
On the Effectiveness of Optimization Search Strategies
for Parallel Execution Spaces *

Rosana S.G. Lanzelotte **l, Patrick Valduriez’, Mohamed Zai’t’

‘Projet Rodiu, INRIA, Rocquencourt, France
2Pontificia Universidade Catblica do Rio de Janeiro (PUC-Rio), Brazil

e-mail: firstname.lastnamc@inria.fr

Abstract
The co.91 of query optimization is ufiected by both the
~eurch apocc und the search atmlegy of the opti,aizer. I~I
(1 pumllel ecectrlion environment, Ihe search ap~cc tends
lo he much lurger than in the centmlized ca,sc-. This is
due to the high number of ezecution okeruutivrs which
implies a aignijiconl increase in the op~imisutiofc coal. 118
&a puper, we investigate the tmde-o# between optimiaution
cost and pumllel ezecution coat using the DBS$ pumllC1
query optimizer. We describe its cost model which cuptrrrea
ull esaentiol aapects of pumllel executions. We show how
the coal melricu imply a aignijiconl increase in the search
spuce and oplimirotion coat. Howeuer, inateud of restricting
lhe aeurch spabe, which muy lead to loosing letter plans,

we reduce the optimization cost Iv controlling the search
slmtegy. We ezrend mndomiaed strulegiea to adopt well
lo pamllel query optimization. In particular, we propose
Toured Simulated Annealing which provides u letter tmde-
c$ letween optimisa#on cost and yuulity of Ura ~~rullel
r+rculiorr plan.

1 Introduction

Query optimization refers to the process of producing an
opfimal execution plan for a given input query, where
optimality is with respect to a cost, function to be
minimized. An “optimal” plan has the least cost among
all equivalent plans. The investigation of equivalent
plans is driven by the optimizer search strategy within
a “search space” in which each point is a possible plan.
Execution plans are typically abstracted in terms of
processing trees (PTs) to capture in a compact way

l Tkia work WM partially funded by the Esprit project IDEA,
ruld the PRC BD3 of the French Mb&try of Rcweruch.

t’ermirrion to copy without fee all or pori of this maierial is
grunted provided ihot the copier are noi made or disfribuied for
rlweci commercial advantage, the VLDB copyrighi notice and the
W/C of ihe public&ion and ifr daie appear, and notice is given thai
copying is by pcrtnirrion of the Verg Large Data Base Endow-
ment. To copy otherwire, or to republish, requires a fee and/or
rpecial permirrion from Ihe Endowment.

Proceedingr of the 10tL VLDB Conference
Dublin, Ireland 1903

the aspects that are essential for cost estimation and
optimization. PTs express executions which involve
inler;operolion or inka-operation parallelism.

Parallel optimization is made difficult by the neces-
sary trade-off between optimization cost and quality of
the generated plans (the latter translates into query ex-
ecution cost). The optimization cost is affected by both
the size of the search space (i.e., the number of possible
PTs) and the search strategy, which can be more or less
exhaustive. Compared to centralized query processing
[Se79], the major problem to be addressed is dealing
with a large space of parallel execution plans. In the
centralized case, the search space gets obviously larger
as the query is more complex, e.g., includes many joins
[Sw89], deals with complex objects or includes recur-
sion [LVZ92]. Even for a reasonable query (e.g., with
less than 10 joins), a parallel execution model yields
a large variety of execution plans due to the various
sources of parallelism. Thus, optimization of reason-
able queries may be intractable if an exhaustive search
strategy is used in conjunction with a large space of
parallel executions.

To reduce optimization cost, most centralized [Se791
and parallel [SD90, HS91] optimizers restrict the search
space to linear PTs. In [ZZB93], we showed that this
may lead to loosing the optimal PT. Also, linear PTs
cannot capture independent parallelism, where opera-
tions involving disjunct sets of operands are executed
in parallel. An alternative approach is to use a non-
exhaustive search strategy. With this objective, ran-
domized search strategies have been proposed to im-
prove a start solution until obtaining local optima. Ex-
amples of such strategies are Simulated Annealing (SA)
[IC91] and Iterative Improvement (II) [Sw89]. Random-
ized strategies do not, guarantee that the best solution
is obtained, but avoid the high cost of optimization.

In this paper, we investigate the trade-off between
optimization and execution costs in a parallel database
system. Our framework is the DBS3 parallel database
system [BCVgl], which is developed by Bull and INRIA

493

as part of the EDS and IDEA Esprit, projects. DI3S3
implements a distributed memory (shared-nothing)
execution model on a shared-memory multiprocessor.
However the DBS3 optimizer has a parameterized cost
model which can be set to either shared-memory or
shared-nothing [ZZB93]. In the later case, the execution
plan can be executed on the EDS machine [EDSSO]. In

this paper, we use the shared-nothing cost model since
it is the most general. The DBS3 optimizer explores
both sources of parallelism, inter-operation and intra-
operation. It relies on a cost metrics that captures all
the relevant parallel aspects, e.g., relation fragmentation
and scheduling. When compared through this metrics,
many more tentative PTs are kept during the search,
thereby increasing significantly the optimization cost.

The DBS3 optimizer uses efficient non-exhaustive
search strategies [LV91] to reduce query optimization
cost. Using a realistic application, we measure the im-
pact of parallelism on the optimization cost and the op-
timization/execution cost trade-off using several combi-
nations of search space and search strategy. The major
contribution of this paper is an extension of SA called
Toured Simulated Annealing (TSA), to better deal with
parallel query optimization. In all experiments, TSA
yields the best optimization/execution cost, ratio. The
conclusion of our experiments is that controlling the
search strategy to rdduce the optimization cost is usu-
ally better than restricting the search space.

The rest of the paper is organized as follows. Section
2 describes the different search spaces and related cost
model dealt with by the DBS3 optimizer. Section 3
presents the optimizer search strategies and proposes
several variants to enhance their effectiveness. Section
4 shows the experiments and measurements. Section 5
concludes.

2 Search Space and Cost Model
The main components of a query optimizer are the
search space, the cost model and the search strategy.
Our approach enforces the independency between these
three components, which enables adapting the optimizer
to different requirements. In this section, we describe
the context of the DBS3’s parallel query optimizer
[ZZB93]. Its search space can be set to that of
linear, zigzag or bushy trees. We also describe the
cost function, which models a shared-nothing parallel
execution environment.

2.1 Optimization Context

The DBS3 query compiler takes as input queries
expressed in ESQL, a conservative extension of SQL
supporting objects and recursion [GV92]. In this paper,
we consider only select-project-join queries. The query
optimizer selects the best parallel execution plan. The

underlying execution systenl can 1~~: either a sharc~tl-
nothing or a shared-memory multiprocessor [BC!V!)l]
In this paper, we restrict ourselves to HIlare!tl-llobhilIK
for it is the most general case.

Execution plans are modnlled by I%. A PT is a
labellt!d binary tree where the leaf nodes art’ rc*lalions
of the input query and each non-leaf node is an opf,rat.or
node (e.g., join, union) whose result is a transirtrl
relation. A join node captures the join bel.wt*c*ll
its operands. The execution aspects, such RS 1.11(,
join algorithm, are expressed by means of r~~rrtrfiom
anaotatinns. Suppose the following SQL query:

S&ct * from Rl , R2, Ra, R4
where Ii1.A = Ra.A and Rz.13 = &.A

nnd Rs.C = R4.C

Figure 1 shows four PTs for this query. We say that
a PT is complele ii it, captures all the relabions of the
input, query (e.g., all the PTs in Figure 1 are conlp1cf.c:).

Our optimizer explores both inter-operation autl
intra-operation parallelism. Inter-operafion parallfrlisili
can be dataflow or independent. Dataflow parallclisru
is due to pipelini,cg, i.e., one operation starts as wowi

as one tuple of the operand is produced. OtherwiNe,
the operand is slorcd, i.e., the corresponding transic%nt
relation is entirely produced before it is consumed by the
next, operation. PTs are enriched to express pipelining
(resp. storing) of transient, relations, through dirc*ctecl
(resp. undirected) arcs. For the PTs shown in this
paper, we adopt the following convcMion: the operand
consutnod in pipe is the right input of a node, and the
stored operand is at the left side.

[SD901 studied two formats for scheduling linear
plans: Ml+-deep and right-deep trees. ln a IcuR-tlt*c:p
Lrf:f:, all l.riuisifwt, relatltrne are stored, whc:rc!,a.y in ii
righJ,-tlec!p t,ree they are consumed in pipt!line. Thus all
nodes of a right-dec:p tree execute in parallel whereas in
a left-deep tree, only one iiocln execiil.m at. a time. For

example, Figure 1 .(ii), shows a right-deep tree where j4,
j5 and jS are executed in pipeline, and Figure! l.(i),
shows a left-deep tree where the execution of j2 starts
only after jl is completed and its result, stored. Left-
deep and right-deep are two extreme ways to schedule>
linear execution plans. In [ZZB93], we proposed a nrw
scheduling strategy called zigzag. In a zigzag tree, thf?
transient relation may he either stored or yiyelinetl.
Zigzag trees are an intermediate format between leh-
deep and right-deep trees. That, is, they allow to slicca
an execution plan into sub-trees scheduled iw right-tlttop
trees and executed in sequence. It, is different front the
slicing strategy proposed in [SD90] in the way the result.
of a sub-tree is consi~niecl by f.hc! hwb opernt,ion or t.hf~

subsequent sub-trcnt:. Figure 1 .(iii) shown a zigzag trc*cs
where j8 and j9 are exccutetl in pipeline, hut, j8 start,n

494

Ke~lllt Result

\
RI’ R2

Left-deep
(9

Rightdeep Zig-zag
(ii) (iii)

Figure 1: Execution IJlans w Processing Trees

only after j7 has completed. Uushy PTs, ;LS the one avoid repartitioning. However, execution plans where
in Figure l.(iv), enable another type of inter-operation both operands are repartitioned to increase the degree
parallrlism, called irrdepcndcnl, bec;iuse the operations of parallelism need also be investigated. PT nodes must
are iudependently executed. For example, jl0 and jll bear execution annotations to indicate repartitioning,
are independently executed, because they do not involve when ncteded, as well as the algorithm that, implements
the same data. the operation (nested loop or hash).

Pipelining and storing indications split the PT into
uon-overlapping sub-trees, called pkases. Pipelined
opf!rations are executed in the same please, whereas
a storing indication establishes I,he boundary between
OII~’ phase and a subsequant phase. Thus, the executiou
sc~hrrfuliny of a PT can be tlrt,anninisl,ically tlt~rivcttl. The
rcfas0ns for splittiug the PT illto IlIliLSl?S are twofold.
First., the algorithm that, implements a PT operation
may require the storing of one of its operauds (e.g., the
hash join algorithm). Reuotme roatetrtion is another
rtbason for splitting a PT into phases. If a sequence
Of opt?ral.ions requires more memory thau available to
c*xecutc: simultaneously, it is split into one or more
l)hiwt?s. For example, the PT in Figure 1 .(iii) is split
into two phases, although it could be executed in a single
phiu;e if enough memory were available.

2.2 Seilrck Space Size
III this section, we investigate the size of the different
search spaces. The analysis uses st,andard combinatorial
mc!thotls, so details are omitted. Given a query with n
relations, the question is how many PTs can be built,
witllin each type of search space, without considering
several join methods or scheduling, i.e., only the PT
shape matters”. The results are summarized in Table 1.

First, consider a bushy space. The number z,, of
possible PT shapes for a query of n relations, supposing
that, each PT root, riode has a left (resp. right) operand
capturing k (resp rr - L) relations, is

xkCI:,-k, dlcre 2, = 1

Inlru-operulion parallelism means that a I’?‘ op-
eration is executed simultaneously by several nodes.
WV call node one processor, together wiCll its mem-
ory and disk. To execute an operation in an intra-
parail~~l manner, the operands must have been previ-
ously purMioncd, i.e., horizontally fragmented, through
tlla Ilodas’ . The set of nodes which store a relation is
c.;~IIc:cI its home. For example, the home of relations RI
and I& is hl , and the home of relations R3 and R4 is Irz.
011c.e R, and Ra are placed on the same home Irl, and
thca parlitioning function is based on their join attAbute
A, I,hc join jl can be executed in an intra-parallel fash-
ion on tbl. FIowever, to execute j2, cither the result of jl
has to be repartitioned 011 ha, or R:+ OII hl. The honrc
of (171 opcrution is the one in which both operands are
located (e.g., the home of jl is t&l). Usually, the opti-
mizer tries to exploit the placement of the operands to

The solution is proven to be I, = (2n - 2)!/(n -
l)! in [TL91], which computes the maximum number
of PT shapes, obtained when Cartesian products are
permittOed or all relations are pairwise joinable.

For chain cjueries (each relation can join with at most
two others, and the two “ends” can join with only one)
without, Cartesian products, there are fewer bushy trees,
computed by J/,, below,

rc- 1

Yn = c t&y,,-k, ?hrc Yl = 1
k=l

as the chaiu can be partitioned in n - 1 places, but
either partition may be the left child. The relationship

‘The way a base relation is partitioned is a matter of phyaiccrl
dc4gn.

z [TLM] computes upper aud lower bounds for the search space,
supposing that the optimizer produces many PTs with the same
shape, considering the 11ome of the transient relations and the
sC4ledUli~lg.

Result

Bushy
(iv)

495

Yn = 2”-lz,/n! may be verified by substitution in
the recurrence. Chain queries have the fewest possihle
plans, so yr; gives the minimum number of bushy PT
shapes.

Now consider a space of linear PTs. If all relations
are joinable or Cartesian products are investigated, we
have n! as the maximum number of PT shapes in a left
or right-deep space, because all permutations of the n
relations are considered. In a zigzag search space, the
maximum number is multiplied by 2n-2, because, in
each point of a permutation, except the first, and second
points, the base relations can be joined as the left or
right operand. What is a little surprising is that the
number z, of linear PTs is exponential even for chain
queries. If there are k operations to the left, of the one
chosen to be performed first,, then there are (“t”) ways
to complete the plan (and there are two choices for the
chosen first operation). This gives the formula

which is the minimum number of left or right-deep PT
shapes. The minimum number of zigzag PT shapes is
obtained by multiplying by 2n-2, as for the maximum
number.

2.3 Exploring the Search Space

The search space is explored by the optimizer search
strategy, which either builds PTs or modifies complete
PTs. When building PTs, the main optimizer nctiorl is
expand(p), which generates new PT nodes by joining
one relation (base or transient) to the PT node p .
Besides requiring that the relation to be joined with
p is not yet captured by p, the implementation of
expand(p) depends on the type of the search space.
For example, in a linear search space, the relation to be
joined must be a base relation, while in a bushy space it
may be a base or a transient relation. Action expand
may generate several successor nodes to a PT node. It
is up to the search strategy to keep some or all of them
[LVGl].

A randomized search strategy builds one or more stud
solutions and tries to improve them by applying random
transformations . The basic action in such strategies is
transform(p), which applies some transformation to
a complete PT p. Only transformations that, produce
another complete PT in the same search space are
applied. These are called ualid transformations. For
example, if the optimization search space of p is such
that Cartesian products are not investigated, then a
valid transformation must not produce a PT with a
Cartesian product . The valid transformations are also
conditioned by the shape of the investigated PTs:

in ii l~~fl-dfq~ space, valid t,rsnsfoni~at,ioas art’ t.hc: /cJt
joiin fzchunyr [IC9 11, and the MUUP, which choos(*~
randotnly two points in the currcmb VT autl sw;rps
the base ralntious consumed by them [SwH!)];

in a rig/~&derp space, the? valid t.ratisforni;Lt,ions arf*
tShtr right join ctrhunge (join(R1, join(Rz,R3)) -+
join(Rz, join(RI ,Ra))) and the swap;

in a zigzag space, a valid t~rar~sfortr~idioti is OIIC*
above and the join conrtnrrlnliaily (jnin(RI ,/I!~) +
joiu(Rl,Rl))

in a bualry spact’, valid t,ratlsformat,iollN art’ t.1~~
join ezchang~, the join commulaliuilg nrd 111~ yirr
associutiaity (join (join(Rt, Rz), RJ) -+ joia(A!, ,
joitl(Rz,Rs)))

The optimizer search strategy is responsible for guitl-
iug the applicat.iou of expand(p) and traIlsform(
by choosing p atO each step, deciding on the! successors
to keep, stopping the search and so ou. In other words,
it, is respousible for deciding how rnauy poiut.s ol’ th
search space art: iuvc?sLigntotl and in which order [I,Vv’31].
The choices are hased on a cost metrics clcscribrd iu t.lw
next, section.

2.4 Cost Model
In this section, we propose a cost model that, captilt
all the aspects of parallelism and schetluli~~g. 111 o&r
to compare PTs, we discuss t,hc drawbacks ol’ lm*vious
proposals which do riot, deal wit811 srht~tliiling.

2.4.1 Comparing PTs
Our optimizer explores both kinds of parallelism, itrtza
and inler-operation. The latter involves the! schedulitlg
of execution plans. We distinguish Lwo t,yt)cs of
inter-operation parallelism: dntaflow and iucltt~~nlrdt~llt..
Ilowever scheduling execution plans that, allow ouly
dataflow l~arallelism (linear plans) is easy. Illcl~!l~elld~~llt,
parallelism (as in bushy plans) is tnoro involvctl INY-~~~c~
there are more scheduling alt8ernatives.

During the exploration of the search space, lht! HWKh

strategy compares PTs with respect to their cost.
Greedy search atr.ategies, that build P’l’s by depth-lirst.
search, or randomized ones, that transform cornplett~
PTs, keep at, most, one PT after each action (i.e., cxpaml
or transform). In these cases, only the cost estituat.t*
is relevant when comparing a PT with another one.
On the other hand, a Dynamic Programming (DP)
strategy [St:79] builds PTs by I~reatltMirst., keeping
all incomplete PTs that are likely to yield an opiimal
solution. $hppose PTspacc is the st!t of all PI’s
(complete or incomplete) built by the optimizer search
strategy at some point. At, each expand, tJlt! search
strategy discards from P ?‘sr~ce the most. c:xl~~*u?rive P’l’

-- pearch SpaG----p&Min.” # of l”1’ 1 Max.* # of PT 1 Max. # of PT shapes 1 M,ax. sit of PT shaoes 1
[__-1_1 sha])W 1 shapes 1 for 5 relations -

Left-%i@l-iX!c!,’ ---$=- ll! 120
Zigzag -yzz.yr-I

2”-2.tl! 920

HIIdly

2n-1
211 - 2 In-2 !

II n- 1 tf n-l ! 1,680

%hain querier, PTs without Cartesian products.
hQueries where all relations are pairwire joinable or PTs with Cartesian products.

for”1 0 relations
.

3,628,800
232,243,200

17,643,225,600

Table 1: Maximum ant1 minimum mmlber of PT shapes in different search spaces.

UOdw RnK)llg llrc “equivaleut” (rquiv for sllorl) oues,
i.r.,

(vl,,1)' E f'?'.~~)tMX') (f'q?kJ(l',&) A (t:fJSt(~l) > C:OS!(1J/))

=3 f’Txl”lce := P'l'sptlt:~ - (1')

‘1‘11~~ (*ost trstimnte of a P'I' takes iuto ~CCOIIIII, its

s~~ll~dul~~. Thus, it, may happ(!n that, giveu two schedules
for 1) and p/ autl a PT Q,

cost(p) > cost(~~~) and

‘I’h(*r&rt!, it is better uot, to discard PT uo&! p when
coinpared to p/. In otlic!r words, 1.l~ ~~~IliVide~lC~ cri-
Wiou iiiusl. include the comparison of plan scheduling.
‘i’his problem is simiiar to the tuple order of lh result
of a given I’? in System R [Se79], aucl to rmource con-
sumption in [GHK92]. In the former, the order iufor-
matiou iufluences the costs of subscquent~ iuerge joins,
(: ItOlJP-BY and ORDER-BY clauses. Morcb geurrally,
all 1.h a.vpeCCs of a r’l‘ tllid afftxl. cost 4i1llii1kNl, and
wliich may favor successor nodes, must lw considered
wlictu comparing P’l? to discard thta iuost cosl~iy ones.

‘1’li~: equivalc?nce criterion abstracts all lh: prqmtic:s
01’ a IV that are used by the cost, model: lh: wt. of
Ci~J’tllrc!tl relations, the home of the producc:tl trausient
relation, and the scheduling. More formally:

(VI’,]” E Y?‘SlJUce) ((dS(~J) = PEIS(JII)) A (horue =

hfJtUC(lJt)) A (SCheff(lJ) = Schtd(~d)) =$ t:q?hJ(p, I)/))

The formulas for cost estimatiou take iuto account
the used machine resources (e.g. processors), the
number aud the structure of the phases which define
the schedule of the execution plan. Consequently, the
criterion ached is refined as follows:

(schccf(y) = sched(p/)) w ((nlrnrlrrOfPhase(p) =
nrr,nlerOfPhuee(p/)) A (Vi E phascl(p)
usfdResources(p, i) 7 uHetlRexources(J)/, i)))

Rued on this definition, linear PTs scheduled aa
rigbt-deep trees (thus executed in one ph‘asc) and
consuming the same resources (i.e., executed on the

card(R) number of tuples in relation R
width(R) size of one tuple of relation R
cl,u CPU speed
net work network speed
packet the size of a packet
send the time for a send operation
rf.xcive the time for a receive operation

Table 2: Cost, Mode1 Parameters

same home) are considered equivalent. On the other
hand, bushy plans, scheduled in more than one phase,
are not, equivalent to plans scheduled as right-deep trees.

Our proposal may be seen as an extension to [GHK92]
by adding another dimension to the resource vector to
take into account, the execution over more than one
phase. The cost, metrics becomes a matrix, where each
row represents the resource consumption over one phase.
If the plan is scheduled as a right-deep tree, we obtain
a vector as in [GHK92].

2.4.2 Cost fi’lutctions

III this section, we define the cost estimate of a PT
containing only join nodes. All formulas given below
compute response time and we simply refer to it, by cost.

In addition to the traditional assumptions (uniform
distribution of values and independence of attributes),
we also assume that, the tuples of a relation are
uniformly partitioned among the nodes of its home, and
there is no overlap between nodes of different homes,
although several relations may share the same home.

In the following, R refers to a base relation of the
physical schema, and N to the operation captured by a
PT node. p denotes, in the same time, a PT and the
transient, relation produced by that PT. The parameters
(database schema or system parameters) used in the
cost, model are shown in Table 2.

An optimal execution of the Join operation, requires
each operand relation to be partitioned the same way.
For example, if p and q are both partitioned on n
nodes using the same function on the join attribute,

497

the operation Join@, q) is equivalent to the union of
n parallel operations Join(pi, ei), with i = 1,n. If
the afore mentioned condition is not satisfied, para,llt!l
join algorithms [VG84] attempt to make s11ct1 condition
available by reorganizing the relations, i.e., dytlalllic;Jly
repartitioning the tuples of the operand relations OII tJ1e
nodes using the same function on the join a.tt.ribute.

We first estimate the cost of repartitioning an operand
relation R. Obviously, if the relation is appropriately
partitioned, this cost is 0.

Let #source be the number of nodes over which
R is partitioned, and #dest be the number of nodes
of the destination home. Each source node contains
card(R)/#source tuples, thus it will send cfrrd(R) *
width(R)/(n*packet) packets. If we assume that tuples
will be uniformly distributed ou destination nodes, then
each node will receive card(R)/#dest tuples, and LIIIIS
will process card(R) * width(R)/(m * rJ”lckct) incorr1it1g
packets. Since a destination node starts proctissiug only
when t,he first packet arrives, the cost of rrl)“.rt.ibiotlitl~
R 0x1 #dest nodes is,

cost(part(R)) =
mat((card(R) * width(R)/(#source *Pf~ket)) .+ scnff,

(card(R) * width(R)/(#dest * pfrcket)) * rcccive
+send + packet/net work)

The cost of joining tuples of PTs p and q, where 1~ and
q are respectively the pipelined and stored operands of
the Join operation, is

cost(Join(p, q)) =maz(cost,lg(Join(p, q)), cost(pf&(I$))

+ cost(part(q))

where cost,rg(Join(p, q)) is the cost to process the join
at one node. It depends on the join algorithm used
[Za90]. The repartitioning of p is performed simultann-
ously to the join processing, after the repartitioning of
q has completed.

Given a PT p scheduled in phases (each denoted by
ph), the cost of p is computed as follows

cost(p) = CphQl (rncrz~~~h (cost(N) + pip”-flf:ltry(N))
+ storedelay(

where pipedelay is the waiting period of node
N, necessary for the producer to deliver the first result
tuples. lt is equal to 0 if the input relations of N are
stored. storedelay is the time necessary to store
the output results of phase ph. It is equal to 0 if p/r is
the last phase, assuming that the result, are delivered as
soon as they ate produced.

To study the behavior of search strategies, an im-
portant property of the cost function is the Adjacent
Sequence Interchunge (ASI) property [MS79]. Consider

R I”r Wl10sC Ilo~lt’s Call ht? rniy)pt~d 1.0 il nc~ctlu*t1ct* of rq’
laths of the! fort11 AITVH, wlicrrc! A, I3 iirt: nrl,ilr;bry
sq1icrict5 and II, V nou-null sequencas. [KR%llCi] shows
Ihat, 181~~: 0rclt:ritig of 11 mcl V iri t.lit! l”1‘ is juidy I);wd
on th propc*rties of’ Ihe S+~II~~IICW IJ a114 V, aId CRII IW

tlecitl~~tl irrt!spdivr of the rest of that saquc*i1ca (i.4,. A
and 13), only if the cost function verifies thr ASI prop-
crt,y. III oiir cost model, some charadctist,icS of ~,IIc, rfs-
suit, of a PT node tnay have an impact, OII th cost a11t1

tJ1a opbimizat~ion cI1oiceS performact for th HIIIC~~W~II~W~.

PT nodes. For example, the home of a hu1nio11t4 rcM.ion
inipiict,s for the cost. of 1JIc Iicxt, coI1s111ni11g opc~rirl~iot1.
Therefore, choosing between two orderings of XC~IICIIC~~N
in a PT is tlepei~dent on the red, of th st!q11c*11ct*s. ‘l’l1t:
AS1 propfdy is, then, nob verified by 01ir c~)st, 1110tlf4.

Tlrc~ impact of this information WI ra11doI11izd sLr;rt.c\gic*s
will IN st,utlied iri Sdio11 3.2.

3 Search Strategies
‘1’llf* olbl.iiiik:r sf~fll~f~h s/Wlf~yj/ iH hIIf: St:ilrCll ill~:oriLllll~
wliich il1Vt*St.i~ih5 I”l’s iii a givc.11 s(~;ir(:)i slb;~c~~. 11.
r11;ry I)(* fGl,l1c:r flf~lf~l~trtitrislr~ (ix., Ib11il&i 1”l’s iii il

tlrl,c,rtt1iiiixl.i~ faslih) or t~fl~tffo~frizf~d (i.t‘., illVt!SLiKi1.l,l’s
ricw I”l’s l~y ill)l)lyillg rir11do111 t.r;r11sfl)rI11;1.f.ic,lls OII I”l’s).
III di(~ rms3 optii11izc!r, w(: II;LVC irril~l~~i11c!ril.c~tl t,h
exkiisilk ;1pprodr th:scrild iii [l,V!l I] wit11 SC~VCT;L~
seardi st,rat.c:gic!s, wliicli wt. now tlt:sr.ril)c~.

3.1 Dt~ternhistic Searc:l~ Stmtcgics
Dd~c~rI11i11is16ic st.rdq$t:s always clroosc~ th R~IIII! I”l’ fog
a givcu (Illcl’y iI ii given sonrch sl)act~. fCXitIlll)l~Y4 of~11fd1

strategies arc C:rr~rly and nl’ [Se7I)].
Grc~etly stra1.rgic.s are 1h fastc:r 011es lwc:;~~~s~ thy

iIivt4gatt~ very few 1Ts. Thy proceed by dc:pl.h-ht.,
stOarlhlg from the ralabhi with Ihe least, cartlirialit~y.
After each t?xpaI1sion, all I.ht? s11ccessor notIes i\rC prur1cd
hitO oiie. Dilfcrt:Irl Iid:urist,ics Iiiay I,t? usc:tl ii1 c.cuiqjlilld.icO1
wit.11 ii (:rccdy St.rillot?gy. II1 tllc! DINI opl.itiiizc~r, we
IId 1,11+* A11~r11c~irt.;rt.ir~i1 Il~!urisl,ic [SWX!)]: t.lifa I’lilll st.;d.s
I)y (.lItF rc:lhoII with t.lle Ic:Mt. cirrtliI1idil.y :intl, id (*itch
cxpa11sio11, t,lic! 811cct~SSor I1otlt~ with t.l~f~ lf’iL*lm cost is
rt:l,iLiI1c?tl. (;rt:cdy stOratqicx ilrt? also 11scd I,0 goiitqd(~
Stilrt. solut.ioI1s for rantloiniztd sht.cgic~s.

We have st11clicd a variant, thal, procl11cc~S wliitt. WC cdl
the Ilniffmr Gr&y solution. This stratcagy protliict~s
one cornlhde p’l? Starting from each b,a.ql.41! rc4:it4io11 via 1.h
A1Igrnc!nt,;rl.ior1 Ilcuristh-, then cl~oosc~s klw Iwst cdly
among these complete! PTs as t,hc! solutiou. We llav<*
observed tht~ this is a very &dive st.ratt!gy t,o fhl a
start, solution for Simulated Annealing in lintbar spact*s.

DP procttecls Iby I~rtratlth-first, st+:cting that hst.
recc!ntJy gtqieral.ttd I’T Iiotla t.0 lbt? c!xl~aId~~l at. c:;d1 stq)
‘l% sl.rat,egy is allllosl. f?xl1i~iist~iv~~, Ibt’(!illlHt‘ hirixl~ic~s
arci list4 t,o ljc11r1e hdst~at,rs as sooii iLS possilh!. Pr1111i11#

tlin~artln l”l’ r10d~ which are “q~~ivihr~t” 1.0 NOIII~! otl~er
(~xintirrg I’l‘ noda with higher cod (SW Sectioo 2.4.1
I;br ii tlisclissh ori the r~quivalenct! cril,eriou). Because
1.11~ IBruriiiig policy considers th: IIOIIIW, lh IIII1I1Iwr of
I’liiwc*s iki1(1 1.11c wsourw c.cmNilrri~~t.ioli OI’WLCII ~B]I;LW, t,ll(*

iiiiii1l)(-r ol irivcsl.igaI~~:d 1’7’s is 11rucI1 l;lrg(*r t,h;u1 irr a
~~~~11Lralizod c~rivironmt:ul. ‘I%: rriair1 r(:sourc(: coristraint, 
wIlt*11 using DP proved lo be the arnouut of space 
use11 hy the optirrrizer. Because of breatlIJ1-lirst, search, 
III~IIY irlcornplcte PTs are generaled before the search 
cwls. Thus, running DP on reasouable queries (e.g., 8 
relations or more) in a bushy search space often causes 
the optimizer to r11rr out of space, This is the motivation 
I.0 use randomized strategies. 

3.2 R.nnclomized Strategies 

I~.irntloiiiizc:d strirt.t!gios coriceritrale ori sctarcliirrg tOtie 

oI)tir11;rl solution arolrnd some parI.icular I)oiuts. They 
do rrot. gu;widce th.at tlic Imst, soli~tiorl is ol~l,;~iiw~l, hit, 

avoid IJie high cost Of Optimization. First, 011~ of more 

.slfwl I”l’s arc built hy a Greedy strategy. T~I~:II, the 

aIgorithrr1 tries to improve t.ht! start PT by visiting its 
trc+hbor~ A neighbor PT’ is obtairrctl by applyir1g a 
t.rmsf0t-al h R PI', i.e., IV = trcurnfornl(l’r). A t’rr 
is a 10~~~1 irriiritarrni if it hi~q the Ica,sl. cost a1110r1g all its 
u+$l~ors. A PT is a ylobnl tiiii6iiuuttt if it ha.9 the least 
cosl. arrlong all the local minima. The affectivtrness of a 
rarrtlorrrizc:tl strategy is dirttxl to its ability of reaching 
I,he glol)al ruiuirnurn. This is rnore difficult as l.hcBre are 
rrior1~ IOCill rrrinirrla. 

3.2.1 R,nntlomizctl Strdxgics vs. Cost Metrics 

‘I’htr nuiuber of local mir1ima cleprnds 011 1,h: t!xecutiorl 
sIbace as captured hy the cost, rnoclel. TIIIIS, 1.1~ behavior 
of rantlorr1ized strategies is significantly affccl.td by 
1.11~~ properties of the cost metrics. [lCXJ I] stated 
tI1aL irl srarch spaces followir1g the ASI property, 
IJiorc* is a unique local rninimiirn, which is the global 
rninirrurrr1. This cnahles very alfective optimization. 
AfI.cLr choosing a randomly gerrc:ratc:d start PT, apply 
t,rAllSf~JrlIl diOIlS iinkil Ii0 h%S COShly ii(:ighhor P’r 

is gWl(:rirl.t!tl. In cenl~ralizc?cl oplir11izttrs, cost I’uuclOiorls 
~0rrc~sI~oriclirig to soriu join illgorit.liiIis (e.g., rIwrge 

joiri, lidi join) do riot follow the: ASI property. 
Nwcrl,hdcrw, [KXl] b 0 served that riiariy sirbspaces 
follow ASI, leading to many local ruiuirna. This 
r11akta randomized strategies investigating rrrar1y s11c.h 
subspaces to iricre;lue the opporbunitics of finding 
t.hc~ global rninirrurrrr. Each strategy irrrplements this 
irrvt*stigation of several subspaces in a differtrut way. 

Wlleu cornparing the cost, metrics of a centralized 
opliriiiz;cbr to ours, where schetlulir1g is taker1 into 
m:co1111~, two observations can be drawn. First, tlw 

cost. tlistributioa is much more scattered, iruplying the 

IIW~I Iso look into ruore suhspaces thau in t.he centralized 
GWC?!. Secorrd, the cost of a neighbor PT can be 
radically different, (1rp to a factor of 10) from that, of the 
st~iulirrg PT”. This implies that, in a given subspace, t,he 
oI)I.irrrizcbr may be nhltr to reach a local minimum earlier, 
wiLli less transforms than in the centralized case. not,}1 
facl,ors are more prevailing in bushy execution spaces, 
where there are more choices for scheduling, than in a 

linear one. 
These observations lead to an important conclusion. 

A parallel optimizer acting in a bushy space should 
investigate more subspaces than a centralized one, 
spending less time in the .exploration of each subspace. 
III the sequel, we present the randomized strategies 
irr1I&merrted in the DBS3 optimizer which take into 
account, these observations. 

3.2.2 Iterative Improvement (II) 
II [Sw89] performs several runs. Each run consists of 
improving one start PT by applying transforms, until 
a local minimum is reached. Thus, only transforms 
that, generate PTs which are less costly than the original 
out: are acceptsed. The number of r11ns is eqaal to the 
r1urul)t~r of relations iu the query, i.e., each start PT is 
grc~c:clily geuc:ratecl from a different, base relation. As 
thtr strategy is not, exhaustive, not, all the neighbors 
are visited and it. is difficrrlt, to recognize a local 
r11iuirnurn. A bound on the n11mber of visited neighbors 
is typically accept,etl as a criterion for reaching the local 
r11inim11rn. This hour~tl is proportional to the query size: 
a paramebr locrrlBrrtl~ct times the nnmber of relations 
iii the query. 

11 visits as many subspaces as the n11mber of relations 
ir1 thtr query, due to the choice of the several start, PTs. 
This has been proved effective in centralized optimizers 
[Sw89], and we will show that, it, is also the case in linear 
parallel execution spaces, in Section 4.4. However, 
the mimher of visited local minima is insufficient in a 
parallel bushy space, due to the excessive scattering of 
the cost. distribution. This explains the low q11ality of 
the plans chosen by 11 r11nning in a bushy space. The 
localButlge:t pararncter may be smaller in bushy spaces. 
II cor1vt:rges very q11ickly to each local minimum. The 
I'c!ilsOII is tllal., in I)iishy spaces, a single transform may 
geuerate a neighbor PT with a very low cost, compared 
to that of the original one. 

3.2.3 Simulated Annealing (SA) 
Coutrary to II, all the r1rns of SA are performed 
over a single start, st,ate. However, the system has 
a tt>rnperat11re property temp, which is reduced at 
each run. Optimizer parameters allow specifying the 
initial temperature (a factor multiplied by the cost 

“Tbiw is not the vase ix1 rmtrdized bushy spaces [ICOl]. 

499 



of the start PT, typically 2.0), and t,he decreariing 
ratio. The algorithm stops when t,emp 5 tlte “freezing” 
temperature, or when a “stable” solttt8ion has been fortnd 
(i.e., it stays unchanged during four runs, as proposed 
in [IC91]). As in II, the local budget, for each rttn is 
related to the size of the problem. The crit,cbriott for 
accepting a transform, however, is different,, I)c:cattse 
t,ransformed PTs with a higher cost. than the original PT 
are accepted with some probabiMy, tJtat* decrc!~~ses wit,h 
the temperature. Accepting Qud moves corresponds I,O a 

“hill climbing” [IC91]: on the other side of IJtc! hill there 
may exist a better solution. 

We have observed that the augmentation heuristic 
often approaches the optimal linear soltttion provided 
that it has been applied t*o a “good” start, rc*Mion. 
It is not possible to predict at first sight, which is tJte 
“good” &art relation. Similar t,o [Sw89], we propose t,o 
choose the Uni/r,rm Grwrly sol~rtio~t (set! Srctiotl 3.1) WY 
the unique start solutOion for SA in littear spaces. This 
increased significantly the quaMy of the solution chosen 
by SA. 

During the experiment,s, we observed tJt;rt, SA per- 
formed very well in linear spaces, but. often failt:d t,o 
choose the optimal solution in bushy spaces, even when 
Uniform Greedy was chosen as the st,art, soltttion. The 
reason is that a single start, soltttion provid(:s t,oo few 
chances for exploring a large search space, e.g., with 
bushy trees. The standard way t,o do tltis, i.e., t,hrottgh 
the acceptation of “bad” moves, proved t,o be ttot, sttf- 
ficient in a parallel bushy execution space. This rnot.i- 
vated our proposal of a modified versiott of SA. 

3.2.4 Toured Simulated Annezdiug (TSA) 

TSA performs n tours of SA, each tour st,art.irtg wit,lt a 
different Greedy solution, where n is the ntttttber of base 
relations in the query. Each &art, solution is obl.aittetl 
as for II, i.e., it is greedily builb by tJte attgtttartl.at,iott 
heuristic beginning at each base relation. 

To prevent the optimizat,ion cost of increasittg ex- 
cessively, each tour is given a very low rat,io for t,he 
initial temperature (0.1 instead of 2.0), impelling t,lte 
system to accept bad moves less oft.en. This is sotne- 
what analogous to the P-Phase Optimization strat,egy 
proposed in [IC91]. We also int~roduced an optitniza- 
tion budget, equally divided by tJte ttttmber of t.ottrs, 
that limits the optimization effort. Similarly too what 
happened in II, we observed that, each “tour” reaclted 
a local minimum very early, and spent t,he remaining 
time exploring useless solutions. As we keep t,rack of 
the best solution found so far, this “wondering” is not. 
hartnful from the point of view of qua1it.y of the chosen 
plan, but increases uselessly the opt,imization cost,. So, 
each tour is given a limited optimizatiott budget,, b,ased 
on the number of generat,ed PT nodes. We show itt St:c- 

tion 4 that, TSA presetit tJte besb t,rade-off I)(4 wc*ctt tJtr 
opf.itrtizal.iott cost, and tohe qttaht,y of 1,he execttt,iott Ibliltt. 

3.2.5 R.cu&mrined Strategiw VR. Tmusfornr 
Actious 

The: I4tavior of rattdotnized st,ralagies is afft~ct.c~cl by ~.IIv 
tt;~I.ttre of tltf! applic:d tnumforln act,iotrs. H.fvall 1,liat it 
t~rattsfortttaI.iott acliott tnttst be valid, ix!., cottsImiftc~fl itt 

t,ltr consider4 search space. All of tht- d<~scril~c*tl i.r:uts 
forntatiorts gcrter& a PT wilhirt t,ht! sartte sc*;lrclt sI~ilc(’ 
<as tJte origirtal one wit,h rttgards to their sltap(b (sty .S(Y- 
Lion 2.3). Oft,en swalts and joirt exchattgrs t,ttrtt out. 1.0 
IN! ittvalid if (.he search space prevettt,n joitt pt:rttltti.;L- 
~,iotts LItat, itnply Cartesian products. AR I.hw hits 

fortttatiotts are rattdotrtly choscrt, (.hc*ir odirfi/y MINI, I~v 
vt:rific:tl Ibf~forf~ tltc*y i1.W iLl)l,lifYl. Tltf: tttttttl~f~r fd sttufY*ss- 
fill af.tetttlh!tl iu4~ifltts is rthl.cd to tttc! “cottttf’(.liviI,y” of 

tltfr fIttery (i.f?., the ttrtntl)trr ofjoitt l~rf~flif:n~,cs rotttlc*cI.itig 
1.h rc~l;il~iotts). 

As th joitt excltattgt: is a part.i4ar crzyc of swap, WV 
cotttlrtctc4 sotttf? t!xpf~ritttt?ttI8 to shtfIy I.ltt* hf~ltnvif~r of 
ratttlotttizetl slraQies ttsittg fme or 1hf: 0l.h. lf only 
joi~~E:xchange is used, if, may reqttirc! (:) cz $ u2 SIIC~I 
actiotts 1.0 reach I.ltr ol~I~itttal ldan; at each sIq Ihrc~ arc 

71 - 1 possible choirrs. Oti 1Jte ol.ht!r hand, wi1.h swnp 
~ht? tiUg:‘l. Call always I)e rf!iWltf?d by .YOlIlC Sf’f~llc’ltrf’ 0I 
n - 1 or h:ss actiotts, atttl aI, (:acIt skp, I,ttf*rf: arc* (I) 
cltoicf?s. III so~ttf! scttse, joinExch:pp art* “s~ttnll” 
tt~ovc~s, while gettf?ral ~wr\ps cottxl~ihttc~ “liirgf~” IIIOV(*S. 

l3a.4 oti I.hc3c ~ottsitlt?rat,iotts, sM13irtg frottt a 111~11 
IM. is wc:ll away from 1Jt(! optitttal, Wf: woldfl c~xpf~c’t. 
joi:rExclmngaw (.o produce stt~nll itttprovt:tttf*ttI.n, 1~11. 
wit.lt R high sitf:cf~s rib, cotrtpiirf*fl wilh swq. 

‘l’h(? ittitid progrf~ss sltould I)f! rttorf: rt?tttarkaMf~ wil.lt 

swnp, sorttchtt:s I)f:ittg very lucky atttl sotttfhtttf:s fIttit.c* 

unlucky. As a local ntirtitttttttt is approaclt4, SWAIN will 
have art WWI highfIr ftrilttre rat.e, ill large IIIOVPS (.cstttl 1.0 
bc ttttl~rofltt~~~ivt~. 

011 I~tshy sp;rcrs, the vnli(lit,y of trnwfcwln iu~liotts 
arf: hss srttsilivf? to the cottttrc1.ivil.y of I.ht~ qtt(bry. As 
t,hnir c:fii!ct. is localizfd ott otic* pittI of 1.11~? I’T, l~lic~rt~ is 
a Iessc:r (resp. ttotte) probabilit,y t.hat, il. joitt rxcltiiti~c~ 
or a joitt ass0ciativit.y (rfq~. joitt cottttttttl.itt.iviI.y) 

will fail to protlttce n vahfl PT itt a .searclt sp:icc- 

avoiding Cartesian products. Experitttt\nl,s where joiil 
exchange was ttot availahla for htstty spacf~s l~f~rfftrtttfrfl 
poorly. AltJtottglt the effc:ct, of a joirt exchattge catt hf. 

produced by a cotnbitt;~t~iott ofjoitt assoriativit,y and joitt 
cottimttt,at.ivit,y, it is essfitttial t40 ltxvc it. a.9 xii ~t.fltlitiottid 
t,rattsforttt ;~f:I.iott, I~cnttst~ it. tttay hf- valid wl~tt ;I. joit 

;wsor.i;~t.ivit~y ttiay ttol.. 



4 Measurements 
WI* now tIIt*;1wIIrc l.hf~ l.rrulo-off I,c*t,wt:oII t,lItr ol’t.iIIIiz;rt.ioII 
cost, Vt*fsIIs t,tu* rlidil.y 0I’ l.l1t* pro~l~lwtl c~xf*c.Ilt,if)ll t'l;~Il. 

III cmlt-r 1.0 IIlakta t~loirnillgl’lll tII(‘;LHllr(:tlltllll,s, WC Ibro- 

vidtatl tJIt* opt,iIIIizt~r with “sfw~or~” :ii~d %iilhd’ t,o aI)- 
slract. iIIIpleIrieIIt,atioti tlot,ails arid t,o gr;qb t,llfx w..~!ll~~ 

of t.llf* optimizer behavior. We investigate IIlil,lly f:oII~lli- 

niitions of search spaces awl search str;itf:git!s for some: 
silIIIpl0 ftlitbries. Wo show that opt,inrizal,ion bt~comes iII- 
t.rMl.ill)k in some situirt.ions (t!.g., illI t:xhausl,ivt~ strategy 
xpplic!d 1.0 O-way join queries in a bushy St!ilrCll spact~). 

Wc: tlc~monstrat~e that restricting thct sc*nrclr space may 
It-ad to Iniss the optimal plan. As a11 alt.erII;rt.ivt~ 1~0 re- 
duct: l.ht* opt,iIIiizal,ion cost., we ust: rantloItiizt~tl str;it.f:- 

ait!s. WC show tliat they perform wc*ll 011 p;rr;illel eiivi- 

r0iiiiic~ill.s tllld ChooSe lhr Opl~iIl1iLI pIit ill Inosl. c;~sos. 

1 number of MIPS Der CPlJ i 30 MIPS I 
200 Mbits/second 

7XG for a seIicl oI)t:ral.ion 
5 12 bytc!s 
33 11s 

I 

time for a receive oprrat,ion 1 23 ;,s 1 

Table 3: Values of Cost, Mode1 Parameters 

4.1 ‘rt!stl,otl 

Our IiIc~~L~iIrc!III~?Iil.H iiw a rtralistic ;q~plic;~l,ioII: 1Jlt~ 
I’c’rt&>lio ( Yub I’:xl)criIIIcIIt.;LI Mntlt.1 (PEM). ‘l’his wim 
~ItGgtic~tl t+o provide a rc!alist,ic c~xl~c!riIIIeIil.iil I)iLW? for 

co~iit~l~~x query flefinition, evaluabion and bf:ricliIIiarking 
011 t*ht: DBSY system [JKK!JO]. PEM const.itIrt.t~s a 
siIIIplilit;d Inotlel for an applicat~ion 011 share market 
and investmeut/portfolio management. The PEM 
SCht!lllir contains 20 relations joinable through foreign 
kcbys. ‘I’ht,re are three kernel relatious, “enterprises”, 
“iIivt:stors” and “holdings”, I,0 which disjoint sets of the 
rr~IIii~ining reli~t~i0IIs are joiliable. Bcsifles, “t~ntq~rises” 
iui(I “investors” are joinable, as well as “(?IIl.(!rl)ris(:s” anfl 

“holtlirigs”. 

pretlicates in a query (e.g., R1.A = R2.B and R2.B = 
IL3.B implies R1.A = R3.B). Due to the nature of the 
catalog, “star” queries are frequent. They are generally 
considered as the hardest to optimize, because of the 
large number of permutations of relations not, involving 
Cartesian products. Each query was optimized with re- 
spect to three catalogs, each containing the same PEM 
ScIlt’IIla, but with widely varying statistics. The exper- 
iIIIc1IIt.s with tsllrt optimizer were conducted on a SIJN-4 
workst,at,ioII with a Iti MIPS CP17 and 32 Mbyt(es of 
IrittIriory. 

TIi(* l.c:st.bnO catalogs wept: gt:nt?ri&!d illlt.f~lll;lt~iC.illly 

llsillk throc kt.y paraIIIet,t!rs which corrt:spond 1.0 t,lIta 
c~;rrtlIII:rlit.ic~s of the: kernel rt*lations. ‘l’ha cartliIIalit,ic~s of 
r(!liLl.iOllS Virry with rc!spt:ct, to ViLCII otJIc:r considerably, 
as in rc!al applications. The cat.alog flcscribcts also 
l.htB t~irrl.il.ioning of rt:lal.ionn, the nIIIIibt?r of nofles and 
l.IItb i~l.bril~Ill.t~s iitwfl by the partil~ion funcl~ion. Disjoint 
Siihts fJf th! rekholls were parteihm!fl oil three 

tlis.joiIIt ~oIII~~, containing one kernel relation plus the 
SC*!, of rt:lat.ioIIs whostt forc!ign key is t,he pritnary key 
of tht! kernel relation. We 00 110t considt!r indexes. 
‘1‘li(* III;ichiIrc: consists of JO IiodeS (i.e., processors) illlll 

wrl~ horn!! is coastitiitafl by 10 no&s. Tal)lc 3 gives 
t.lIt* values of the marhint, paramt?trrs iisc~l by the cost 

IIiodt:l, VHlifliltt!d on tlicb currc:nt8 EDS slI;lrc,tl-IIot,lIirIg 
l’aralh~l syst.c~~n. 

4.2 Expcrime~~tation Methodology 

Tlw effectiveness of a strategy is strongly related to 
t.ht: consumed resources, typically time and space. A 
common difficulty with resource measurement, is that 
it, is very implementation dependent,. Therefore we 
atl~emptetl to identify characteristic actions used by t,he 
various strategies, and t,o count, them, rather than rely 
on (X’U tinle or memory size alone. For deterministic 
sl~r;rtt~git~s, expand is the most typical act,ion, while 

trailsform is t,ypic.al for randomized ones. As both 
iicl.ions gt9it:ral.c riew PT nodes, we use the counter 
of ycI~.t:r.fIlc:d PT Irorlcs to compare different strategies. 
ICt!caII that,, if randomized strategies are used within 
a search space with no Cartesian products, many 
t~ransformation ntternpts may fail before getting to a 
“successful” OII~. The failures are also t,racked by the 
courlter of generated new PT nodes. Thus, the number 
of generated tIcIll PT Irodcs correlate well with time and 
spare. Tlw number of generated new PT nodes per CPU 
second was 20 for both DP and randomized strategies. 
Hrsitles its use for experimental measurements, this 
connter provides an implementation-independent way to 
const,rain the resources consumed by the optimizer. The 
cost, of a PT represents the response time as computed 
by l~lio cost, funr.t~ions of the optimizer. 

We conduclcd our experiments using equijoin queries TIN: optimizer behavior depends on a parameter file, 
ranging from 4 to 12 relations. If we consider the that. fixes the search space (right-deep, zigzag, and 
clatabasc: schema as a graph, where a node corrcspontls bushy. Left-deep are not. considered in the experiments) 
I.0 a rt*lat,ion, an eflge connect8 two nodes if the cor- and the search strategy (DP, II, SA, and TSA), 
rc~sp0Iidiug relations share lhe same at~1~ribiit.t~ name. and parameters for randomized strategies (e.g., global 
‘I’hus, a query on a given subset of relations is the sub- and local budgrt8, ratios for initial temperat,ure and 
grq)tI cont.aining them. We consithtretl all t~lrc: “iIIIplied” teIrIpc:rature decrease for SA and TSA). 

501 



32 T ___-__-__-_.-_.-._. 

5 6 7 8 9 10 11 12 

number of relations in the query (i) 

200 T -..-..-..-..-..-.‘, 
3 150 - I. I right-deep j 
s 
3 i b zigzag ! 
8 loo .. I : I -- 

‘n bushy 

OJ : -- 

4 5 6 7 8 9 10 11 

number of relations in the query (iii) 

-I 

12 

4.3 Quality of Query Executiou Plan vs. 
Search Space 

In the first set of measurements, we were intctrc?stcd 
in verifying if choosing a larger search space changes 
the optimal solution. We applied DP to several 
queries in different search spaces using three tlifftlrent 
catalogs referred to by calaloy(i, j, k) where i, j, and k 
are the cardinalities of “enterprises”, “investors”, and 
“holding” respectively. 

Figure 3 shows the cost of the execution plans 
obtained for varying number of relations in the query in 
right deep, zigzag and bushy search spaces. The zigzag 
solution is always better than the right-deep one. The 
bushy solution is sometimes better than zigzag. Clearly, 
the choice of a larger space enables finding a better 
plan. In large spaces, the optimizer is able to investigate 
all possibilities that lead to the best parallelization, 
regardless of the initial partitioning of relations. 

DP becomes intractable, i.e. runs out of memory, 
in zigzag or bushy spaces for queries with !I relations 
or more4. In these cases, we used the cost of the 
solution obtained by TSA. The good surprise is that, 
TSA in a zigzag or bushy spaces was able to find better 
solutions than DP running in a right-deep space. In fact, 
our realistic testbed is .such that subsets of relations 
are located on disjoint homes. In this situation, 

‘Recall that the queries are very connected by join prediratea, 
due to the implied predicates. 

Figure ‘L: 
Exc:cution cost, of optimal lk+ns olkrint4 Iby l)P/‘l’SA 
for virryiilg iii~i~il~r of relations iu th quuy. 
1‘11f: Lllrf?f- grqdls correspoiitl rf!spf~clivc~ly t,o (i) 

mltrlo~~( IlOO,500,1 lOO), (ii) cululog( I 100,5000, I loo), 
and (iii) rultilo~~ (10000,500,10000). 

iiidopc~ntler~t lmrirllclislll is t~etkr tlim clatirllow, wlikh 
incurs t.irnt4lnriiig. This favors zigzag ;intl Idiy I”l’s. 

4.4 Qmdity of Qwry Execatiw~ Plru~ vs. 
Senrch Strategy 

Wt: apl’lietl II, SA and TSA to 1.h SMIIP cp&*s :I.< 
befOre, usiiig tlic$ c;ddog( I IOO,hO0, I IO()), iti liii(5lr micl 
I’llslly sparr?s. 

Figilrf! 3 slmws t.)le exfxxltiori cost of sol~~l.ioris ~IOWI~ 

by rn.idoiiiizcxl stratt!gias iti lirbc?ar aacl hshy spm*s. 
In il liurnr slmcr, all strategicts obtain t.lle Sillllc’ I’lilll 

or near as a filial solution in most, cases (see Figiirc! 3(i)). 
Monaover, tht: cost of tllf: chosen plan is cfpd or near 

to l~llilt~ cllosc~ll by DI’, WhfW tllc? cornpriscm is possilh. 
Iii biisliy spacf:s, for quf-rif:s witlr 7 rfbtioils or less, 

the cliosf:ii solul.ionn Iiavt: lh name cost for all sl.r;rl.q$~s 
too (wr I”igiirc :I(ii)). Ilowevcr, for rime coIi~ph~x 
cliit+s, 1.h: cost. of I~sliy solutions CI~OSAII Iby clilfm*iil. 
rantloniizstl stralq+s art! consithddy clifft~rt*ill.. As 
exlhiiretl in Section 3.2. I, this is due tc.) l.h(* fact, lhd 
the cosl tlistril’iit.ioi~ in I,iishy parall~4 spa05 is very 

scatterc4. As TSA is abh? to explore! nlore points in 1.11(* 

seardi Sl’ilCC tllall t,llt: ot.lif:r ntral.agies, il. is iLl)l(’ to liid 
better bushy plans. It is, Ihtvl, the best rl~oict~ WIWI I)I’ 
is no niOrr fm.~il~le. 

Rn.ndonlizetl striltegks have id. Imm lmvkmsly 
lmq~osotl to paraM Optilnizatkm. Our c~xp~~rim~iil~s 
sliowetl that Ihy iire very elffd,ivc!, spfhdly wi1.h sorl~c 
iiill’rovc’iiic.rl1.s. RoLh ntotlificirtiOtlS prol~os~4 14) Sh (i.c*. , 

502 



4 5 6 7 8 9 10 11 12 
number of rclatiunu in the query (i) 

number of relations in the query (ii) 

Figure 3: ChrrJpk~rJ of I~.auclo,mizetl Strategies: (i) right-deep, (ii) bushy. 

thr Uniform Greedy <as the start solrrbiot~ for linear 
spats arrd ttre Torrred version) have the same goal. 
They give this strategy a better chance of looking 
arouutl for nrore points irr the ,solrrtion ,spacc?. 

WI’ Ill~iLSrrrt:d fhf? trade-Off hf~Wt!(!lJ O~~t.illliz~lt~iolJ arid 

t!XC’c.lJt.iOIJ costs in right-deep AlJd I,lrslry *pM.tq llriirrg 

SW’rld st.rah!gieR. ‘h trade-off (9CprY!SSeS t.lJt! irJcJ?!JIS~! 

ri1i.c: irr both the OptinJiZahioll arid t?XeclltiOll costs 

irrcurred by a strategy, within a given search space for 
a givcrr quory. Summing both rates corresponds to 
consider the total resources consumed by optimization 
MJCI cxecrrtion. Each increase rate is estimated with 
rc%pt!cb 1.0 the I,(!& cost fouud so far by 80111e strategy. 

Givcrr a strategy ,‘$, a space E, and a query (1, rhe trade- 
(JIT of strategy S to optimize Q iu space E is, 

tlY1&-0ff(.s, E, qJ = IR,OC(S, E,Q)+IILIX:(S, E, Q) 

where Itc-OC and IHJC are the iucrease rate iu 
optirrJization cost and execution cost respectively, i.e., 

IN-O(:(.S, E, Q) =(OC(S, E, Q) - bestOC(E, Q)) 
/bestOC(E, Q) 

llck’~‘(S, E, Q) =(EC(S, Ii’, Q) - btxtEC(E,Q)) 
/IcstEC(E, Q) 

6estO~:(E, Q) = nrinvstOC(St, E, Q) 
6cst Et :(E, Q) = 7tJi7rvs7 EC(St, E, Q) 
(j(.,‘(.q, ,!$, w) IrJeUJllreS the optimization cost (rJlJrIlh 

of generated new PT nodes) of S to optimize Q in E, 
JllJd Ed@‘, E, Q) measures the execution cost. of the PT 
~17OthJM?d by s for Q. 

L”igurtr 4 shows the trade-off of DP and randomized 
strategies for varying number of relations in the query. 
For J3JIJall queries, with less than 7 relations, DP offers 
t)Je lr& trade-off. For larger queries, the situation is 

inversed to the benefit of TSA in bushy spaces, and II 
in right-deep space. 

This result, validated the use of randomized strategies 
for parallel search spaces when DP becomes intractable. 

4.6 Srlllllrmry 

The experiments hrought8 in some important, insight 
regarding optimizatiorJ in a parallel environment, First, 
a larger space than right-deep, as zigzag or bushy, 
provides more chances to find a better plan. With 
au almost. exhaustive strategy in such spaces, such as 
DP, optimization becomes intractable beyond a certain 
qrrety complexity. In a parallel environment, this limit 
is attained even for reasonable qrreries (8 relations or 
more). This is tine to the fact that, the pruning criterion 
is very rest,rictive. 

In previous work, the problem is dealt with restricting 
the search space [HSBl, SD90]. We chose to apply 
rnutlomized search strategies inst,ead. For this purpose, 
we used a modified version of SA, that offers a better 
trade-off in cotiparison with other strategies. Our 
experiments showed that using a randomized strategy 
within a bushy search space is likely to find a better plan 
than an exhaustive strategy within a restricted search 
space. 

We did not consider indexes for simplicity. Their 
impact, on our results will be studied in a future work. 

5 Conclusion 

IJJ tlris paper, we have studied the trade-off between 
query optimization and execution costs with DBS3 
optimizer. This optimizer explores both kinds of 
parallelism, intra and inter-operation, through linear or 
bushy plans, and implements several search strategies 
inclrrding DP, II, and two variants of SA. Using a 
realistic testbed, we conducted a series of experiments 
to measure the trade-off between optimization cost and 
quality of query execution plans. 

503 



2s r..-----.-. 

20 
/--II 

i * SA 

6 7 6 9 1" II I2 

number of relations in the cptq (i) 

Figure 4: Trade-off between Plan Execution Time a~1 OJ)f.illliza(.iorI (:ost: (i) right-deep, (ii) bushy 

The main contribution of this paper is to assure 
tractability through the use of non exhaust,ive search 
strategies. For this purpose; we extended randomized 
strategies for parallel optimization, and demonstrated 
their effectiveness. 

Contrary to previous works, our results show clearly 
that parallel query optimization should not imply 
restricting the search space to cope with the additional 
complexity. We showed that this may lead to missing 
better plans. It is essential to keep the search space 
large and to control the search strategy to assure 
tractability. Combining bushy search spaces with 
randomized strategies is the best solution, when DP 
becomes intractable. 

References 

[BCVSl] B. Bergsten, M. Couprie, P. Valduriez: “Pro- 
totyping DBS3, a Shared-Memory Parallel Database 
System”, PDIS 1991. 

[EDSSO] EDS Database Group: “EDS Collaborat- 
ing for a High-Performance Parallel R&rtioual 
Database”, ESPRIT Conf., Brussels 1990. 

[GHK92] S. Ganguly, W. Hasan, R. Krishnamurty: 
“Query Optimization for Parallel Execution”, SIC- 
MOD 1992. 

[GV92] G. Gardarin, P. Valduriez: “ESQL’L:. an Ex- 
tended SQL2 with F-logic semantics”, IEEE Dais 
Engineering 1992. 

[HS91] W. Hong, M. Stonebraker: “Optimization of 
Parallel Query Execution Plans in XPRS”, PDIS 
1991. 

[IC91] Y.E. Ioannidis, Y. Cha Kang: “Left-deep vs. 
bushy trees: an Analysis of Strategy Spaces and 
its Implications for Query Optimization”, SIGMOI) 
1991. 

-. -O- -- S,$ 

-+--- Dr 

5 6 7 n v 111 II 12 

number of d&mm in tha query (ii) 

[JKK!)O] J. Jorgensen, S.M. Kelictt,, N.(:. King: “l’ort- 
folio Club ExJ>erimental Model”, EI)S Rrport 
ElXDD.Il1.0005, Dec. 1990. 

[J<B%Hfi] R.. Khislmamurty, II. Boral, C. Zauiolo: “Op- 
tillliz;r(.ion of Nonrocursivc Queries”, VLDB I!)X(i. 

[LV!)l.] K.S.G. Laiizelottc:, 1’. Valdurif?r: “E:xtc~ricliug the 
Search Strategy in a Query Optimizer”, VLl)B l!)!)l 

[LVZ92] R..S.(:. Lanzelot~ta, I’. Valduriez, M. %:iil.: “Op- 
Iitnization of Ol)j~~ct,-0ri(!ilt,ccl R.t~cursivc~ Qilfbric3 us- 
ing (!osf.-~~giil.rollr?il Strategies”, ,Sf(;MOfI 1!1!U. 

[MS7!)] (:.I,. M onma, J.B. Sidney: “Stqut~uciug wiUl 
st?rit!s-parxll~~l prt:ct&urtr coust,raiul.s” , Mnllr. OI>f,r’. 
Rw., 4 1!)7!). 

[SD!)O] D. A. Schneider, I). J. DaWil.t,: “‘lt:rtl~~~ll~~ itt 
Processing Complex Joiu Queries via Jlrwhiug ill 
MultiJ)roct:ssor Database Marhiut~s”, VLIIII I!)!N. 

[Se791 P.G. Selingcr t:t al.: “Accesq lJal.l~ S&d.h 

in a R.c:lat,ional Dalabasa Managt:m~~nt Sysl,c*rll”, 
,SIC:MOil 1!)7!). 

[SW~!)] A. Swairii: “Ol’t,irrlix;rl.ioII of I,argc: Join Qu&*s: 
conrbiuiug Heuristics au0 C!o~ill)iua~,orii~l ‘I;&- 
niques”, S’IGMOD l!)N9. 

[TL91] K-J,. Tan, JI. LII: “A Note on tht! Strategy .Spac(‘ 
of Multiway Join Query Optimization Problt~lll iI1 
Parallc~l Systems”, SId’MOD 1!1!)1. 

[VG84] P. Valduriaz, (;. Gnrdariu: “Joiu and Sl*mi- 
join Algorit,hms for a MuICiprocossor Dalab;Ly(* Ma- 
chine”, ACM TODS, Vol. 9, No. I, 1984. 

[Za!)O] M. %&it: “Access Method Self!ction iu a t’arall(*l 
Dat,abase System”, Marrtcr Tl~..csi.~, I1uivc.rsit.y of 
Paris 6, September 1990. 

[ZZB!):)] M. Ziaue, M. Zai?,, P. Borla-SalarneL: “J’arnll(~l 
Query I’rocc!ssiug in DHS3”, PDIS 1!)!)3. 

504 


