
Summary Management in P2P Systems

Rabab Hayek
Atlas team, INRIA and LINA,
University of Nantes, France

rabab.hayek@univ-
nantes.fr

Guillaume Raschia
Atlas team, INRIA and LINA,
University of Nantes, France
guillaume.raschia@univ-

nantes.fr

Patrick Valduriez
Atlas team, INRIA and LINA,
University of Nantes, France

Patrick.Valduriez@inria.fr

Noureddine Mouaddib
Atlas team, INRIA and LINA,
University of Nantes, France

noureddine.mouaddib@univ-
nantes.fr

ABSTRACT
Sharing huge, massively distributed databases in P2P sys-
tems is inherently difficult. As the amount of stored data
increases, data localization techniques become no longer suf-
ficient. A practical approach is to rely on compact database
summaries rather than raw database records, whose access
is costly in large P2P systems. In this paper, we consider
summaries that are synthetic, multidimensional views with
two main virtues. First, they can be directly queried and
used to approximately answer a query without exploring
the original data. Second, as semantic indexes, they sup-
port locating relevant nodes based on data content. Our
main contribution is to define a summary model for P2P
systems, and the appropriate algorithms for summary man-
agement. Our performance evaluation shows that the cost
of query routing is minimized, while incurring a low cost of
summary maintenance.

1. INTRODUCTION
Today’s information systems are facing two main prob-

lems. First, they host a large number of data sources that
are highly distributed, autonomous, and dynamic. Second,
modern applications generate huge amount of information
stored into the connected data sources, which become more
and more voluminous. Therefore, these systems need to
scale up in terms of the number of participants, as well as
in terms of the amount of shared data. In our solution,
we propose to combine the two paradigms: P2P and data
summarization.

While distributed systems such as database, integration
and parallel systems have reached their maturity and only
supported a limited number of users, P2P systems allow data
sharing on a world wide scale with many advantages like
decentralization, self-organization, autonomy, etc. Popular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

examples of P2P systems, e.g. Gnutella [16] and KaZaa [17],
have millions of users sharing petabytes of data over the
Internet. However, a major problem in the operation of
P2P systems as distributed systems is object locating. Ini-
tially, P2P search systems rely on flooding mechanism and
its variations. Though simple and robust, this approach suf-
fers from high query execution cost and poor query recall.
Many works on P2P systems have addressed the problem of
search efficiency, and proposed various techniques that can
be classified into four main categories: data indexing (e.g.
[1], [30]), data caching (e.g. [4]), mediation (e.g. [21], [28])
and network clustering (e.g. [3]). According to this clas-
sification, there are hybrid techniques such as caching data
indexes [8], or clustering a P2P network based on index sim-
ilarity [11].

So far, data localization has been the main issue addressed
in P2P systems, since their scalability is constrained by the
employment of efficient search techniques. However, nowa-
days we are asking the following question: with the ever
increasing amount of information stored each day into data
sources, are these techniques still sufficient to support ad-
vanced P2P applications? To illustrate, in a scientific collab-
orative application, a doctor may require information about
patients diagnosed with some disease, without being inter-
ested in individual patients records. Besides, a user in to-
day’s decision-support applications may prefer an approx-
imate but fast answer, instead of waiting a long time for
an exact one. Therefore, reasoning on compact data de-
scriptions that can return approximate answers like “dead
Malaria patients are typically children and old” to queries
like “age of dead Malaria patients”, is much more efficient
than retrieving raw records, which may be very costly to
access in highly distributed, massive databases.

In this work, we propose a hybrid search technique that
consists in building summaries (i.e. semantic indexes) over
data shared in a clustered P2P network (e.g. superpeer net-
work). Our summaries are synthetic, multidimensional views
with two main virtues. First, they support locating relevant
nodes based on their data descriptions. Second, they pro-
vide an intelligible representation of the underlying data,
and allow an approximate query processing since a query
can be processed entirely in their domain, i.e. outputs are
summaries.

This paper makes the following contributions. First, we

Figure 1: Summary Model Architecture

define an appropriate summary model for P2P systems. We
work in the context of superpeer networks, where a domain
is defined as being the set of a superpeer and its clients.
Then, we propose efficient algorithms for managing a sum-
mary in a given domain. We validated our algorithmic so-
lutions through simulation, using the BRITE topology gen-
erator and SimJava. The performance results show that
the cost of query routing, which is measured in terms of the
number of exchanged messages, is minimized while incurring
a low cost of summary maintenance.

The rest of this paper is organized as follows. Section
2 describes our summary model for P2P systems. In sec-
tion 3, we present our algorithms for summary management.
Section 4 discusses query processing in the context of sum-
maries. Section 5 gives a performance evaluation with a
cost model and a simulation model. Section 6 compares our
solution with related work. Section 7 concludes.

2. SUMMARY MODEL FOR P2P SYSTEMS
In this section, we first present our summary model archi-

tecture and the key assumptions adopted for building data
summaries in hybrid P2P systems. Second, we describe the
summarization technique that allows generating these data
summaries. Then, we formally define the notion of data
summary in a P2P network.

2.1 Model Architecture
Data indexes are maintained in P2P systems using one

of the following approaches. A centralized approach main-
tains a global index over all the data shared in the network,
and thus provides a centralized-search facility [18]. A hybrid
decentralized approach distributes indexes among some spe-
cialized nodes (e.g. supernodes), while a pure decentralized
approach distributes indexes among all the participants in
the network (e.g. structured DHTs, Routing Indices). Each
of these approaches provides a different trade-off between
the cost of maintaining the indexes and the benefits ob-
tained for queries. In our work, we have adopted the second
approach since it is the only one that exploits peer hetero-
geneity, which is a central key to allow P2P systems scaling
up without compromising their decentralized nature. The
architecture of our summary model is presented in Figure 1.
First of all, we assume that peers store and share structured
data, more specifically relational databases. Using a sum-
marization technique, each peer maintains a local summary
of its own database. Then, peers that belong to the same
domain, i.e. peers that are associated to the same superpeer,
cooperate to maintain a global (merged) summary over their

shared data. The set of global materialized summaries and
links between the corresponding domains, provide a virtual
complete summary, which ideally describes the content of
all data shared in the network. Peers that are willing to
cooperate in order to benefit from such a global summary,
are supposed to agree on a common, shared data represen-
tation. As described later in Section 2.2.1, summaries are
represented in a user-defined vocabulary. Thus, the het-
erogeneity of summary representations make difficult their
exploitation (e.g. summary merging operation in Section 3).

As introduced, our work mainly target collaborative data-
base applications that involve a distributed, huge amount of
semantically rich data. In such a context the assumption of
a common data representation, referred later as a Common
Background Knowledge (CBK), seems not to be a strength
constraint, since the number of participants is supposed to
be limited, and thus the agreement on a common descrip-
tion of data semantics is feasible. An example of a CBK in
a medical collaboration is the Systematized Nomenclature
of Medicine Clinical Terms (SNOMED CT) [19], which pro-
vides a common language that enables a consistent way of
capturing, sharing and aggregating health data across spe-
cialties and sites of care.

The next section briefly describes the summarization pro-
cess that generates summaries of relational databases with
interesting features, making it scalable in a distributed en-
vironment.

2.2 Summarization Process
A summarization process is integrated to each peer’s Data-

Base Management System (DBMS) to allow constructing
the local summary level of Figure 1. Our approach is based
on SaintEtiQ [12], an online linguistic approach for sum-
marizing databases. The SaintEtiQ system takes tabu-
lar data as input and produces multi-resolution summaries
of records through a two-step process: online mapping and
summarization. For illustration, consider the following rela-
tional database which is reduced to a single Patient relation
(Table 1).

Id Age Sex BMI Disease

t1 15 female 17 Anorexia
t2 20 male 20 Malaria
t3 18 female 16.5 Anorexia

Table 1: Raw data

2.2.1 Mapping Service
The SaintEtiQ system relies on Zadeh’s fuzzy set the-

ory [24] and, more specifically on linguistic variables [25]
and fuzzy partitions [26] to represent data in a concise form.
The fuzzy set theory is used to translate records according to
a Background Knowledge (BK) provided by the user. The
Background Knowledge BK is a priori built over the at-
tributes that are considered relevant to the summarization
process. In the above relation, the selected attributes are
age and bmi1. Basically, the mapping operation replaces
the original values of every record in the table by a set of
linguistic descriptors defined in the BK. For instance, with
a linguistic variable on the attribute age (Figure 2), a value

1Body Mass Index (BMI) attribute: patient’s body weight
divided by the square of the height.

Figure 2: Fuzzy Linguistic Partition on age

t.AGE = 20 years is mapped to {0.3/adult, 0.7/young}
where 0.3 is a membership grade that tells how well the
label adult describes the value 20. Extending this mapping
to all the attributes of a relation could be seen as locating
the overlapping cells in a grid-based multidimensional space
that map records of the original table. The fuzzy grid is
provided by BK and corresponds to the user’s perception of
the domain.

Thus, tuples of Table 1 are mapped into three distinct
grid-cells denoted by c1, c2 and c3 in Table 2. A priori, the
fuzzy label underweight provided by the BK on attribute
BMI, perfectly matches (with degree 1) range [15, 17.5], while
the fuzzy label normal perfectly matches range [19.5, 24] of
raw values. Besides, tuple count column gives the propor-
tion of records that belongs to the cell and 0.3/adult says
that adult fits the data only with a small degree (0.3). It is
computed as the maximum of membership grades of tuple
values to adult in c3.

Id Age BMI tuple count

c1 young underweight 2

c2 0.7/young normal 0.7

c3 0.3/adult normal 0.3

Table 2: Grid-cells mapping

The fuzziness in the vocabulary definition of BK permits
to express any single value with more than one fuzzy descrip-
tor and thus avoid threshold effect thanks to the smooth
transition between different categories. Besides, BK leads
to the point where tuples become indistinguishable and then
are grouped into grid-cells such that there are finally many
more records than cells. Every new (coarser) tuple stores a
record count and attribute-dependent measures (min, max,
mean, standard deviation, etc.). It is then called a summary.

2.2.2 Summarization Service
The summarization service is the last and the most sophis-

ticated step of the SaintEtiQ system. It takes grid-cells
as input and outputs a collection of summaries hierarchi-
cally arranged from the most generalized one (the root) to
the most specialized ones (the leaves) [12]. Summaries are
clusters of grid-cells, defining hyperrectangles in the multi-
dimensional space. In the basic process, leaves are grid-cells
themselves and the clustering task is performed on K cells
rather than N tuples (K << N).

From the mapping step, cells are introduced continuously
in the hierarchy with a top-down approach inspired of D.H.
Fisher’s Cobweb [22], a conceptual clustering algorithm. Then,
they are incorporated into best fitting nodes descending the
tree. Three more operators could be apply, depending on
partition’s score, that are create, merge and split nodes.
They allow developing the tree and updating its current
state. Figure 3 represents the summary hierarchy built from
the cells c1, c2 and c3.

Figure 3: Example of SaintEtiQ hierarchy

2.2.3 Scalability Issues
Memory consumption and time complexity are the two

main factors that need to be taken care of in order to guar-
anty the capacity of the summary system to handle massive
datasets. First, the time complexity of the SaintEtiQ pro-
cess is in O(K), where K is the number of cells to incorpo-
rate into a hierarchy of summaries. Here we note that, the
number of cells that are produced by the mapping service
depends only on the granularity and the fuzziness of the BK
definition. A fine-grained and overlapping BK will produce
much more cells than a coarse and crisp one. Besides, an
important feature is that in the summary algorithm, raw
data have to be parsed only once, and this are processed
with a low time cost. Second, the system requires low mem-
ory consumption for performing the summary construction
algorithm as well as for storing the produced summaries.

Thanks to these advantages (i.e. linear time complexity
and controlled memory consumption), we believe that this
system is scalable in a distributed environment, and promises
a successful integration in P2P systems. More details on the
summary construction/maintenance costs are presented in
Section 5.1.1

2.3 Summary Representation
In this section, we introduce basic definitions related to

the summarization process.

Definition 1. Summary Let E = 〈A1, . . . , An〉 be a n-
dimensional space equipped with a grid that defines basic
n-dimensional areas called cells in E. Let R be a relation
defined on the cartesian product of domains DAi of dimen-
sions Ai in E. Summary z of relation R is the bounding box
of the cluster of cells populated by records of R.

The above definition is constructive since it proposes to
build generalized summaries (hyperrectangles) from cells that
are specialized ones. In fact, it is equivalent to performing
an addition on cells:

z = c1 + c2 + . . . + cp

where ci ∈ Lz, the set of p cells (summaries) covered by z.
A summary z is then an intentional description associated

with a set of tuples Rz as its extent and a set of cells Lz that
are populated by records of Rz.

Thus, summaries are areas of E with hyperrectangle shapes
provided by BK. They are nodes of the summary tree built
by the SaintEtiQ system.

Definition 2. Summary Tree A summary tree is a col-
lection S of summaries connected by 4, the following partial
order:

∀z, z′ ∈ Z, z 4 z′ ⇐⇒ Rz ⊆ Rz′

The above link between two summaries provides a generali-
zation/specialization relationship. And assuming that sum-
maries are hyperrectangles in a multidimensional space, the
partial ordering defines nested summaries from the larger
one to the single cells. General trends in the data could be
identified in the very first levels of the tree whereas precise
information has to be looked at near the leaves.

For our purpose, we also consider a summary tree as an
indexing structure over distributed data in a P2P system.
Thus, we add a new dimension to the definition of a sum-
mary z: a peer-extent Pz, which provides the set of peers
having data described by z.

Definition 3. Peer-extent Let z be a summary in a given
hierarchy of summaries S, and P the set of all peers who
participated to the construction of S. The peer-extent Pz

of the summary z is the subset of peers owning, at least,
one record of its extent Rz: Pz = {p ∈ P | Rz ∩Rp 6= ∅} ,
where Rp is the view over the database of node p, used to
build summaries.

Due to the above definition, we extend the notion of data-
oriented summary in a given database, to a source-oriented
summary in a given P2P network. In other words, our sum-
mary can be used as a database index (e.g. referring to rel-
evant tuples), as well as a semantic index in a distributed
system (e.g. referring to relevant nodes).

The summary hierarchy S will be characterized by its Cov-
erage in the P2P system; that is, the number of data sources
described by S. Relative to the hierarchy S, we call Partner
Peer a peer whose data is described by at least a summary
of S.

Definition 4. Partner peers The set of Partner peers PS

of a summary hierarchy S is the union of peer-extents of all
summaries in S: PS = {∪z∈SPz} .

For simplicity, in the following we designate by“summary”a
hierarchy of summaries maintained in a P2P system, unless
otherwise specified.

3. SUMMARY MANAGEMENT
In this section, we present our algorithms for summary

construction and maintenance in a given domain. First, we
work in a static context where all participants remain con-
nected. Then we address the volatility of peers and propose
appropriate solutions.

3.1 Summary Construction
We assume that each global summary GS is associated

with a Cooperation List (CL) that provides information about
its partner peers. An element of CL is composed of two
fields. A partner identifier PeerID, and a 2-bit freshness
value v that provides information about the description fresh-
ness as well as the availability of the corresponding database.

• value 0 (initial value): the descriptions are fresh rela-
tive to the original data,

• value 1: the descriptions need to be refreshed,

• value 2: the original data are not available. This value
is used while addressing peer volatility in Section 3.3.

The construction algorithm starts at a superpeer (referred
later as Summary Peer SP) who broadcasts a sumpeer mes-
sage with a given value of TTL (e.g. TTL = 2). This mes-
sage contains SP ’s identifier, and a hop value h initialized
to 0, which is used to compute the distances between SP
and its clients.

A peer p who received a first sumpeer message, main-
tains information about the corresponding summary peer
SP . Then, p sends to SP a localsum message that con-
tains its local summary LS, and thus becomes a partner
peer in the SP ’s domain. Upon receiving this last message,
SP merges LS to its current global summary GS, and adds
a new element in the cooperation list. However, a peer p
who is already a partner may receive a new sumpeer mes-
sage. In that case, only if the new summary peer is closer
than the old one (based on latency), it chooses to drop its
old partnership through a drop message, and it proceeds to
participate to the new domain. Here, we note that one could
use another metric to compute distances between nodes (e.g.
the similarity between summaries). We now suppose that
a peer p does not belong to any domain (is not a partner
peer), and wants to participate to a global summary con-
struction. Using a selective walk, it can rapidly find a sum-
mary peer SP . A selective walk is a random walk where
a peer chooses intentionally the highest-degree neighbor at
each query forwarding step [23]. The information about SP ,
which is maintained at each of its partners, makes the selec-
tive walk even shorter. Once a partner or a summary peer
is reached, the find message is stopped.

3.2 Summary Maintenance
A critical issue for any indexing structure is to maintain

the index, relative to the current data instances, without in-
curring high costs. For a local summary, it has been demon-
strated that the summarization process guarantees an in-
cremental maintenance, using a push mode for exchanging
data with the DBMS, while performing with a low complex-
ity [29]. In this section, we propose a strategy for main-
taining a global summary in a given domain, based on both
push and pull techniques, in order to minimize the number
of messages exchanged in the system. The appropriate al-
gorithm is divided into two phases: data modification and
summary reconciliation.

3.2.1 Push: Data Modification
Let GS be a global summary and PGS the set of its partner

peers. Each peer in PGS is responsible for refreshing its
own element in the GS’s cooperation list. A partner peer p
observes the modification rate issued on its local summary
LS. When LS is considered as enough modified, the peer p
sets its freshness value v to 1, through a push message to the
corresponding summary peer SP . The value 1 indicates that
the local summary version being merged while constructing
GS does not correspond any more to the current instance of
the database.

An important feature is that the frequency of push mes-
sages depends on modifications issued on local summaries,
rather than on the underlying databases. It has been demon-
strated in [29] that, after a given process time, a summary
hierarchy becomes very stable. As more tuples are pro-
cessed, the need to adapt the hierarchy decreases and hope-
fully, once all existing attribute combinations have been pro-
cessed, incorporating new tuple consists only in sorting it

in a tree. A summary modification can be detected by ob-
serving the appearance/disappearance of descriptors in sum-
mary intentions.

3.2.2 Pull: Summary Reconciliation
The summary peer SP , in its turn, observes the fraction

of old descriptions (i.e. number of ones) in the cooperation
list. Whenever this fraction exceeds a threshold value α,
the global summary GS must be refreshed. The threshold
α is our system parameter, which is tuned to provide the
desired trade-off between summary freshness and summary
updating cost. More analysis is given in Section 5.1. To
update its global summary, SP pulls all the partner peers
to merge their current local summaries into a new version of
GS, which will be then under reconstruction. The algorithm
is described as follows. SP initiates a reconciliation message
that contains a new summary NewGS (initially empty). The
message is propagated from a partner to another (started at
SP). When a partner p receives this message, it first merges
NewGS with its local summary. Then, it sends the message
to another partner (chosen from the cooperation list CL). If
p is the last visited peer, it sends the message to SP who will
store the new version of the global summary. All the fresh-
ness values in CL are reset to zero. This strategy distributes
the charge of summary merging on all partners, instead of
imposing on SP to receive all local summaries and to make
the merging calculations alone. Furthermore, this strategy
guarantees a high availability of the global summary, since
only one update operation is performed at the end by SP .

3.3 Peer Dynamicity
In large P2P systems, a peer connects mainly to download

some data and may leave the system without any constraint.
Therefore, the shared data can be submitted to a low modi-
fication rate, while the rate of node arrival/departure is very
important. We now study the effect of this peer dynamic-
ity on our summary management algorithms, and propose
appropriate solution.

In unstructured P2P systems, when a new peer p joins the
system, it contacts some existing peers to determine the set
of its neighbors. If one of these neighbors is a partner peer, p
sends its local summary LS to the corresponding summary
peer SP , and thus becomes a new partner in the SP ’s do-
main. When a partner peer p decides to leave the system,
it first sets its freshness value v to two in the cooperation
list, through a push message. This value reminds the par-
ticipation of the disconnected peer p to the corresponding
global summary, but also indicates the unavailability of the
original data. There are two alternatives to deal with such
a freshness value. First, we can keep the data descriptions
and use it, when a query is approximately answered using
the global summary. A second alternative consists in consid-
ering the data descriptions as expired, since the original data
are not accessible. Thus, a partner departure will acceler-
ate the summary reconciliation initiating. In the rest of this
paper, we adopt the second alternative and consider only a
1-bit freshness value v: a value 0 to indicate the freshness of
data descriptions, and a value 1 to indicate either their ex-
piration or their unavailability. However, if peer p failed, it
could not notify its summary peer by its departure. In that
case, its data descriptions will remain in the global sum-
mary until a new summary reconciliation is executed. The
reconciliation algorithm does not require the participation

of a disconnected peer. The global summary GS is recon-
structed, and descriptions of unavailable data will be then
omitted.

Now, when a summary peer SP decides to leave the sys-
tem, it sends a release message to all its partners using the
cooperation list. Upon receiving such a message, a partner
p makes a selective walk to find a new summary peer. How-
ever, if SP failed, it could not notify its partners. A partner
p who has tried to send push or query messages to SP will
detect its departure and thus search for a new one.

4. QUERY PROCESSING
In this section, we describe how a query Q, posed at a

peer p, is processed. Peer p first sends Q to the summary
peer SP of its domain. SP proceeds then to query the avail-
able global summary GS. As highlighted in the introduc-
tion and all along this paper, summary querying allows to
achieve two distinct tasks depending on the user/application
requirements: peer localization to return the original results,
and approximate answering to return approximate answers.
Summary querying is divided into two phases: 1) query re-
formulation and 2) query evaluation.

4.1 Query Reformulation
First, a selection query Q must be rewritten into a flexible

query Q∗ in order to be handled by the summary querying
process. For instance, consider the following query Q on the
Patient relation in Table 1:

select age from Patient where sex = ‘‘female’’

and BMI < 19 and disease = ‘‘anorexia’’

This phase replaces the original value of each selection
predicate by the corresponding descriptors defined in the
Background Knowledge (BK). Therefore, the above query
is transformed to Q∗:

select age from Patient where sex = ‘‘female’’

BMI in {underweight,normal} and disease = ‘‘anorexia’’

Let QS (resp.QS∗) be the Query Scope of query Q (resp.Q∗)
in the domain, that is, the set of peers that should be visited
to answer the query. Obviously, the query extension phase
may induce false positives in query results. To illustrate, a
patient having a BMI value of 20 could be returned as an
answer to the query Q∗, while the selection predicate on the
attribute BMI of the original query Q is not satisfied. How-
ever, false negatives cannot occur, which is expressed by the
following inclusion: QS ⊆ QS∗.

In the rest of this paper, we suppose that a user query is
directly formulated using descriptors defined in the BK (i.e.
Q = Q∗). As we discussed in the introduction of this work,
a doctor that participates to a given medical collaboration,
may ask query Q like “the age of female patients diagnosed
with anorexia and having an underweight or normal BMI”.
Thus, we eliminate potential false positives that may result
from query extension.

4.2 Query Evaluation
This phase deals with matching a set of summaries orga-

nized in a hierarchy S, against the query Q. The query is
transformed into a logical proposition P used to qualify the
link between each summary and the query. Proposition P
is under a conjunctive form in which all descriptors appears

as literals. In consequence, each set of descriptors yields on
corresponding clause. For instance, the above query Q is
transformed to P = (female) AND (underweight OR nor-
mal) AND (anorexia). A valuation function has been de-
fined to valuate the proposition P in the context of a sum-
mary z. Then, a selection algorithm performs a fast ex-
ploration of the hierarchy and returns the set ZQ of most
abstract summaries that satisfy the query. For more de-
tails see [31]. Once ZQ determined, the evaluation process
can achieve two distinct tasks: 1) Peer localization, and 2)
Approximate answering.

4.2.1 Peer Localization
Since the extended definition of a summary z provides a

peer-extent, i.e. the set of peers Pz having data described
by its intent (see Definition 3), we can define the set PQ of
relevant peers for the query Q as follows: PQ = {∪z∈ZQPz}.
The query Q is directly propagated to these relevant peers.
However, the efficiency of this query routing depends on the
completeness and the freshness of summaries, since stale an-
swers may occur in query results. We define a False Positive
as the case in which a peer p belongs to PQ and there is ac-
tually no data in the p source that satisfies Q (i.e. p /∈ QS).
A False Negative is the reverse case in which a p does not
belong to PQ, whereas there exists at least one tuple in the
p data source that satisfies Q (i.e. p ∈ QS).

4.2.2 Approximate Answering
A distinctive feature of our approach is that a query can be

processed entirely in the summary domain. An approximate
answer can be provided from summary descriptions, without
having to access original, distributed database records. The
selected summaries ZQ are aggregated according to their
interpretation of proposition P : summaries that have the
same required characteristics on all predicates (i.e. sex, BMI
and disease) form a class. The aggregation in a given class
is a union of descriptors: for each attribute of the selection
list (i.e. age), the querying process supplies a set of descrip-
tors which characterize summaries that respond to the query
through the same interpretation [31]. For example, accord-
ing to Table 1, the output set obtained for the two classes
{female, underweight, anorexia}, and {female,normal, anorexia}
is age = {young}. In other words, all female patients diag-
nosed with anorexia and having an underweight or normal
BMI are young girls.

In the case where exact answers are required, suppose now
that processing a query Q in a given domain di returns Ci

results, while the user requires Ct results. We note that, if
Ct is less than the total number of results available in the
network, Q is said to be a partial-lookup query. Otherwise,
it is a total-lookup query. Obviously, when Ci is less than
Ct, the query should be propagated to other domains. To
this end, we adopt the following variation of the flooding
mechanism.

Let Pi the subset of peers that have answered the query
Q in the domain di: |Pi| = (1− FP) · |PQ|, where FP is the
fraction of false positives in query results. The query hit in
the domain is given by: (|Pi| / |di|). As shown by many stud-
ies, the existing P2P networks have small-world features [2].
In such a context, users tend to work in groups. A group of
users, although not always located in geographical proxim-
ity, tends to use the same set of resources (i.e. group locality

property). Thus, we assume that the probability of finding
answers to query Q in the neighborhood of a relevant peer in
Pi, is very high since results are supposed to be nearby. This
probability is also high in the neighborhood of the originator
peer p since some of its neighbors may be interested in the
same data, and thus have cached answers to similar queries.
Such assumptions are even more relevant in the context of
interest-based clustered networks. Therefore, the summary
peer SPi of domain di sends a flooding request to each peer
in Pi as well as to peer p. Upon receiving this request, each
of those peers sends the query to its neighbors that do not
belong to its domain, with a limited value of TTL. Once a
new domain is reached or TTL becomes zero, the query is
stopped. Besides, the summary peer SP sends the request
to the set of summary peers it knows in the system. This
will accelerate covering a large number of domains. In each
visited domain, the query is processed as described above.
When the number of query results becomes sufficient (i.e.
larger than Ct), or the network is entirely covered, the query
routing is terminated.

5. PERFORMANCE EVALUATION
In this section, we devise a simple model for the summary

management cost. Then, we evaluate our model by simula-
tion using the BRITE topology generator and SimJava.

5.1 Cost Model
A critical issue in summary management is to trade off

the summary updating cost against the benefits obtained
for queries.

5.1.1 Summary Update Cost
Here, our first undertaking is to optimize the update cost

while taking into account query accuracy. In the next sec-
tion, we discuss query accuracy which is measured in terms
of the percentage of false positives and false negatives in
query results. The cost of updating summaries is divided
into: usage of peer resources, i.e. time cost and storage cost,
and the traffic overhead generated in the network.

Time Cost. A unique feature of SaintEtiQ is that the
changes in the database are reflected through an incremen-
tal maintenance of the summary hierarchy. The time com-
plexity of the summarization process is in O(K) where K
is the number of cells to be incorporated in that hierar-
chy [29]. For a global summary update, we are concerned
with the complexity of merging summaries. The Merging
method that has been proposed is based on the SaintEtiQ
engine. This method consists in incorporating the leaves Lz

of a given summary hierarchy S1 into an another S2, using
the same algorithm described by the SaintEtiQ summa-
rization service (referenced in Section 2.2.3). It has been
proved that the complexity CM12 of the Merging(S1, S2)
process is constant w.r.t the number of tuples [27]. More
precisely, CM12 depends on the maximum number of leaves
of S1 to incorporate into S2. However, the number of leaves
in a summary hierarchy is not an issue because it can be
adjusted by the user according to the desired precision. A
detailed Background Knowledge (BK) will lead to a greater
precision in summary description, with the natural conse-
quence of a larger summary. Moreover, the hierarchy is con-
structed in a top-down approach and it is possible to set the

summarization process so that the leaves have any desired
precision.

Storage Cost. We denote by k the average size of a sum-
mary z. In the average-case assumption, there are

∑d
i=0

Bi = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree with d,
the average depth of the hierarchy. Thus the average space
requirement is given by: Cm = k.(Bd+1−1)/(B−1). Based
on real tests, k = 512 bytes gives a rough estimation of the
space required for each summary. An important issue is that
the size of the hierarchy is quite related to its stabilization
(i.e. B and d). As more cells are processed, the need to
adapt the hierarchy decreases and incorporating a new cell
may consist only in sorting a tree. Hence, the structure of
the hierarchy remains stable and no additional space is re-
quired. On the other hand, when we merge two hierarchies
S1 and S2 having sizes of Cm1 and Cm2 respectively, the
size of the resultant hierarchy is always in the order of the
max (Cm1, Cm2). However, the size of a summary hierar-
chy is limited to a maximum value which corresponds to a
maximum number of leaves that cover all the possible com-
binations of the BK descriptors. Thus, storing the global
summary at the summary peer is not a strength constraint.

According to the above discussion, the usage of peer re-
sources is optimized by the summarization process itself,
and the distribution of summary merging while updating a
global summary. Thus, we restrict now our focus to the
traffic overhead generated in the P2P network.

Network Traffic. Recall that there are two types of ex-
changed messages: push and reconciliation. Let local sum-
maries have an average lifetime of L seconds in a given global
summary. Once L expired, the node sends a (push) message
to update its freshness value v in the cooperation list CL.
The reconciliation algorithm is then initiated whenever the
following condition is satisfied:

∑
v∈CL v/|CL| ≥ α, where

α is a threshold that represents the ratio of old descriptions
tolerated in the global summary. During reconciliation, only
one message is propagated among all partner peers until the
new global summary version is stored at the summary peer
SP . Let Frec be the reconciliation frequency. The update
cost is:

Cup = 1/L + Frec messages per node per second (1)

In this expression, 1/L represents the number of push mes-
sages which depends either on the modification rate issued
on local summaries or the connection/disconnection rate of
peers in the system. Higher is the rate, lower is the lifetime
L, and thus a large number of push messages are entailed
in the system. Frec represents the number of reconciliation
messages which depends on the value of α. This threshold
is our system parameter that provides a trade-off between
the cost of summary updating and query accuracy. If α is
large, the update cost is low since a low frequency of recon-
ciliation is required, but query results may be less accurate
due both to false positives stemming from the descriptions
of non existent data, and to false negatives due to the loss of
relevant data descriptions whereas they are available in the
system. If α is small, the update cost is high but there are
few query results that refer to data no longer in the system,
and nearly all available results are returned by the query.

5.1.2 Query Cost
When a query Q is posed at a peer p, it is first matched

against the global summary available at the summary peer

SP of its domain, to determine the set of relevant peers PQ.
Then, Q is directly propagated to those peers. The query
cost in a domain d is given by:

Cd = (1 +
∣∣PQ

∣∣ + (1 − FP) ·
∣∣PQ

∣∣) messages,

where (1− FP) · |PQ| represents the query responses mes-
sages (i.e. query hit in the domain).

Here we note that, the cooperation list CL associated with
a global summary provides information about the relevance
of each database description. Thus, it gives more flexibility
in tuning the recall/precision trade-off of the query answers
in domain d. The set of all partner peers PH in CL can
be divided into two subsets: Pold = {p ∈ PH | p.v = 1},
the set of peers whose descriptions are considered old, and
Pfresh = {p ∈ PH | p.v = 0} the set of peers whose descrip-
tions are considered fresh according to their current data
instances. Thus, if a query Q is propagated only to the set
V = PQ ∩ Pfresh, then precision is maximum since all vis-
ited peers are certainly matching peers (no false positives),
but recall depends on the fraction of false negatives in query
results that could be returned by the set of excluded peers
PQ\Pfresh. On the contrary, if the query Q is propagated to
the extended set V = PQ∪Pold, the recall value is maximum
since all matching peers are visited (no false negatives), but
precision depends on the fraction of false positives in query
results that are returned by the set of peers Pold.

Now we consider that the selectivity of query Q is very
high, such that each relevant peer has only one result tuple.
Thus, when a user requires Ct tuples, we have to visit Ct

relevant peers. The cost of inter-domain query flooding is
given by:

Cf = ((1 − FP) ·
∣∣PQ

∣∣ + 2) ·
TTL∑
i=1

ki messages,

where k is the average degree value (e.g. average degree
of 3.5, similar to Gnutella-type graphs). Remember that,
the set of relevant peers who have answered the query (i.e.
(1−FP) · |PQ|), the originator and the summary peers par-
ticipate to query flooding. In this expression, we consider
that a summary peer has on average k long-range links to k
summary peers. As a consequence, the total cost of a query
is:

CQ = Cd · Ct

(1−FP)·|PQ| + Cf · (1 − Ct

(1−FP)·|PQ|) (2)

In this expression, the term Ct/((1−FP) · |PQ|) represents
the number of domains that should be visited. For example,
when Ct = ((1 − FP) · |PQ|), one domain is sufficient and
no query flooding is required.

5.2 Simulation
We evaluated the performance of our solutions through

simulation, based on the above cost model. First, we de-
scribe the simulation setup. Then we present simulation
results to evaluate various performance dimensions and pa-
rameters: scale up, query accuracy, effect of the freshness
threshold α.

5.2.1 Simulation Setup
We used the SimJava package [10] and the BRITE uni-

versal topology generator [14] to simulate a power law P2P
network, with an average degree of 4. The simulation pa-
rameters are shown in Table 3 and fall into three categories:
network parameters, workload parameters, and system pa-
rameters. In our tests, we consider that local summary life-
times are quite related to the node lifetimes, since the rate

Parameter value
local summary lifetime L skewed distribution,

Mean=3h, Median=1h

number of peers n 16–5000
number of queries q 200
matching nodes/query hits 10%
freshness threshold α 0.1–0.8

Table 3: Simulation Parameters

Figure 4: Stale answers vs. domain size

of node connection/disconnection is supposed to be greater
than the modification rate issued on local summaries, and
this for two reasons. First, in large P2P systems, we mainly
deal with selection queries to locate and download required
data. Thus, the original data are submitted to a low mod-
ification rate. Second, our summaries are even more stable
than the original data (as we discussed before). Thus, the
volatility of peers is the main reason for a global summary
reconciliation. Under this assumption, we consider that lo-
cal summary lifetimes, like node lifetimes, follow a skewed
distribution with a mean value of 3 hours, and a median
value of 60 minutes. Our workload has 200 queries. The
query rate is 0.00083 queries per node per second (1 query
per node per 20 mns) as suggested in [5]. Each query is
matched by 10% of the total number of peers. Finally, Our
system parameter α that decides of the reconciliation fre-
quency varies between 0.1 and 0.8.

5.2.2 Update Cost
In this set of experiments, we quantify the trade-off be-

tween query accuracy and the cost of updating a global sum-
mary in a given domain. Figure 4 depicts the fraction of stale
answers in query results for different values of the threshold
α. Here, we illustrate the worst case. For each partner peer
p having a freshness value equal to 1, if it is selected in the
set PQ then it is considered as false positive. Otherwise, it
is considered as false negative. However, this is not the real
case. Though it has a freshness value equal to 1, the peer p
does not incur stale answers unless its database is changed
relative to the posed query Q. Thus, Figure 4 shows the
worst, but very reasonable values. For instance, the fraction
of stale answers is limited to 11% for a domain of 500 peers
when the threshold α is set to 0.3 (30% of the peers are
tolerated to have old/non existent descriptions).

As mentioned in Section 5.1.2, if we choose to propagate
the query only to the set V = PQ ∩ Pfresh we eliminate the

Figure 5: False negative vs. domain size

Figure 6: Number of messages vs. domain size

possible false positives in query results. However, this may
lead to additional false negatives. Figure 5 shows the frac-
tion of false negatives in function of the domain size. Here
we take into account the probability of the database modi-
fication relative to the query, for a peer having a freshness
value equal to 1. We see that the fraction of false negatives
is limited to 3% for a domain size less than 2000. The real
estimation of stale answers shows a reduction by a factor of
4.5 with respect to the preceded values.

Figure 6 depicts the update cost in function of the domain
size, and this for two threshold values. The total number
of messages increases with the domain size, but not sur-
prisingly, the number of messages per node remains almost
the same. In the update cost equation 5.1.1, the number
of push messages for a given peer is independent of domain
size.Besides, the number of reconciliation messages decreases
slowly with the number of peers, for a given value of the
threshold α. More interestingly, when the threshold value
decreases (from 0.8 to 0.3) we notice a little cost increasing
of 1.2 on average. However, a small value of the threshold
α allows to reduce significantly the fraction of stale answers
in query results, as seen in Figure 4. We conclude therefore
that tuning our system parameter, i.e. the threshold α, do
not incur additional traffic overhead, while improving query
accuracy.

5.2.3 Query Cost
In this set of experiments, we compare our algorithm for

query processing against centralized-index and pure non-
index/flooding algorithms. A centralized-index approach is
very efficient since a single message allows locating relevant
data. However, a central index is vulnerable to attack and
it is difficult to keep it up-to-date. Flooding algorithms are

Figure 7: Query cost vs. number of peers

very used in real life, due to their simplicity and the lack
of complex state information at each peer. A pure flooding
algorithm consists in broadcasting the query in the network
till a stop condition is satisfied, which may lead to a very
high query execution cost. Here, we limit the flooding by a
value 3 of TTL (Time-To-Live).

According to Table 3, the query hit is 10% of the total
number of peers. For our query processing approach, which
is mainly based on summary querying (SQ), we consider
that each visited domain provides 10% of the number of rel-
evant peers (i.e. 1% of the network size). In other words,
we should visit 10 domains for each query Q. From equa-
tion 5.1.2, we obtain: CQ = (10 · Cd + 9 · Cf) messages.
Figure 7 depicts the number of exchanged messages to pro-
cess a query Q, in function of the total number of peers.
The centralized-index algorithm shows the best results that
can be expected from any query processing algorithm, when
the index is complete and consistent, i.e. the index covers
the totality of data available in the system, and there are no
stale answers in query results. In that case, the query cost
is: CQ = 1+2 ·((0.1) ·n) messages, which includes the query
message sent to the index, the query messages sent to the
relevant peers and the query response messages returned to
the originator peer p.

In Figure 7, we observe that our algorithm SQ shows good
results by significantly reducing the number of exchanged
messages, in comparison with a pure query flooding algo-
rithm. For instance, the query cost is reduced by a factor of
3.5 for a network of 2000 peers, and this reduction becomes
more important with a larger-sized network. We note that
in our tests, we have considered the worst case of our al-
gorithm, in which the fraction of stale answers of Figure 4
occurs in query results (for α = 0.3).

6. RELATED WORK
Much research effort has focused on improving the search

efficiency in P2P networks through designing good routing
and lookup protocols. Gnutella-like systems mainly provide
file-name search facility, i.e. a user has to know the file’s
unique name. Furthermore, the search is done in a blind
fashion (e.g. Random Walk, modified BFS), trying to prop-
agate a user query to a sufficient number of nodes in order
to satisfy it. To enhance search efficiency, some works have
designed search algorithms operating on hybrid P2P archi-
tectures. Examples of search protocols are GUESS [6] that
builds upon the notion of ultrapeers, and Gnutella2 [15].
The third generation of P2P systems employs structured

topologies and uses Distributed Hash Table (DHT) func-
tionalities to provide a tight coupling between hosting nodes
and data indexes (e.g. [30], [20]). Although these systems
offer an efficient search, they compromise peer autonomy
since they mandate a specific network structure, and only
support point queries. Data is located using unique and
globally known data identifiers; complex queries are difficult
to support. Current works on P2P systems aim to employ
content-based routing strategies, since the content of data
can be exploited to more precisely guide query propagation.
These strategies require gathering information about the
content of peer’s data. However, the limits on network band-
width and peer storage, as well as the increasing amount
of shared data, call for effective summarization techniques.
These techniques allow exchanging compact information on
peer’s content, rather than exchanging original data in the
network.

Existing P2P systems have used keyword-based approaches
to summarize text documents. For instance, in [1] docu-
ments are summarized by keyword vectors, and each node
knows an approximate number of documents matching a
given keyword that can be retrieved through each outgoing
link (i.e. Routing Indices RIs). Although the search is very
bandwidth-efficient, RIs require flooding in order to be cre-
ated and updated, so the method is not suitable for highly
dynamic networks. Other works (e.g. [9]) investigate Vector
Space Model (VSM) and build Inverted Indexes for every
keyword to cluster content. In this model, documents and
queries are both represented by a vector space corresponding
to a list of orthogonal term vectors called Term Vector. The
drawback of VSM is its high cost of vector representations in
case of P2P churns. In [13], a semantic-based content search
consists in combining VSM to Latent Semantic Index (LSI)
model [7] to find semantically relevant documents in a P2P
network. This work is based on hierarchical summary struc-
ture over hybrid P2P architecture, which is closely related
to what we are presenting in this paper. However, instead of
representing documents by vector models, we describe struc-
tured data (i.e. relational database) by synthetic summaries
that respect the original data schema (i.e. synthetic tuples
representation).

To the best of our knowledge, none of the summariza-
tion techniques used in P2P systems allows for an approxi-
mate query answering. All works have focused on facilitat-
ing content-based query routing, in order to improve search
efficiency. In this work, we propose a summarization tech-
nique that produces synthetic, multidimensional views over
structured data. We believe that the novelty of our ap-
proach relies on the fact that our data summaries allow for a
semantic-based query routing, as well as for an approximate
query answering as we mentioned in the introduction. Our
approach for database summarization is based on SaintE-
tiQ [29], which relies on the fuzzy set theory to build robust
summaries.

7. CONCLUSION
In this paper, we proposed a model for summary manage-

ment in unstructured P2P systems. The innovation of this
proposal consists in combining the P2P and database sum-
marization paradigms, in order to support data sharing on
a world wide scale. The database summarization approach
that we proposed provides efficient techniques for data lo-
calization as well as for data description in P2P systems.

In fact, our summaries are semantic indexes that support
locating relevant data based on their content. Besides, an
important feature is that these summaries are compact data
descriptions that can approximately answer a query with-
out retrieving original records from huge, highly distributed
databases. We made the following contributions. First, we
defined an appropriate summary model for hybrid P2P sys-
tems, where a domain is defined as being the set of a super-
peer and its clients. Then, we proposed efficient algorithms
for summary management in a given domain. Our perfor-
mance evaluation showed that the cost of query routing in
the context of summaries is significantly reduced in compar-
ison with flooding algorithms, without incurring high costs
of summary maintenance.

8. REFERENCES
[1] A.Crespo and H.G.Molina. Routing indices for

peer-to-peer systems. In Proc. of the 28 tn Conference
on Distributed Computing Systems, July 2002.

[2] A.Iamnitchi, M.Ripeanu, and I.Foster. Locating data
in (small-world?) peer-to-peer scientific collaborations.
In IPTPS, pages 232–241, 2002.

[3] A.Oser, F.Naumann, W.Siberski, W.Nejdl, and
U.Thaden. Semantic overlay clusters within super-peer
networks. In Proc of the International Workshop on
Databases, Information Systems and Peer-to-Peer
Computing in Conjunction with the VLDB, 2003.

[4] A.Rowstron and P.Druschel. Storage management and
caching in PAST, a large–scale, persistent
peer-to-peer storage utility. In Proc.SOSP, 2001.

[5] B.Yang and H.G.Molina. Comparing hybrid
peer-to-peer systems. In Proc VLDB, 2001.

[6] B.Yang, P.Vinograd, and H.Garcia-Molina. Evaluating
guess and non-forwarding peer-to-peer search. In
ICDCS ’04, 2004.

[7] C.Papadimitriou, H.Tamaki, P.Raghavan, and
S.Vempala. Latent semantic indexing: A probabilistic
analysis. In ACM Conference on Principles of
Database Systems (PODS).

[8] C.Wang, L.Xiao, Y.Liu, and P.Zheng. Dicas: An
efficient distributed caching mechanism for p2p
systems. IEEE Transactions on Parallel and
Distributed Systems, 2006.

[9] F.Cuenca-Acuna, C.Peery, R.Martin, and T.Nguyen.
Planetp: Using gossiping to build content addressable
peer-to-peer information sharing communities. In
HPDC-12, 2003.

[10] F.Howell and R.McNab. Simjava: a discrete event
simulation package for java with the applications in
computer systems modeling. In Int. Conf on
Web-based Modelling and Simulation, San Diego CA,
Society for Computer Simulation, 1998.

[11] G.Koloniari, Y.Petrakis, and E.Pitoura.
Content–based overlay networks of xml peers based on
multi-level bloom filters. In Proc VLDB, 2003.

[12] G.Raschia and N.Mouaddib. A fuzzy set-based
approach to database summarization. Fuzzy sets and
systems 129(2), pages 137–162, 2002.

[13] H.Shen, Y.Shu, and B.Yu. Efficient semantic-based
content search in p2p network. IEEE Transactions on
Knowledge and Data Engineering, 16(7), 2004.

[14] http://www.cs.bu.edu/brite/.

[15] http://www.gnutella2.com.

[16] http://www.gnutella.com.

[17] http://www.kazaa.com.

[18] http://www.napster.com.

[19] http://www.snomed.org/snomedct.

[20] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and
H.Balakrishnan. Chord: A scalabale peer-to-peer
lookup service for internet applications. In Proc ACM
SIGCOMM, 2001.

[21] I.Tartinov and et al. The Piazza peer data
management project. In SIGMOD, 2003.

[22] K.Thompson and P.Langley. Concept formation in
structured domains. In Concept formation: Knowledge
and experience in unsupervised learning, pages
127–161. Morgan Kaufmann.

[23] L.Adamic and et al. Search in power law networks.
Physical Review E, 64:46135–46143, 2001.

[24] L.A.Zadeh. Fuzzy sets. Information and Control,
8:338–353, 1965.

[25] L.A.Zadeh. Concept of a linguistic variable and its
application to approximate reasoning-I. Information
Systems, 8:199–249, 1975.

[26] L.A.Zadeh. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 100:9–34, 1999.

[27] M.Bechchi, G.Raschia, and N.Mouaddib. Merging
distributed database summaries. In ACM Sixteenth
Conference on Information and Knowledge
Management (CIKM), 2007.

[28] R.Akbarinia, V.Martins, E.Pacitti, and P.Valduriez.
Design and implementation of appa. In Global Data
Management (Eds. R. Baldoni, G. Cortese and F.
Davide). IOS press, 2006.

[29] R.Saint-Paul, G.Raschia, and N.Mouaddib. General
purpose database summarization. In Proc VLDB,
pages 733–744, 2005.

[30] S.Ratnasamy, P.Francis, M.Handley, R.M.Karp, and
S.Shenker. A scalable content–addressable network. In
SIGCOMM, 2001.

[31] W.A.Voglozin, G.Raschia, L.Ughetto, and
N.Mouaddib. Querying the SaintEtiQ summaries–a
first attempt. In Int.Conf.On Flexible Query
Answering Systems (FQAS), 2004.

