
Extending the Search Strategy in a Query Optimizer*

Rosana S. G. Lanzelottel, Patrick Valduriez
INRIA - Rocquencourt

78153 - Le Chesnay cedex - France

Abstract
In order to cope efficiently with simple or
complex queries as well as different
application requirements (e.g., ad-hoc
versus repetitive queries), a query
optimizer ought to support an extensible
search strategy that can ideally reduce fo
enumerative, randomized or more recent
genetic search algorithms. In this paper,
we give a solution to the extensibility of
the query optimizer search strategy. This
solution is based on the object-oriented
modeling of the query optimizer, where the
search space and the search strafegy are
independently specified. It is illustrated by
the application to different search
strategies. This modeling facilitates the
specification of assertions that enforce the
successful termination of the search process

1. Introduction
Query optimization refers to the process of

producing an “optimal” execution plan, for a given
query, where optimality is with respect to a cost
function to be minimized. This is made difficult by
the necessary trade-off between optimization cost
and quality of the generated plans (the latter
translates into query execution cost). A “high”
optimization cost may be acceptable for a
repetitive query since it can be amortized over
multiple executions. However it is not practical for
ad-hoc queries that are executed only once. The cost
of optimizing a query is mainly incurred by the
investigation of the solution space for alternative
execution plans. Typically, these plans are
abstracted in terms of processing trees
[Krishnamurty86] to capture in a compact way the
aspects that are essential for cost estimation and
optimization.

As the solution space gets larger for complex
queries, the search strategy that investigates
alternative solutions is critical for the

optimization cost. Traditional query optimization
uses an enumerative search strategy which
considers most of the points in the solution space,
but tries to reduce the solution space by applying
heuristics. The. System R optimizer [Selinger79]
exemplifies this approach by restricting the
solution space to binary processing trees and using
dynamic programming for searching. Enumerative
strategies can lead to the best possible solution, but
face a combinatorial explosion for complex queries
(e.g., a join query with more than ten relations)
IIbaraki841. In order to investigate larger spaces,
randomized search strategies have been proposed
to improve a start solution until obtaining a local
optimum. Examples of such strategies are
simulated-annealing (Ioannidis871 and iterative-
improvement [Swami88]. With the same objective,
genetic search strategies (Goldberg891 can be
applied to query optimization, as a generalization
of randomized ones [EibengOl. Randomized or
genetic strategies do not guarantee that the best
solution is obtained, but avoid t’he high cost of
optimization. As an optimizer might face different
query types (simple vs. complex) with different
requirements (ad-hoc vs. repetitive), it should be
easy to adapt the search strategy to the problem,
which implies some form of extensibility.

Extensibility in query optimization has been
studied in the framework of extensible database
systems IGraefe87, Lohman881. Extensible query
optimizers have primarily focused on adapting to
extensions of the search space (e.g., new features of
the database language or physical storage system).
However, they have not stressed the extensibility
of the search strategy. In particular, it is difficult,
if not impossible, to implement randomized or
genetic strategies in such extensible optimizers.
The main reason is the adoption of a rule-based
approach IFreytag871, which is appropriate for
query rewriting (e.g., using algebraic restructuring
rules) but inconvenient for specifying the search
strategy, which is essentially procedural.

* This work was partially funded by the Esprit project EDS.
1 Visiting INRIA on leave from the Pontificia Universidade Cat6lica do Rio de Janeiro (WC-RIO).

Proceedings of the 17th International
Conference on Very Large Data Bases

363 Barcelona, September, 1991

In this paper we give a solution to the
extensibility of the search strategy in a query
optimizer. This solution has three important
aspects: the independence of the search strategies
from the search space, the viewing of query
optimization as a particular case of a search
system, and the object-oriented modeling of query
optimization search systems to gain extensibility
of both the search space and the search strategy.
This is illustrated by modeling within the same
framework different enumerative, randomized and
genetic search strategies, Furthermore, we show
how the search strategies thus produced can be
controlled in the sense that successful termination
can be enforced by assertions. The isolation of the
search strategies from the search space makes the
solution compatible with that of [Valduriez891 and
thus applicable to more general database
programming languages which can be deductive or
object-oriented [Lanzelotte901. However, for
simplicity and without loss of generality, we limit
ourselves to relational queries.

The rest of the paper is organized as follows. In
Section 2, we model the search space, which
describes the query optimization problem and the
associated cost model. In Section 3, we view query
optimization as a generic search problem and
introduce a class hierarchy to model search
strategies. These two class hierarchies are the
building blocks for the optimizer. In Section 4, we
illustrate the use of the previous classes in
specifying different search strategies. In Section 5,
we show how the behavior of the generated search
strategies can be controlled by means of assertions.
Section 6 concludes and indicates the status of a
prototype that implements this solution.

2. Modeling the Search Space
In this section, we introduce the optimization

problem following the model of [Krishnamurtyllcjl
for relational query optimization. In particular, we
model the search space independently of the
optimization algorithms and related heuristics.
Therefore, a query execution plan is modelled as a
processing tree which captures all the
optimization decisions for executing the query, e.g.,
join ordering, join algorithms, etc. In order to keep
this section short, we limit ourselves to conjunctive
select-project-join queries. After extending the
definition of [Krishnamurty861, we present the
operations to manipulate processing trees and

Pmceediigs of the 17th International
Gmfemnee on Very Large Data Bases

incorporate them within a SearchSpace class
hierarchy.

2.1. Processing Trees

A processing tree (PT) is a labelled binary tree
where the leaf nodes are relations of the input
query and each non-leaf node is a temporary
relation. Different from [Krishnamurty861, we
consider a temporary relation to be materialized
only when explicitly indicated. Thus, we are able
to model pipelined and non-pipelined joins with
the same binary PT. This removes the need for n-
ary nodes to model pipelined joins and facilitates
the uniform specification of operations on PTs.

A join node is a non-leaf node of a PT that
captures the join between an outer join node and an
inner join node. The outer join node corresponds to
the operand relation from which tuples are
retrieved first by the join algorithm. The inner join
node corresponds to the operand relation from
which tuples are retrieved next, possibly using join
values of the outer relation. If there is no join
predicate connecting the outer join node to the inner
join node, the join reduces to a Cartesian product.
The distinction between the two operand relations
is important because some join cost formulas (e.g.,
nested loop join) are not symmetric with respect to
the inner and outer relations [Selinger791. We
illustrate these definitions with the following
query:

Select * From Rl, R2, R3 Where
Rl.A=RZ.A and R2.B=R3.B and Rl.CclOO

Figure 1 shows two different PTs for the sample
query. We always represent the outer relation as
the left child of a join node and the inner as the
right one.

R3

Rl iC2

P
A4 il

R3 Rl R2

Figure 1: Two PI’s for the sample query

The inner join node reduces to a base relation if
the optimizer does not investigate bushy PTs (e.g.,
the second one in Figure 1 j. The ability of changing
the type of inner to cope with bushy or non-bushy
PTs, as well as with PTs involving Cartesian
products or not is called adaptability of the search
space in [Ono901.

364
Barcelona, September, 1991

2.2. Operations on PTs

The optimization process consists essentially in
building and modifying PTs. We now describe the
operations on PTs, that constitute the basic actions
of a query optimizer which are controlled by its
search strategy.

We call PT generation the process of successively
building join nodes. A step in this process, called
expansion, is to connect a PT to a new node by
adding a relation (see Figure 21. A PT is complete
when its root join node involves all the operand
relations of the input query (e.g., j2 and j3).
Conversely, a PT is incomplete when it does not
capture at least one operand relation,

P

A

expand jl
P (add R3 as inner?

ti
p

R3

R1 R2 R1 R2

Figure 2: Expanding a join node
Randomized search strategies require the

ability of applying transformations to complete
PTs to generate neighbor PTs (which are also
complete PTs). This phase is referred to as PT
modification. Examples of transformations are the
exchange of two relations inside a PT [Swami88,
Ioannidis901. Our model for M’s is appropriate for
implementing transformations, because we can
distinguish inside each join node the incremental
part added by an expansion (i.e., the inner part).
Then, when transforming a PT, it is not necessary to
rebuild it completely.

Transformations can be specified with rules as in
transformation-based optimizers iFreytag871. The
proposed definition of join node enables to use the
join operator as a recursive functional symbol for
describing PTs in a syntactical way. Thus, it is the
basis for specifying rewrite rules. For example, join
node j2 of Figure 1 is specified as
join(join(Rl,R2),R3). The left join exchange rule of
[IoannidisBO], which is illustrated in Figure 3 ((a
join bl join c + (a join c) join b),
(join (a, b),c) 4 join (join (a, c), b).

is written as join

R2 Rl R2 R3

Figure 3: Transforming a M’

Pmceediigs of the 17th International
Conference on Very Large Data Bases

The basic actions in genetic strategies are
crossover and mutation. A crossover consists in
selecting two (the parents) from a population of
complete PTs and generating two offsprings (the
descendants) according to some principle (e.g., by
merging characteristics of the parents). The
individuals to be crossed are chosen at random, but
the choice is biased by their fitness. The fitness is
related to the function to be optimized (i.e., the
cost function). Thus, new generations are expected to
contain better individuals than the previous ones,
because they are built from the features of selected
parents. For example, consider a query involving 10
relations and two non-bushy PTs a and b
represented by their sequences of relations:

a = R9 R8 R4 R5 R6 R7 Rl R3 R2 R10
b= R8 R7 Rl R2 R3 RlO R9 R5 R4 R6

The partially matched crossover operator
(called PMXi is one possible crossover operator
[Goldberg89]. It consists in choosing at random two
points in the sequences corresponding to the
individuals. Two descendants are generated such
that the central sections (inside the two points) are
exchanged and the other relations are exchanged
accordingly. Then, PMX applied to individuals a
and b produces two descendants a’ and b’.

a’= R9 R8 R4] R2 R3 RlO] Rl R6 R5 R7
b’= R8 R7 Rl t R5 R6 R7 t R9 R2 R4 R3

PMX or other crossover operators can be specified
by means of functional syntactical transformation
rules. Mutations may also come, when generating
the new individuals, with a small probability (as
in Nature). A mutation applies to a unique
individual and has the same nature of
transformations in randomized strategies. The
incremental nature of PT nodes are also important
for efficiently implementing crossover actions.

2.3. Search Space Class Hierarchy

The specification of the optimization search
space is influenced by the input query and the
nature .of investigated PTs (i.e., bushy or not,
involving Cartesian products or not). Figure 4 shows
the SearchSpace class hierarchy. In the graphical
representation of class hierarchies throughout this
paper, the name of the class and its attributes are
shown inside the ovals. The attached methods are
shown outside, The type of an attribute or of the
returned value from a method is denoted as : type
(when the type is a set, it is denoted as (type-of-
element)). Methods not in bold are deferred, i.e.,

365 Barcelona, September, 1991

they are actually implemented at a lower-level
class (e.g., method phytranslate is deferred at the
SearchSpace class level and actually implemented
at the spjQuery class level). An arrow between two
classes is for inheritance (“inherits from”).

bushy0: boolean
cartesian(): boolean
phytranslate0: (State]
expandBtate): (State]
transform(State): State
crwsover((State)): (State)

Figure 4: The Search Space class hierarchy
Class SearchSpace is specialized to conform to

different types of input queries (e.g., relational or
object-oriented ones). Some of the attached
methods implement the basic operations on PTs
(i.e., expand, transform and crossover). A method
phytranslate is attached to any class that
specializes the SearchSpace class. It implements
the translation of the input query to the physical
database schema, stored in attribute phyEnt, that
is a set of subparts of the input query used when
building PTs. A subpart is an object of the State
class, whose hierarchy is shown in Figure 5.

cost0 float
cardO: int
goal0: boolean
equivalent(State): boolean
s&Relations& (relation)

(NewJoinAlgorithm\ / J”‘natr.= ,

\ /
sne: strmg
order: strinn

cosli): float

Figure 5: State class hierarchy

Class State is specialized by the Relation class,
whose objects are the individual relations of the
input query (together with selection predicates),
and the Join class, whose objects are the generated
PT join nodes. From the previous discussion, an
instance of the Join class has attributes outer and
inner of type State (if only inners of type Relation
are allowed, bushy M’s are not investigated). Class
Join can be further specialized to cope with several
join algorithms (e.g., NewJoinAlgorithm),
attributes specific to a given environment (e.g.,

Procfxdings of the 17th International
Conference on Very Large Data Bases

JoinSiteOrder), the materialization or pipelining
of intermediate results, etc.

In [Lanzelotte9lbl we model the search space for
object-oriented databases. There, the Join class
corresponds to the implicit join (i.e., due to the
connection between ‘objects and their sub-objects),
which is implied by the database schema. Explicit
joins due to the occurrence of join predicates in the
query are modelled as a specialized class.

For simplicity, in the rest of this paper, we
adopt the definition of Join that corresponds to the
Join class in Figure 5. It models a pipelined nested-
loop join between the outer and the inner relations.

3. Query Optimization: a search problem
To establish the framework for modeling search

strategies, we view the query optimization
problem as a search problem in the most general
sense. In this section, we propose an object-oriented
modeling of search systems through a class
hierarchy which can be easily extended to support
various query optimization search strategies. We
first introduce an enumerative search method
which is further specialized to implement
randomized and genetic strategies. Doing so we are
able to identify common aspects of several search
strategies and to specify them separately from
other features of a query optimizer (e.g., the cost
model). The resulting modeling is powerful enough
to allow the easy implementation of different
known optimizers within the same framework as
well as the dynamic change of the search strategy,
as suggested in [Ioannidi&Ol.

3.1, Object-oriented Modeling of Search Systems

To formulate a search problem the following
elements are required [Shapiro87]:

l states, which are configurations of the objects
relevant to the problem; whether a state
describes the problem totally or partially
constitutes a design decision in a search
problem; distinguished states are the initial
state and goal states

l actions that, when applied to one state,
generate a set of successor states
This framework applies to query optimization in

two different ways. In PT generation, the initial
state is constituted by the relations and predicates
from the input query together with related schema
information, states are join nodes, an action is an
expand method and goal states are join nodes that
correspond to complete PTs (e.g., j2 and j3 in Figure

366 Barcelona. September. 1991

1). In PT modification, which occurs in randomized
and genetic strategies, states are complete IQ, an
action is a transform or a crossover method and the
goal description involves a stop condition based on
specific parameters of the search strategies (e.g.,
time constraint in iterative-improvement,
temperature in simulated-annealing or number of
generations in genetic strategies).

3.2. A Class Hierarchy for Enumerative Search

In enumerative strategies, several states are
successively inspected for the optimal solution
(e.g., by breadth-first, best-first or depth-first
search). The SearchStrategy class hierarchy
shown in Figure 6 grasps the essence of enumerative
strategies.

search&pace): State
setInitState(Sspace): (State)
stopCondO: boolean
setNextState0: State
action&pace): (State)
optimalO: State

prune((State)I: (State)

stopCond 0: boolean stopCond 0: boolean
aetNextState0: State setNextState0: State
action&pace): (State) action6spacek (State)
pnme((State)): (State) prune ((State)): State

Figure 6: Search Strategy class hierarchy for
enumerative strategies

Algorithm 1 implements the search method of
the enumerative class, that performs the
generation of PTs. It is based on a generic branch-
and-bound search strategy [Papadimitriou82]. The
other methods used within its body constitute the
extensibility primitives. They capture the
properties that, when modified, change the
behavior of the search strategy. By overloading
them, the same enumerative algorithm can be used
for implementing different search strategies, as
shown in Section 4. In the specification of the
methods and extensibility primitives, we denote a
method or attribute of an object or a set of objects by
qualifying it with the corresponding variable name
(e.g., currentgoal). We use capital letters for

beginning set-valued variable names and small
letters for single-valued ones. The signature of a
method determines the class to which it is
attached and type of the returned value (e.g.,
class::methodO : returntype).

An enumerative search strategy is first
characterized by the choice of the next state to
apply an action on, performed by the setNextState
method, which determines in which way the
states are investigated. If its implementation is
such that the least recent state is chosen, then the
search strategy is breadth-first. If it chooses the
most recently generated state, then it implements
depth-first search. The method action decides of a
number of successors to be generated. Heuristics are
used to discard bad states, which are recognized by
comparison with equivalent ones and pruned from
the set Succ of successor states. Pruning is a feature
of the so-called branch-and-bound algorithm,
which is a variant of the enumerative search one.

Algorithm 1: Enumerative (branch-and-bound)

enumerative::search (Sspace: SearchSpace): State
begin

Open :P 8etlnitState (Sspace);
while not stopcond ()
begin

current :I aetNextState 0;
Open :I Open - (current};
if current.goal ()
then Goal := Goal u {current}
else begin

Succ :- action (Sspace);
SUCC := prune (Succ);
Open :I Open u Succ
end

end;
return optimal ()

ad

Figure 7 shows the states generated by
Algorithm 1 implementing the breadth-first
search strategy of System R [Selinger79] for the
sample query.

r-l j7

Rl Ifi R3

Figure.7: The states generated for the sample query
by System R

Puxedings of the 17th International
Conference on Very Large Data Bases

367 Barcelona, September, 1991

search6space): State
setInitState(Sspace): (State)
stopCondO: boolean
setNextState0: State

search(Sspace): State
MInitState...

setNextState.. .

SetInitState... setInitState... SetInitState...
.
acceptAction.. acceptAction.. . acceptAction.,

Figure 8: Class Hierarchy for implcmcn ting Randomized and Genetic Search Strategies

3.3. Class Hierarchy for Randomized Search

While enumerative search strategies consider
the state space as a whole, randomized ones
concentrate on searching a local optimal solution
around some particular points. They consist of two
steps. First, one or several start solutions are
obtained by depth-first search, possibly using some
heuristics. Second, the start solutions are improved
until local optimal solutions are obtained. In this
second phase, the search system framework is such
that each state matches the goal description and
an action is rather a transformation of a goal state
into another goal state. Neighboring solutions are
randomly obtained by applying transformations. A
local optimal solution is the best among all the
neighboring solutions. Randomized strategies
involve the definition of several parameters (the
number of transformations to apply, the criterion
for accepting a transformation, the criterion for
considering a solution to be a local optimal one,etc).

Genetic strategies start with a population of
solutions, from which new generations are built by
successively applying crossovers to individuals of
the original population. A crossover generates two
new individuals obtained by merging
characteristics of the parents. If mutations are
allowed, then an action in a genetic strategy is a
crossover possibly followed by a mutation.
Compared to other strategies, the genetic one is
easily adaptable to the problem: by changing some
parameters (e.g., the number of generations), the
same genetic algorithm can be customized to get
faster to an acceptable solution or to spend a longer

time to get to a better solution. Randomized
strategies can be modelled as particular cases of a
genetic algorithm (Eiben901. It is sufficient to
reduce the size of the population to one and to
produce new individuals only by mutations.

Figure 8 presents an extension of the class
hierarchy for a search system that supports
randomized and genetic strategies. Now, an action
corresponds to the application of a transformation
or a crossover to complete PTs.

81gorlthm 2: Randomized (abstract genetic algorithm)

rndomired::search(Sspace:SearchSpace) : State
egin

8etlnitState (&pace);
while not stopCond ()
begin

nmoves :I 0;
while IocalStopCond ()
begin

Current := select 0;
Succ :I actlon (Sspace);
if acceptAction (Succ)
then Goal := (Goal - Current) u Succ;
nmoves :I nmoves + 1

end;
setNextState ()

end;
return optimal ()

Algorithm 2 implements the generic control
strategy for randomized strategies. It is based on
the Abstract Genetic Algorithm proposed in
[Eiben90] for modeling at the same time the genetic
and simulated-annealing strategies. The methods
in bold are the extensibility primitives for them.

Proceedings of the 17th International
Conference on Very Large Data Bases

368 Barcelona, September, 1991

4. Customizing the Search Strategy
In this section we show how to customize the

search strategy by overloading the extensibility
primitives introduced by the SearchStrategy class
hierarchy. They capture the common aspects of
various known search strategies. The advantages of
this approach are twofold. First, an already
implemented search strategy can be easily tuned or
modified. The motivation for this is that, even to
well settled strategies (e.g., simulated annealing),
several algorithms have been proposed
iIoannidis87, Swami88, Ioannidis901 and the
differences between them go beyond the simple
setting of parameter values. Second, new search
strategies can be implemented with little effort.

4.1. Search Strategies for Generating FTs

To customize the search strategy for generating
I%, one must specify the methods attached to the
enumerative class and its subclasses. These are:

setInitState, stopcond, setNextState, action and
prune. They have been used in the implementation
of the search method shown in Algorithm 1. To
specify them, the extensibility primitives
associated to the instances of the Join class are
used, which refer to the properties of join nodes.
Examples of this is j.setRelationsO, that returns
the set of all the relations included in a join node j,
and j.equivalent(k), which returns true if join node j
is equivalent to k (according to some criterion, e.g.,
the set of contained relations).

Table 1 summarizes the specifications of the
extensibility primitives for PT generation. Three
cases are discussed here: the implementation of an
enumerative branch-and-bound strategy, the one in
[Selinger79] and the depth-first generation of a
single or several PTs, which constitute the start
solution for randomized or genetic strategies. In
this table, we refer to the set of all relations of the
input query by Relation.

Branch-and-bound Augmentation Heuristic Augmentation Heuristic
(one PT) (a population of PTs)

SetInitStatc return Sspace.phyEnt j:=Sspace.phyEnt.leastCardO return Sspace.phyEnt
(Sspace) phyEnt := phyEnt - {j)

I return (jl
stopcond (Open = 0) (Open = 0) (Open = 0)

setNextState jeOpen I jeOpen I je Open 1 (j=Open.mostRecentO

j=Open.leastRecentO j=Open.mostRecentO A card(j.setRelationsO > 1)) v

(j = Open.leastCardO)

action(Ssp) Ssp.expand(current) Ssp.expand(current) Ssp.expand(current)

prune CJ) 1 j E J 1 Wj’ E JNj’.equivalent(j) A j E J 1 j=J.leastCardO j E J 1 j=J.leastCardO

j.costO c j’.costOl)

Table 1: Extensibility primitives for PT generation

In the enumerative strategy of [Selinger79], as
all the relations are used for starting PTs, the set
Open is initialized with all of them. Search stops
when no more open states exist . The extensibility
primitive stopCond tests whether the Open set is
empty. The search strategy proceeds by breadth-
first. Thus, setNextState is specified using a
method leastRecent on the Open set. Pruning
eliminates expensive states that are equivalent to
less expensive ones, where equivalence is related to
the contents in terms of relations.

We now show that the same set of extensibility
primitives presented for a branch-and-bound
enumerative search strategy can be overloaded in
order to transform Algorithm 1 into an algorithm

Proceedings of the 17th International
Conference on Very Large Data Bases

369

that generates only one solution by depth-first
search. We model the Augmentation Heuristic
[Swami89], in which the relation with the least
cardinality is chosen for starting a PT. This
relation is eliminated from the phyEnt set, so that
further calls to search will choose other relations.
Compared to the previous version of setInitState,
only one join node is generated, that corresponds to
the relation with least cardinality. A depth-first
search strategy is characterized by choosing the
most recent state as the next one to expand. Pruning
reduces the successors to only one state. Several
heuristics can be used for choosing the state to be
kept (five such heuristics have been proposed in
[Swami89]1. One possible heuristic is to keep the

Barcelona, September, 1991

state that corresponds to the most selective join.
This means that the intermediate result is the one
of least cardinality.

In the case of a depth-first search strategy for
generating a population of PTs, as needed in genetic
strategies, all the relations are used for starting
PTs. Actions proceed by depth-first search until one
complete PT starting with each different relation
is genera ted.

4.2. Randomized Strategies for Transforming PTs

Table 2 shows the specifications of the
extensibility primitives of Algorithm 2 to
implement either Iterative Improvement,
Simulated Annealing or a genetic strategy.

4.2.1. Iterative Improvement

Iterative Improvement is characterized by the
choice of several start states, one for each run (the
inner loop in Algorithm 2). Both setInitState and
setNextState generate one start solution (i.e., a
complete PT) by calling AH.search, which
implements the generation of one PT by
Augmentation Heuristic. Each time AHsearch is

called, a new PT is depth-first generated starting
at a different relation. For each start state, which
is the unique element of the Goal set, neighbor
states are obtained (i.e., by applying actions,
which correspond to transformations) until a local
mininum is reached. The modified PT replaces the
original one if the acceptAction method returns true
(i.e., if the cost of the transformed PT is less than
that of the original one). The method stopcond
corresponds usually to a time constraint LSwami89X.
A local minimum is defined as the least costly
solution in the neighborhood of the current state.
Then, to guarantee that a local minimum was
reached, all the neighbors of the current state
should be tested, which would be very expensive.
We simplify the criterion, by setting to zero the
counter of transformations, nmoves, every time the
current state is replaced by a neighbor conditioned
by acceptAction (i.e., the replacement of the
current state implies that the neighborhood has
changed). Then, the method 1ocalStopCond can be
related to the number of neighbors of a state. This
has been estimated as card(phyEnt) * k (factor k
has been proposed to be equal to 1 in [Swami891 and
to 16 in [Ioannidis901).

Iterative Improvement Simulated Annealing Genetic Algorithm
setInitState Goal := AH.searchtSspacel Goal := AH.search(Sspacel Goal := AH*.search(Sspacel

(Sspace) temp := 2 l s.costO numGen := 0
stopcond elapsedTime > maxTime tempclh numGen 2 maxGen

Goal unchanged for 4 stages

IocalStopCond nmoves > card(phyEnt)*k nmoves > card(phyEnt)*k nmoves > card(Goal)/2
select Goal Goal Goal.2randomFitncssO

action(Ssp) Ssp.transform(Current) Ssp.transform(Current) Ssp.crossover(Current)

acceptAction (s E Current) (s’e Succ) (s E Current) We Succ) true

(Succ) (s’.costO c s.costO) (s’.costO < s.costO) v (s’.costO >
if true then nmoves := 0 s.costO A Prob (temp,s,s’))

SetNextStatc Goal := AH.search(Sspace) temp:=0.95*temp numGen:=numGen+l

Table 2: Extensibility Primitives for implementing randomized and genetic strategies

4.2.2. Simulated Annealing the system has frozen). It is important to . .
Contrary to Iterative Improvement, all the

stages in Simulated Annealing (the inner loop in
Algorithm 2) are performed over the same start
state. Besides nmoves, the system has a
temperature property, temp, that is set by
setInitState and reduced by setNextState. The
method stopcond, which is the global stop
condition, is related to the temperature and not to
the elapsed time (it corresponds to the fact that

parameterize this constraint, because several
authors provide different definitions for it
[SwamiSS, Ioannidis901. To precise “unchanged for 4
stages”, some temporary variables are needed that
are not shown here. The specifications of
1ocalStopCond and action are the same as in
Iterative Improvement. The criterion for accepting
a transformation is different, because transformed
PTs with higher cost than the original PT are.
accepted with some probability. Then, the method

Proceedings of the 17th International
Conference on Very Large Data Bases

370 Barcelona. September, 1991

acceptAction uses Prob, which is a boolean function
that returns true with a probability that depends
on temp and the costs of the compared states,
usually e ~~s’~cost~s~cost~~temP. Accepting bad moves
corresponds to perform what is called a hill
climbing: on the other side of the hill there may
exist a better solution.

4.2.3, Genetic Algorithms

To implement a genetic algorithm, a population
is first generated by calling AH*.search, which
implements Augmentation Heuristic for generating
a population of PTs. Unlike with randomized
strategies, where the Goal set contains a unique PT,
it contains several PTs. Primitive stopcond is
related to a parameter maxGen, which specifies
the number of generations to be produced. The
number of generations numGen is increased each
time a new generation is produced, which is
performed by the inner loop of Algorithm 2. This
stops when a new generation with the same number
of individuals as the previous one has been
produced. The selection of the parents for crossover
is performed by select, usually by applying a
random function biased by the fitness of
individuals Le., the ratio between their costs and
the total cost of all the individuals). An action in
this case is a crossover performed by any available
operator, which generates two individuals of the
new generation from two selected parents from the
precedent generation. The new generation always
replaces the previous one.

5. Enforcing Successful Termination
When the search strategy is extensible, it is

essential to assure that the optimizer behaves as
expected and that the process will end. The
extensibility primitives that we proposed can also
be used for specifying asserfions that provide a
form of monitoring the behavior of the optimizer.
The introduction of some form of metacontrol by
assertions depends on the implementation
environment of the optimizer. In any case, it is
important to be able to make explicit the condi Cons
that guarantee the success of the optimization
process.

To exemplify, we state the assertion for
successful termination. Successful termination is
attained if, when the search stops, at least one
goal state has been obtained. The control of the
optimization process is implemented by the search
algorithms. In the two of them, a step forward is
performed by the action method, that is

Proceedings of the 17th International
Conference on Very Large Data Bases

responsible for generating successor states from the
current state. Successful termination is, then,
characterized by one of two conditions: either when
stopcond is met there exists at least one state that
matches the goal description (i.e., a complete PT)
or there exists an open state that is still liable to
an action. We state formally the assertion for
successful termination:

11 (stopCondO A Goal#O) v (action(Sspk())
We discuss separately the assertion in the case

of each one of the algorithms.

5.1. Enumerative Strategies

In PT generation by Algorithm 1, the assertion
can be rewritten as:

11 (Open=Or\ Goal&) v (Ssp.expandkurrent)r[))
The methods attached to the Search Space class

hierarchy can also be specified in a high-level
way, for example:

Definition 1: A PT is generated by successively
applying expand which is defined as
Sspace.expand(s) = (j E Join 1 j.outer = s A

j.inner e Sspace.setInners(s))

Recall that the definition of setInners, that
specifies the set of possible inners for a join node, is
referred to as adaptability of the search space
[OnoS)O]. Tn the following definition, we assume
that Relation is the set of all relations referenced
in the input query, Predicate is the set of join
predicates of the input query and an instance of
Predicate has an attribute relations that is the set
of relations referenced in the predicate.

Definition 2: Search space NX, in which bushy
PTs and PTs with Cartesian products are not
investigated, is characterized by the following
specification for seff nners
NXsetInnersW = (r E Relation 1

(s.setRelationsO u (r))s Relation A
(s.setRelationsO A (r)) = fl A

(3pe Predicate)((r)=p.relations-s.setRelationsO))

Definition 2 includes the disjointness criterion of
(Ono901, i.e., (ssetRelations0 A (rl = 0) besides the
requirements of a join predicate and a bound on,
setRelations (i.e., @setRelations u (r-1) c
Relation). In our implementation, as any set of
relations (i.e., of a State or of a predicate) is
implemented through a bit string, ,it is very
efficient to determine setInners.

371 Barcelona, September. 1991

The formalized assertions and the specifications
of the extensibility primitives are the basis for
proving the successful termination of the
optimization process. The proofs are not shown
here for space reasons (see Lanzelotte9lal for more
details).

5.2. Randomized Strategies

In randomized or genetic strategies, Goal f () is
always true. A PT obtained by an action, which
corresponds to the transform or crossover methods,
should satisfy the same constraints that were
posed when generating PTs (this is referred to as
valid transformations in [Swami881). Analogously
to the expand method, the specifications of
transform and crossover require the setInners
definition.

5.3. Controlling the Behavior of the Optimizer

The ability to specify assertions for controlling
the behavior of the optimizer using the
extensibility primitives illustrates well their
power of abstracting the optimization problem.
Assertions can be used as a basis for an exception
mechanism, which is worth in two ways. Either an
exception means an error condition or it enables the
dynamic change of the behavior of a program,
which is useful in our context. For example, the
specifications of some extensibility primitives can
be changed during the optimization process to
conform to some unexpected configuration of the
input problem. An example is the possibility of
moving from a search space that does not admit PTs
with Cartesian products (NX) to one that does by
changing the definition of setInners. Another
example is to change the goal condition (usually
s.setRelationsO = Relation) to be also met in case of
non-applicability of the expand method during PT
generation:

II

s.setRelationsO = Relation v Ssp.expand(s) = 0
=a s.goalO

This goal condition prevents the optimizer from
investigating PTs with Cartesian products. The
search stops when the incomplete PTs which do not
involve Cartesian products have been generated.
Of course, the incomplete PTs must then be put
together to form the complete PTs, but this task
does not require any more search, unless the
optimizer considers features that influence the
execution time when commuting the operands of a
Cartesian product (e.g., the scqucnce order or the
site of the results).

Pmceedings of the 17th International
Conference on Very Large Data Bases

The proposed object-oriented approach matches
well the idea of using the violation of assertions as
exceptions. The dynamic change of the
extensibility primitives can be performed through
late binding. New subclasses can be specified where
the extensibility primitives are overloaded and
the dynamic change of behavior is obtained by
moving an object from one class to a subclass.

6. Conclusion

In this paper, we gave a solution to the
extensibility of the query optimizer search
strategy. This solution is based on the clear
separation between the search space and the
search strategies for which we provided an object-
oriented design in order to gain extensibility.
Therefore, we maintain high independence of the
search space from the optimization algorithms and
related heuristics. By viewing query optimization
as a particular case of a search system, we were
able to capture the extensibility primitives which
can be customized to generate various search
strategies. We illustrated our solution in specifying
enumerative search strategies with different
heuristics and three randomized strategies
(Tterative Improvement, Simulated Annealing and
genetic).

This approach can be useful in many ways.
Overall, we can use it to build an optimizer with
several search strategies, each one being best for a
particular class of queries. Thus, the search
strategy can be dynamically selected to achieve
the desirable trade-off between optimization cost
and execution cost for a given query. In the case of
an ad-hoc query for which a randomized strategy is
probably best, an “optimization budget” could be
assigned to the query (somehow by the “user” or the
compiler) in order to provide an upper bound for
optimization cost.

An important result was that the extensibility
primitives also provide a means for specifying
assertions that enforce the successful termination of
the optimization process. Unlike rule-based
optimizers, our approach insists on the procedural
specification of the control in search strategies.

To simplify our presentation, we limited
ourselves to relational queries, in fact, conjunctive
select-project-join queries. Thus, we were able to
reuse the model of processing trees
[Krishnamurty86] for specifying the search space.
To deal with more general queries such as object-
oriented or deductive queries, the same approach
holds providing that the search space is changed

372 Barcelona, September, 1991

(in [Lanzelotteglb] we extended this approach to
object-oriented queries).

The proposed solution has been validated at
INRIA by the implementation in C++ of an
optimizer prototype, as part of the EDS database
compiler [Bergstein I. The code corresponding to
the search space class hierarchy for TTs as dcfincd
in this paper consists of about 800 lines of code.
Another implementation of the search space class
hierarchy for coping with an object-oriented
database model and language was implemented
where 400 of those were replaced by 600 lines of
code. Two search strategies implementing the
branch-and-bound algorithm and Itcra tivc
Improvement incurred only 60 additional lines of
code each. These numbers are quite encouraging.
The prototype will, be enhanced with other
strategies and extended to cope with more general
cost models (e.g., considering the cost of evaluating
complex predicates). Overall, we plan to use it as
an experimental vehicle to measure the
effectiveness of randomized search strategies in
optimizing more complex (deductive, object-
oriented) queries.

7. Acknowledgements

The authors wish to thank Georges Gardarin,
Eric Simon, Mikal Ziane and the members of the
EDS project for their useful comments. They also
want to thank Mohamed Zait and Alexandre
Ribenboim for their contribution in the
implementation of the optimizer prototype.

8, References
[Bergstein Bergstein B., Couprie M. and

Valduriez P., “Prototyping DBS3, a Shared-
Memory Parallel Database System”, submitted
for publication, 1991.

[EibengO] Eiben A.E., Aarts E.H.L, and Van Hee
KM., “Global Convergence of Genetic
Algorithms: an Infinite Markov Chain
Analysis”, Proc. First Int. Workshop on Parallel
Problem Solving from Nature, Dortmund, 1990.

[Freytag Freytag J.C., “A Rule-Based View
of Query Optimization”, Proc. ACM SIGMOD
Conf., 1987.

[Goldberg891 Goldberg D.E., “Genetic Algorithms in
Search, Optimization and Machine Learning”,
Addison-Wesley, 1989.

iGraefe871 Graefe G. and Dewitt D.J., “The
EXODUS Optimizer Genera to?‘, Proc. ACM
SIGMOD Conf., 1987.

Proceedings of the 17th International
Conference on Very Large Data Bases

flbaraki841 Ibaraki T. and Kameda T., “Optimal
Nesting for computing N-relational joins”, ACM
TODS, vol. 9, n. 3, September 1984.

Poannidis871 Ioannidis Y.E. and Wong E., “Query
Optimization by Simulated Annealing”, Proc.
ACM STGMOD Conf., 1987.

(loannidis90J loannidis Y. and Cha Kang Y.,
“Randomized Algorithms for Optimizing large
join queries”, Proc. ACM SIGMOD Conf., 1990.

iKrishnamurty861 Krishnamurty R., Boral H. and
Zaniolo C., “Optimization of Nonrecursive
Queries”, Proc. 12th VLDB Conf., Kyoto, 1986.

[Lanzelotte90] Lanzelotte R.S.G., “OPUS: an
extensible Optimizer for Up-to-date database
Systems“, Ph. D. Thesis, Computer Science,
PUC-RIO, 1990, available at INRIA,
Rocquencourt, no TU-127.

[Lanzelotte9laJ Lanzelotte R.S.G. and Valduriez
P., “An Object-oriented Approach for Extensible
Query Optimization”, Proc. VII Journees Bases
de Don&es Avancbes, Lyon, 1991.

[Lanzelotte9lb] Lanzelotte R.S.G., Valduriez P.,
Ziane M. and Cheiney J.-P., “Optimization of
Nonrecursive Queries in OODBs”, submitted for
publication.

[Lohman881 Lohman G., “Grammar-like
Functional Rules for Representing Query
Optimization Alternatives”, Proc. ACM
STGMOD Conf., 1988.

[On0901 Ono K. and Lohman G,, “Measuring the
Complexity of Join Enumeration in Query
Optimization”, Proc. 16th VLDB Conf., 1990.

[Papadimi triou821 Papadimitriou C. H. and
Steiglitz K., “Combinatorial Optimization:
Algorithms and Complexity”, Prentice-Hall
Inc., New Jersey, 1982.

[Selinger79] Selinger P.G. et al, “Access path
selection in a relational database management
system”, Proc. ACM SIGMOD Conf., Boston, May
1979.

[Shapiro871 Shapiro S.C., “Encyclopedia of
Artificial Ifitelligence”, Wiley-Interscience,
New York, 1987.

[Swami881 Swami A. and Gupta A., “Optimization
of Large Join Queries”, Proc. ACM SIGMOD
Conf., 1988.

[Swami891 Swami A., “Optimization of Large Join
Queries: combining Heuristics and
Combinatorial Techniques”, Proc. ACM SIGMOD
Conf., 1989.

[Valduriez891 Valduriez P. and Danforth S.,
“Query Optimization in Database Programming
Languages”, Proc. Int. Conf. on Deductive and
Object-Oriented Databases, Kyoto, 1989.

373 Barcelona, September. 1991

