivery time 14

(3 + 10 + 1), and the time is re-set to expire at time 14.

– At time 14: the timeout expires and the Refresher writes T1 into the running queue.

• q(i) = [T2 (5)], q(j) = []
• T2 is selected to be the next transaction to perform at delivery time 16 (5 + 10 + 1)

– At time 16: the timeout expires. The Refresher writes T2 into the running queue.

• q(i) = [], q(j) = []

232 PACITTI ET AL.

Figure 5. Multi-master refresher algorithm.

Although the transactions are received in wrong order with respect to their timestamps
(T2 then T1) they are written into the running queue in chronological order according to
their timestamps (T1 then T2). Thus, the total order is enforced even if messages are not
sent in total order.

In figure 5, we can see the three steps of the algorithm used in the Refresher module. In
step 1, at the reception of a new message in a pending queue, we choose the most recent
message from the pending queues. In step 2, we calculate the delivery time according to
the timestamp of the message and the Max + ε, and then we set a local reverse timer that
will expire at the delivery time. Finally, in step 3, when the timer is over, the message is
submitted to the running queue for execution.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 233

4.2. Partial replication

With partial replication, some of the target nodes may not be able to perform a transaction
T because they do not hold all the copies necessary to perform the read set of T (recall
the discussion on figure 3). However the write sequence of T, which corresponds to its
refresh transaction, denoted by RT, must be ordered using T ’s timestamp value in order to
ensure consistency. So T is scheduled as usual but not submitted for execution. Instead, the
involved target nodes wait for the reception of the corresponding RT. Then, at origin node i,
when the commitment of T is detected (by sniffing the DBMS’ log—see Section 4.3), the
corresponding RT is produced and node i multicasts RT towards the target nodes. Upon
reception of RT at a target node j, the content of T (still waiting) is replaced with the content
of incoming RT and T can be executed.

Let us now illustrate the algorithm with an example of execution. In figure 6, we assume
a simple configuration with 4 nodes (N1, N2, N3 and N4) and 2 copies (R and S). N1 carries
a multi-owner copy of R and a primary copy of S, N2 a multi-owner copy of R, N3 a
secondary copy of S, and N4 carries a multi-owner copy of R and a secondary copy of S.

Figure 6. Example of preventive refreshment with partial configurations.

234 PACITTI ET AL.

The refreshment proceeds in 5 steps. In step 1, N1 (the origin node) receives T from a client
which reads S and updates R1. For instance, T can be the resulting read and write sequence
produced by the transaction of figure 3. Then, in step 2, N1 multicasts T to the involved
target nodes, i.e. N1, N2 and N4. N3 is not concerned with T because it only holds a secondary
copy s. In step 3, T can be performed using the refreshment algorithm at N1 and N4. At N2,
T is also managed by the Refresher and then put in the running queue. However, T cannot
yet be executed at this target node because N2 does not hold S. Thus, the Deliver needs
to wait for its corresponding RT in order to apply the update on R (see step 4). In step 4,
after the commitment of T at the origin node, the RT is produced and multicasts it to all
involved target nodes. In step 5, N2 receives RT and the Receiver replaces the content of T
by the content of RT. The Deliver can then submit RT.

Partial replication may be blocking in case of failures. After the reception of T, some
target nodes would be waiting for RT. Thus, if the origin node fails, the target nodes are
blocked. However, this drawback can be easily solved by replacing the origin node by an
equivalent node, a node that holds all the replicas necessary to execute T. Once the target
nodes detect the failure of the origin node, it can request an equivalent node j to multicast
RT given T ’s identifier. At node j, RT was already produced in the same way that at the
origin node: transaction T is executed and, upon detection of T ’s commitment, an RT is
produced and stored in a RT log (see Section 4.4), necessary to handle failure of the origin
node. In the worst case where no other node holds all the replicas necessary to execute
T, T is globally aborted. Reconsider the example in figure 6: if N1 fails at Step 3, N2 can
not receive the RT corresponding to the waiting T. So, once N2 detects that N1 is out of
service, it can identify that N4 has all copies necessary for T (remember that the global data
placement is known) and request the transfer of RT to N4. So, we assume that RT ’s logs are
kept at each node (see Section 4.4). In addition, if N4 is also out of service, then no node
can perform T. Thus, N2 would abort transaction T. Consistency is enforced because none
of the active nodes has performed the transaction. In this case, at recovery time, the failed
nodes would undo T.

4.3. Correctness of the refresher algorithm

In this section we show that the refresher algorithm is correct. The proofs for the lazy master
based configurations appear in [12] and we do not re-discuss them here. The proofs for
partial configurations we consider come directly from those of lazy-master and multi-master
configurations, as we will show.

Lemma 4.1. The refreshment algorithm is correct for multi-master configurations.

Proof: Let us consider any node N of a multi-master configuration holding multi-owner
copies. Let T be any transaction committed by node N. The propagator located at node N
will propagate the operations performed by T by means of a message using reliable mul-
ticast. Hence any node involved in the execution of the transaction receives the update
message. Since (i) the message containing the timestamp of any transaction T is the last one
related to that transaction, and (ii) the reliable multicast preserves the global FIFO order,

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 235

when a node N’ receives the message containing the timestamp of T (i.e., at delivery time C
+ Max + ε), it has previously received all operations related to T and involving that node.
Hence the transaction can be committed when all its operations are done and earliest at
delivery time C + Max + ε. �

Lemma 4.2. The refreshment algorithm is correct for partial configurations.

Proof: Let us consider any node N of a partial configuration holding at least one multi-
owner copy. Let T be any transaction submitted to node N, so N is the origin node of
T. When the update message is received by any node involved in the execution of the
transaction, by Lemma 4.1, transaction T can be committed when all its operations are
done and earliest at delivery time C + Max + ε. But in the case where the node does not
hold all the copies necessary to the transaction, T waits. Since an origin node must hold
all the copies necessary to the transaction submitted by a client, the node N can perform T.
Then, node N produces and multicasts RT which contains the write set associated to T to all
waiting target nodes. So, the waiting target nodes can perform T by replacing the content of
the transaction by its write set. Hence the transaction is still committed earliest at delivery
time C + Max + ε. �

Lemma 4.3 (Transaction chronological order). The refreshment algorithm ensures that, if
T1 and T2 are any two transactions that start execution at global times t1 and t2, respectively,
then: if t2−t1 > ε, the timestamps C2 for T2 and C1 for T1 satisfy C2 > C1; any node that
commits both T1

′ and T2
′, commits them in the order given by C1 and C2.

Proof: Let us assume that t2–t1 > ε Even if the clock of the node committing T1 is ε ahead
with regard to the clock of the node committing T2, we have C2 > C1. We now assume that
we have C2 > C1 and we consider a node N that commits first T1

′ and then T2
′. According

to the algorithm, T2
′ is not committed before local time C2 + Max + ε. At that time, if N

commits T2
′ before T1

′, it means that N has not received the message related to T1. Since
clocks are ε synchronised, that message would have experienced a multicast delay higher
than Max. �

Lemma 4.4 (Total order). The refreshment algorithm satisfies the total order criterion
for any configurations.

Proof: If the refreshment algorithm is correct (Lemmas 4.1 and 4.2) and the transactions
are performed in chronological order on each node (Lemma 4.3), then the total order is
enforced. �

Lemma 4.5 (Deadlock). The refreshment algorithm ensures that no deadlock appears.

Proof: Let us consider a transaction T1 which has for origin node N1 and waits for its write
set at node N2 and a transaction T2 which has for origin node N2 and waits for its write set at
N1. A deadlock appears if and only if T1 is performed before T2 on N2 and if T2 is performed
before T1 on N1. Hence, the total order is not enforced. This contradicts Lemma 4.3 since
transactions are always performed in their chronological order at all the nodes. �

236 PACITTI ET AL.

Figure 7. Replication Manager architecture.

4.4. Replication Manager architecture

In this section, we present the Replication Manager architecture to implement the Preventive
Partial Replication algorithm (see figure 7). We add several components to a regular DBMS
while preserving node autonomy, i.e. without requiring the knowledge of system internals.
The Replica Interface receives transactions coming from the clients. The Propagator and
the Receiver manage the sending and reception (respectively) of transactions and refresh
transactions inside messages within the network.

Whenever the Receiver receives a transaction, it places it in the appropriate pending
queue, used by the Refresher, and in the running queue used by the Deliver to start its
execution. Next, the Refresher executes the refreshment algorithm to ensure strong consis-
tency. The Deliver submits transactions, read from the running queue, to the DBMS and
commits them only when the Refresher ensures that the transactions have been performed
in chronological order.

With partial replication, when a transaction T is composed of a sequence of reads and
writes, the Refresher at the target nodes must assure correct ordering. However, in case
where the node does not hold all the necessary copies, T ’s execution must be delayed until
its corresponding refresh transaction RT is received. This is because RT is produced only
after the commitment of the corresponding T at the origin node. At the target node, the
content of T (sequence of read and write operations) is replaced by the content of the RT
(sequence of write operations) in the Deliver. Thus, at the target node, when the Receiver
receives RT, it interacts directly with Deliver.

The Log Monitor constantly checks the content of the DBMS log to detect whether repli-
cas have been updated. For each transaction T that updated a replica, it produces a corre-
sponding refresh transaction. At the origin node, whenever the corresponding transaction is
composed of reads and writes and some of the target nodes do not hold all the necessary repli-
cas, the Log Monitor submits the refresh transaction to the propagator, which multicasts it to

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 237

those nodes. Then, upon receipt of the refresh transaction, the target nodes can perform the
corresponding waiting transaction. To provide fault-tolerance in case of failure of the origin
node (see Section 4.2), Log Monitor stores RT, in addition to the origin node, in all the nodes
that are able to perform the transaction (nodes which hold all necessary replicas to perform a
transaction T). Thus, in case of failure of the origin node, one of these nodes can replace the
origin node and multicast the RT to the target nodes that can not perform the corresponding T.

5. Improving response time

In this section, we present optimizations for both Full and Partial Replication that improve
transaction throughput. First, we modify the algorithm to eliminate partially the delay times
(Max + ε) before submitting transactions. Then, we introduce concurrency control features
in the algorithm to improve transaction throughput. Finally, we show the correctness of
these optimizations.

5.1. Eliminating delay time

In a cluster network (which is typically fast and reliable), in most cases messages are
naturally chronologically ordered [16]. Only a few messages can be received in an order
that is different than the sending order. Based on this property, we can improve our algorithm
by submitting a transaction to execution as soon as it is received, thus avoiding the delay
before submitting transactions. Yet, we still need to guarantee strong consistency. In order
to do so, we schedule the commit order of the transactions in such a way that a transaction
can be committed only after Max + ε. Recall that to enforce strong consistency, all the
transactions must be performed according to their timestamp order. So, a transaction is
out-of-order when its timestamp is lower than the timestamps of the transactions already
received. Thus, when a transaction T is received out-of-order, all younger transactions must
be aborted and re-submitted according to their correct timestamp order with respect to T.
Therefore, all transactions are committed in their timestamp order.

Thus, in most cases the delay time (Max + ε) is eliminated. Let t be the time to execute
transaction T. In the previous algorithm [13], the time spent to refresh a multi-master copy,
after reception of T, is Max + ε + t. Now, a transaction T is ordered while it is executed.
So, the time to refresh a multi-master copy is max[(Max + ε), t]. In most cases, t is higher
than the delay Max + ε. Thus, this simple optimization can well improve throughput as we
show in our performance study.

Figure 8 shows part of the components necessary to run our algorithm. The Refresher
reads transactions from the head of pending queues and performs chronological ordering
with respect to the delivery times. Once a transaction T is ordered, the refresher notifies
Deliver that T is ordered and ready to be committed. Meanwhile, Deliver keeps checking
the head of the running queue to start transaction execution optimistically, one after the
other, inside the local DBMS. However, to enforce strong consistency Deliver only commits
a transaction when the Refresher has signaled it.

Let us illustrate the algorithm with an example from figure 8. Suppose we have a node i
that holds the master of the copy R. Node i receives T1 and T2, two transactions that update

238 PACITTI ET AL.

Figure 8. Refreshment architecture.

R, respectively from node i with a timestamp C1 = 10 and from node j with a timestamp
C2 = 15. T1 and T2 must be performed in chronological order, T1 then T2. Let us see what
happens when the messages are not received chronologically ordered at node i. In our
example, T2 is received before T1 at node i and immediately written into the running queue
and the corresponding pending queue. Thus, T2 is submitted to execution by the Deliver
but must wait the Refresher’s decision to commit T2. Meanwhile, T1 is received at node i, it
is similarly written into both pending and running queues. However the Refresher detects
that the younger transaction T2 has already been submitted before T1. So, T2 is aborted
and re-started, causing it to be re-inserted into the running queue (after T1). T1 is chosen
to be the next transaction to commit. Finally, T2 is performed and elected to commit by
Refresher. Thus, the transactions are committed in their timestamp order, even if they have
been received unordered.

Preventive algorithm details. We can define three different states for a transaction T rep-
resented in figure 9. When a transaction T arrives at the Replication Manager, its state is

Figure 9. Transition state graph for T.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 239

initialized to wait. Then, when T can be executed (a transaction can be executed when
the node holds all necessary replicas or when its corresponding RT is received), and when
the Refresher has ordered the transaction, the state of Transaction T is set to commit.
Finally, when the Deliver receives an out-of-order transaction T (its timestamp is lower
than the timestamps of the transactions already received), the state of the current running
transactions is set to abort.

The Preventive algorithm is described in detail in figures 10 and 11. Figure 10 describes
the Refresher algorithm. The Refresher selects the next totally ordered transaction. A
transaction is guaranteed to be totally ordered at its delivery time (C + Max + ε). Thus, in
step 1, on the arrival of a new transaction, the refresher chooses the oldest transaction T

Figure 10. Partial replication refresher algorithm with elimination of delay times.

240 PACITTI ET AL.

Figure 11. Partial replication deliver algorithm with elimination of delay times.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 241

from the top of the pending queues and computes T ’s delivery time. Next the Refresher
initializes a timer that will expire at T ’s delivery time. So, if the incoming transaction T is
not out-of-order according to the current selected transaction, curr T, nothing happens. In
the other case, the new T ’s delivery time is calculated according to T ’s timestamp. In step 2,
when the timer expires, the Refresher looks for the non aborted transactions corresponding
to curr T. Then, it sets the state of curr T to commit.

Figure 11 describes the Deliver algorithm in the optimistic arrival approach. Deliver reads
transactions from the running queue and executes them. If a transaction T is out-of-order,
Deliver aborts the current running transaction, curr T, and executes T followed by curr T.
Deliver commits a transaction when the Refresher sets its state to commit. In step 1, at the
end of the execution of the current transaction curr T, Deliver commits or rolls-back curr T
according to its state (commit or abort). Since we do not have access to the transaction
manager of the DBMS, we cannot abort directly the transactions and we must wait until
the end of the transaction to abort it. In step 2, Deliver sets the state of the newly received
transaction (new T) to wait and checks whether new T is not an out-of-order transaction. If
the transaction is out-of-order, the state of the current transaction (curr T) is set to abort. As
the Deliver has to wait the end the transaction to rollback the transaction, a copy of curr T
is reintroduced in the running queue and its state is set to wait while the aborted curr T
is running. Thus, a transaction T aborted due to an unordered message will be re executed
from a copy of curr T. In step 3, the Refresher selects the transaction at the top of the
running queue and performs it if the node holds all the copies necessary to the transaction,
Otherwise, the Refresher set the transaction in stand by. Finally, in step 4, on arrival of a
new refresh transaction new RT, the Deliver replaces the content of the waiting T by the
content of its corresponding RT. So, the current transaction can execute.

5.2. Improving transaction throughput

To improve throughput, we now introduce concurrent replica refreshment. In the previous
section, the Receiver writes transactions directly into the running queue (optimistically), and
afterwards the Deliver reads the running queue contents in order to execute the transaction,
and in the other hand, to assure consistency, the same transactions are written as usually
in the pending queues to be ordered by the Refresher. Hence, the Deliver extracts the
transactions from the running queue and performs them one by one in serial order. So, if the
Receiver fills the running queue faster than the Deliver empties it, and if the average arrival
rate is higher than the average running rate of a transaction (typically in bursty workloads),
the response time increases exponentially and performance degrades.

To improve response time in bursty workloads we propose to trigger transactions concur-
rently. In our solution, concurrency management is done outside the database to preserve
autonomy (different from [9]). Using the existing isolation property of database systems
[11], at each node, we can guarantee that each transaction sees a consistent database at
all times. To maintain strong consistency at all nodes, we enforce that transactions are
committed in the same order in which they are submitted. In addition, we guarantee that
transactions are submitted in the order in which they have been written to the running
queue. Thus, total order is always enforced.

242 PACITTI ET AL.

However, without access to the DBMS concurrency controller (for autonomy reasons),
we cannot guarantee that two conflicting concurrent transactions obtain a lock in the
same order at two different nodes. Therefore, we do not trigger conflicting transactions
concurrently. To detect that two transactions are conflicting, we determine a subset of the
database items accessed by the transaction according to the transaction. If the subset of a
transaction does not intersect with a subset of another transaction, then the transactions are
not conflicting. For example, in the TPC-C benchmark, the transactions’ parameters allow
us to define a subset of tuples that could be read or updated by the transaction. Notice that
if the subset of the transaction cannot be determined, then we consider the transaction to
be conflicting with all other transactions. This solution is efficient if most transactions are
known, which is true in OLTP environments.

We can now define two new conditions to be verified by the Deliver before triggering
and before committing a transaction:

(i) Start a transaction iff the transaction is not conflicting with transactions already started
(but not committed) and iff no older transaction waits for the commitment of a con-
flicting transaction to start.

(ii) Commit a transaction iff no older transactions are still running.

Figure 12 shows examples of concurrent executions of transactions. Figure 12(a) illus-
trates a case where the transactions are triggered sequentially, which is equivalent to the
case where all the transactions are conflicting. Figures 12(b), (c) and (d) show parallel exe-
cutions of transaction T1, T2 and T3. In figures 12(b) and (c), transaction T2 finishes before
T1 but waits for commit because T1 is still running (this is represented by a dashed line in
the figure). In figure 12(b), T1, T2 and T3 are not conflicting, so they can run concurrently.
On the other hand, in figure 12(c), T2 is conflicting with T3, so T3 must wait for the end
of T2 before starting. Finally, in figure 12(d), T1 and T2 are conflicting, so T2 cannot start
before the commitment of T1 and T3 cannot start before T2 because transactions must be
executed in the order they are in the running queue.

Figure 12. Example of concurrent execution of transactions.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 243

5.3. Correctness

In this section, we prove that the Preventive Replication algorithm is also correct with the
optimizations.

Lemma 5.1. The elimination of the delay Max + ε does not introduce inconsistency.

Proof: Let T1 and T2 be any two transactions with timestamps C1 and C2. If T1 is
older than T2 (C1 < C2) and T2 is received on node i before T1, then T2 is managed
optimistically. However T2 cannot be committed before C2 + Max + ε, and as T1 is re-
ceived at node i at the latest at C1 + Max + ε, then, T1 is received before T2 is committed
(C1 + Max + ε < C2 + Max + ε). Therefore, T2 is aborted, and both transactions are written
in the running queue, executed and committed according to their timestamp values. After-
wards, T1 is executed before T2, and the strong consistency is enforced even in the case of
unordered messages. �

Lemma 5.2. The parallel execution of transactions does not break the enforcement of
strong consistency.

Proof: Let T1 and T2 be any two transactions with timestamps C1 and C2 that start execution
at times t1 and t2, and commit at times c1 and c2, respectively. In the case where T1 and
T2 are received unordered, the transactions are aborted and re-executed in the correct order
as described in Lemma 5.2. Now, in the case where the transactions are received correctly
ordered, if T1 and T2 are conflicting, they start and commit one after the other according to
their timestamp values. Hence, if C1 < C2, then t1 < c1 < t2 < c2. If they are not conflicting,
T2 can start before T1 commits. However, a transaction is never committed before all older
transactions have been committed. If C1 < C2, then t1 < t2 and c1 < c2. Thus, the state of
the database viewed by a transaction before its execution and its commitment is the same
at all the nodes. Hence, strong consistency is enforced. �

6. Validation

In this section, we describe our implementation and our performance model. Then, we
describe two experiments to study scale up and speed-up.

6.1. Implementation

We implemented our Preventive Replication Manager in our RepDB∗ prototype [2, 19] on
a cluster of 64 nodes (128 processors). Each node has 2 Intel Xeon 2.4 GHz processors,
1 GB of memory and 40 GB of disk. The nodes are linked by a 1 Gb/s network. We use
Linux Mandrake 8.0/Java and CNDS’s Spread toolkit that provides a reliable FIFO message
bus and high-performance message service among the cluster nodes. We use PostgreSQL
Open Source DBMS at each node. We chose PostgreSQL because it is quite complete in
terms of transaction support and easy to work with.

244 PACITTI ET AL.

Our implementation has four modules: Client, Replicator, Network and Database Server.
The Client module simulates the clients. It submits transactions randomly to any cluster
node, via RMI-JDBC, which implements the Replica Interface. Each cluster node hosts a
Database Server and one instance of the Replicator module. For this validation, we imple-
mented most of the Replicator module in Java outside of PostgreSQL. For efficiency, we
implemented the Log Monitor module inside PostgreSQL. The Replicator module imple-
ments all system components necessary for a multi-master node: Replica Interface, Prop-
agator, Receiver, Refresher and Deliver. Each time a transaction is to be executed, it is first
sent to the Replica Interface that checks whether the incoming transaction updates a replica.
Whenever a transaction does not write a replica, it is sent directly to the local transaction
manager. Even though we do not consider node failures in our performance evaluation, we
implemented all the necessary logs for recovery to understand the complete behavior of the
algorithm. The Network module interconnects all cluster nodes through the Spread toolkit.

6.2. Performance model

To perform our experiments, we use the TPC-C Benchmark [18] which is an OLTP workload
with a mix of read-only and update intensive transactions. It has 9 tables: Warehouse, Dis-
trict, Customer, Item, Stock, New-order, Order, Order-line and History; and 5 transactions:
Order-status, Stock-level, New-order, Payment and Delivery.2

The parameters of the performance model are shown in Table 1. The values of these
parameters are representative of typical OLTP applications. The size of the database is
proportional to the number of warehouses (a tuple in the Warehouse table represents a
warehouse). The number of warehouses also determines the number of clients that submit
a transaction. As specified in the TPC-C benchmark, we use 10 clients per warehouse. For
a client, we fix the transaction arrival rate λclient at 10 s. So with 100 clients (10 warehouses
and 10 clients per warehouse), the average transactions’ arrival rate λ is 100 ms. In our
experiments, we vary the number of warehouses W to be either 1, 5 or 10. Then, the different
average transactions’ arrival rates are 1 s, 200 ms and 100 ms.

During an experiment, each client submits to a random node a transaction among the
4 TPC-C transactions used. In the end, each client must have submitted M transactions

Table 1. Performance parameters

Parameter Definition Values

W Number of warehouse 1, 5, 10

Clients Number of clients by warehouse 10

λclient Average arrival rate for each client 10 s

λ Average arrival rate 1 s, 200 ms, 100 ms

Conf. Replication of tables FR, PR

M Number of transactions submittedduring the tests for each client 100

Max + ε Delay introduced for submitting a Transaction 200 ms

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 245

and must have maintained a percentage of mixed transactions: 6% for Order-status, 6% for
Stock-level, 45% for New-order and 43% for Payment.

The TPC-C defines a number of different types of transactions. New-order represents a
mid-weight, read-write transaction with a high frequency of execution. Payment represents
a lightweight, read-write transaction with a high frequency of execution. Order-status
represents a mid-weight, read-only transaction with a low frequency of execution. Stock-
level represents a heavy, read-only transaction with a low frequency of execution. Thus, we
can consider New-order and Payment as multi-master transactions.

Finally, for our experiments, we use two replication configurations. In the Fully Repli-
cated (FR) configuration all the nodes carry all the tables as multi-master copies. In the Par-
tially Replicated (PR) configuration, one fourth of the nodes hold tables needed by the Order-
status transaction as multi-master copies, another fourth holds tables needed by the
New-order transaction as multi-master copies, another fourth holds tables needed by the
Payment transaction as multi-master copies and the last fourth holds tables needed by
the Stock-level transaction as multi-master copies.

6.3. Scale up experiments

These experiments study the algorithm’s scalability. That is, for a same set of incoming
transactions (New-order and Payment transactions), scalability is achieved whenever in-
creasing the number of nodes yields the same response times. We vary the number of nodes
for each configuration (FR and PR) and for different numbers of warehouses (1, 5 and 10).
For each test, we measure the average response time per transaction. The duration of this
experiment is the time to submit 100 transactions for each client.

The experimental results (see figure 13) show that for all tests, scalability is achieved.
The performance remains relatively constant according to the number of nodes. Our al-
gorithm has linear response time behavior even when the number of node increases.
Let n be the number of target nodes for each incoming transaction, our algorithm re-
quires only the multicast of n messages for the nodes that carry all required copies

Figure 13. Scale up results.

246 PACITTI ET AL.

plus 2n messages for the nodes that do not carry all required copies. The perfor-
mance decreases as the number of warehouses increases (which increases the work-
load). In figure 13(a), although the workload is twice higher for 10 warehouses than for
5 warehouses, the response times remain twice as worse as expected, i.e., 400 ms for
5 warehouses and about 800 ms for 10 warehouses. This demonstrates that our algorithm
has good response time when the workload increases and we can expect similar behavior
with higher workloads.

The results also show the impact of the configuration on transaction response time.
As the number of transactions increases (with the number of nodes that receive incoming
transactions), PR increases inter-transaction parallelism more than FR by allowing different
nodes to process different transactions. Thus, transaction response time is slightly better
with PR (figure 13(a) than with FR (figure 13(b)) by about 15%. In PR, nodes only
hold tables needed by one type of transaction, so they do not have to perform the entire
updates of the other type of transactions. Hence, they are less overloaded than in FR. Thus
the configuration and the placement of the copies should be tuned to selected types of
transactions.

6.4. Speed-up experiments

These experiments study the performance improvement (speed-up) for read queries when
we increase the number of nodes. To test speed-up, we reproduced the previous experiments
and we introduced clients that submit queries. We vary the number of nodes for each
configuration (FR and PR) and for different number of warehouses (1, 5 and 10). The
duration of this experiment is the time to submit 100 transactions for each client.

The number of clients that submit queries is 128. The clients submit lightweight queries
(Order-status transaction) sequentially while the experiment is running. Each client is
associated to one node and we produce an even distribution of clients at each node. Thus,
the number of read clients per node is 128 divided by the number of nodes that support the

Figure 14. Speed-up results.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 247

Figure 15. Percentage of unordered messages and aborted transactions for 10 warehouses.

Order-status transaction. For each test, we measured the throughput of the cluster, i.e. the
number of read queries per second.

The experiment results (see figure 14) show that the increase in the number of nodes
improves the cluster’s throughput. For example in figure 14(a), whatever the number of
warehouses, the number of queries per seconds with 32 nodes (1500 queries per seconds)
is almost twice that with 16 nodes (800 queries per seconds). However, if we compare FR
with PR, we can see that the throughput is better with FR. Although the nodes are less
overloaded than in FR, performance is half of FR because only half of the nodes support the
transaction. This is due to the fact that, in PR, not all the nodes hold all the tables needed by
the read transactions. In FR, beyond 48 nodes, the throughput does not increase anymore
because the optimal number of nodes is reached, and the queries are performed as fast as
possible.

6.5. Effect of optimistic execution

Now, we study the effect of optimistically executing transactions as soon as they arrive.
Our first study shows the impact of the unordered messages on the number of aborted
transactions due to optimistic execution (see Section 5.1). Then, our second study shows
the gain of the optimistic approach on the refreshment delay.

In our first experiment, figures 15(a) and (b) show the percentage of the unordered
messages and the percentage of the aborted transactions for the scale up experiment
(Section 6.3). Below 5% of the messages are unordered, and only 1% of the transac-
tions are aborted. At most only 20% of the unordered messages introduce aborts because
two unordered messages are received in a very short period of time (around 2 ms). So, the
second message is received before the first message has been processed. Therefore, they
are reordered before the execution of the first message.

For PR, the Partially Replicated configuration (figure 15(b)), the percentage of the
unordered messages is lower than the percentage for FR, the Fully Replicated configuration

248 PACITTI ET AL.

Figure 16. Delay versus transaction size.

(figure 15(a)), because less messages are involved. Thus, the number of aborted transactions
is small enough to warrant the gain introduced by the elimination of the delay time.

In our second experiment, we study how the transaction size affects the elimination of
the refreshment delay. In the Optimistic Approach, transactions still need to be delayed
(Max + ε) before committing. Figure 16 shows the relative importance of the delay time
with respect to transaction size. Our test involves only 8 nodes with a FR configuration
because the waiting time is not affected by the increase of the number of nodes. We submit
100 transactions in a low workload and we vary the size of the transaction. Then, we
measure the delay time introduced by the refreshment algorithm. Recall that the normal
delay (Max) value is 200 ms without optimization.

An important observation is that the delay introduced by the refreshment quickly de-
creases as the transaction time increases. This is due to the fact that, since the transaction
is performed as soon as possible, the scheduling of a transaction is performed in parallel
with its execution. As the scheduling time is equal to Max + ε, the delay introduced is
equal to Max + ε minus the size of the transaction. For example, with a transaction size
of 50 ms, the delay is 150 ms. Thus, with transactions longer than 200 ms, the delay is
almost zero because the scheduling time is included in the execution time. Hence, the gain
is almost equal to Max, which is the optimal gain for the elimination of Max. Finally,
the number of aborted transactions is not enough significant, so we do not put it on the
figure.

7. Related work

Data replication has been extensively studied in the context of distributed database sys-
tems [11]. In the context of database clusters, the main issue is to provide scalability
(to achieve performance with large numbers of nodes) and autonomy (to exploit black-box
DBMS) for various replication configurations such as master-slave, multi-master and partial
replication.

Synchronous (eager) replication can provide strong consistency for most configurations
including multi-master but its implementation, typically through 2PC, violates system

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 249

autonomy and does not scale up. In addition, 2PC may block due to network or node
failures. The synchronous solution proposed in [9] reduces the number of messages ex-
changed to commit transactions compared to 2PC. It uses, as we do, group communication
services to guarantee that messages are delivered at each node according to some ordering
criteria. However, DBMS autonomy is violated because the implementation must combine
concurrency control with group communication primitives. In addition solutions based on
total order broadcast is not well suited for large scale replication because as the number
of nodes increases the overhead of messages exchanged may dramatically increase to
assure total order. The Database State Machine [20, 21] supports partial replication for
heterogeneous databases and thus does not violate autonomy. However, its synchronous
protocol uses two-phase locking that is known for its poor scalability, thus making it
inappropriate for database clusters.

Asynchronous (lazy) replication typically trades consistency for performance. A refresh-
ment algorithm that assures correctness for lazy master configurations is proposed in [12].
This work does not consider multi-master and partial replication as we do. The preventive
replication solution in [13] is asynchronous and achieves strong consistency for multi-
master configurations. However, it introduces heavy message traffic in the network since
transactions are multicast to all cluster nodes. In [3], we extended preventive replication
to deal with partial replication. However, it also has performance limitations since transac-
tions are forced to wait a delay time before executing. The solution proposed in this paper
addresses these important limitations.

The algorithm proposed in [8] provides strong consistency for multi-master and partial
replication while preserving DBMS autonomy. However, it requires that transactions update
a fixed primary copy: each type of transaction is associated with one node so a transaction of
that type can only be performed at that node. This is a problem for update intensive applica-
tions. For example, with the TPC-C benchmark, two nodes support 88% of the transactions
(45% at one node for the New Order transactions and 43% at another node for the Payment
transactions). Furthermore, the algorithm uses 2 messages to multicast the transaction, the
first is a reliable multicast and the second is a total ordered multicast. The cost of these
messages is higher than the single FIFO multicast message we use. Furthermore, using a
logical total order message increases the overhead of physical messages exchanged when
increasing the number of nodes. However, one advantage of this algorithm is that it avoids
redundant work: the transaction is performed at the origin node and the target nodes only
apply the write set of the transaction. In our algorithm, all the nodes that hold the resources
necessary for the transaction perform it entirely. We could also remove this redundant work
to generalize the multicast of refresh transactions for all nodes instead of only for the nodes
that do not hold all the necessary replicas. However, the problem is to decide whether it
is faster to perform the transaction entirely or to wait for the corresponding write set from
the origin node for short transactions. Finally their experiments do not show scale-up with
more than 15 nodes while we go up to 64 in our experiments.

More recent work has focused on snapshot isolation to improve the performance of read-
only transactions. The RSI-PC [17] algorithm is a primary copy solution which separates
update transactions from read-only transactions Update transactions are always routed to a
main replica, whereas read-only transactions are handled by any of the remaining replicas,

250 PACITTI ET AL.

which act as read-only copies. Postgres-R(SI) [24] proposes a smart solution that does not
need to declare transactions properties in advance. It uses the replication algorithm of [8]
which must be implemented inside the DBMS. The experiments are limited to at most
10 nodes. SI-Rep [10] provides a solution similar to Postgres-R(SI) on top of PostgreSQL
which needs the write set of a transaction before its commitment. Write sets can be obtained
by either extending the DBMS, thus hurting DBMS autonomy, or using triggers.

8. Conclusion

In this paper, we introduced two algorithms for preventive replication in order to scale up
to large cluster configurations. The first algorithm supports fully replicated configurations
where all the data are replicated on all the nodes, while the second algorithm supports
partially replicated configurations, where only a part of the data are replicated. Both algo-
rithms enforce strong consistency. Then, we proposed a complete architecture that supports
a large numbers of configurations. Moreover, we presented two optimizations that improve
transaction throughput; the first optimization eliminates optimistically the delay introduced
by the preventive replication algorithm while the second optimization introduces concur-
rency control features outside the DBMS in which non conflicting incoming transactions
may execute concurrently.

We did an extensive performance validation based on the implementation of Preventive
Replication in our RepDB∗ prototype over a cluster of 64 nodes running PostgreSQL. Our
experimental results using the TPC-C benchmark show that our algorithm scales up very
well and has linear response time behavior. We also showed the impact of the configuration
on transaction response time. With partial replication, there is more inter-transaction paral-
lelism than with full replication because of the nodes being specialized to different tables
and thus transaction types. Thus, transaction response time is better with partial replica-
tion than with full replication (by about 15%). The speed-up experiment results showed
that the increase of the number of nodes can well improve the query throughput. Finally,
we showed that, with our optimistic approach, unordered transactions introduce very few
aborts (at most 1%) and that the waiting delay for committing transactions is very small
(and reaches zero as transaction time increases). To summarize, the performance gains
strongly depend on the types of transactions and of the configuration. Thus an important
conclusion is that the configuration and the placement of the copies should be tuned to
selected types of transactions.

Notes

1. For any two nodes, the same sequence of transactions is executed in the same order.
2. For our experiments, we do not use the delivery transaction because it is executed in a deferred mode that is

not relevant to test the response times on which our measures are based.

References

1. T. Anderson, Y. Breitbart, H. Korth, and A. Wool, “Replication, consistency, and practicality: Are these
mutually exclusive”? in SIGMOD Conference, 1998, pp. 484–495.

PREVENTIVE REPLICATION IN A DATABASE CLUSTER 251

2. C. Coulon, G. Gaumer, E. Pacitti, and P. Valduriez, The RepDB∗ prototype: Preventive Replication in a
Database Cluster, Base de Données Avancées, Montpellier, France, 2004.

3. C. Coulon, E. Pacitti, and P. Valduriez, “Scaling up the preventive replication of autonomous databases in
cluster systems,” in Int. Conf. on High Performance Computing for Computational Science (VecPar 2004),
Valencia, Spain, 2004, Lecture Notes in Computer Science 3402, Springer 2005, pp. 174–188.

4. C. Coulon, E. Pacitti, and P. Valduriez, “Consistency management for partial replication in a high Performance
database cluster,” in IEEE Int. Conf. on Parallel and Distributed Systems (ICPADS 2005), Fukuoka, Japan,
2005.

5. S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez, “Parallel processing with autonomous databases in a
cluster system,” in Int. Conf. on Cooperative Information Systems (CoopIS), 2002.

6. J. Gray, P. Helland, P. O’ Neil, and D. Shasha, “The danger of replication and a solution,” in ACM SIGMOD
Int. Conf. on Management of Data, Montreal, 1996.

7. V. Hadzilacos and S. Toueg, Fault-Tolerant Broadcasts and Related Problems. Distributed Systems, 2nd
edition, S. Mullender (Ed.), Addison-Wesley, 1993.

8. R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso, “Improving the scalability of fault-tolerant
database clusters: early results,” in Int. Conf. on distributed Computing Systems (ICDCS), 2002.

9. B. Kemme and G. Alonso, “Don’t be lazy be consistent: Postgres-R, a new way to implement database
replication,” in Int. Conf. on Very Large Databases (VLDB), 2000.

10. Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris, “Middleware based data replication providing
snapshot isolation,” in ACM SIGMOD Int. Conf. on Management of Data. Baltimore, USA, June 2005.

11. T. Özsu and P. Valduriez, Principles of Distributed Database Systems, 2nd edition, Prentice Hall, 1999.
12. E. Pacitti, P. Minet, and E. Simon, “Replica Consistency in Lazy Master Replicated Databases,” Distributed

and Parallel Databases, Kluwer Academic, vol. 9, no. 3, 2001.
13. E. Pacitti, T. Özsu, C. Coulon, “Preventive Multi-Master Replication in a cluster of autonomous databases,”

in Euro-Par Int. Conf., 2003.
14. E. Pacitti and P. Valduriez, “Replicated Databases: Concepts, architectures and techniques,” Network and

Information Systems Journal, Hermès, vol. 1, no. 3, 1998.
15. Paris Project: http://www.irisa.fr/paris/General/cluster.htm.
16. F. Pedonne, “A schiper: optimistic atomic broadcast,” in Distributed Information Systems Conf. (DISC), 1998.
17. C. Plattner and G. Alonso, “Ganymed: scalable replication for transactional web applications,” in Proc. of

the 5th International Middleware Conference, Toronto, Canada, 2004.
18. F. Raab, TPC-C—The Standard Benchmark for Online transaction Processing (OLTP). The Benchmark

Handbook for Database and Transaction Systems, 2nd edition, Morgan Kaufmann, 1993.
19. RepDB∗: Data Management Component for Replicating Autonomous Databases in a Cluster System

(released as open source software under GPL). http://www.sciences.univ-nantes.fr/lina/ATLAS/RepDB.
20. A. Sousa, F. Pedone, R. Oliveira, and F. Moura, “partial replication in the database state machine,” in IEEE

Int. Symposium on Network Computing and Applications (NCA), 2001.
21. A. Sousa, J. Pereira, F. Moura, and R. Oliveira, “Optimistic total order in wide area networks,” in Proc. 21st

IEEE Symposium on Reliable Distributed Systems, 2002, pp. 190–199.
22. K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-time systems,”

Micro-processors and Microprogramming, vol. 40, 1994.
23. P. Valduriez, “Parallel database systems: Open problems and new issues,” Int. Journal on Distributed and

Parallel Databases, Kluwer Academic, vol. 1, no. 2, 1993.
24. S. Wu and B. Kemme, “Postgres-R(SI): Combining replica control with concurrency control based on

snapshot isolation,” in IEEE Int. Conference on Data Engineering (ICDE), 2005.

