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Abstract Model transformations can be used in many
different application scenarios, for instance, to provide inter-
operability between models of different size and complexity.
As a consequence, they are becoming more and more
complex. However, model transformations are typically
developed manually. Several code patterns are implemen-
ted repetitively, thus increasing the probability of program-
ming errors and reducing code reusability. There is not yet a
complete solution that automates the development of model
transformations. In this paper, we present a novel approach
that uses matching transformations and weaving models to
semi-automate the development of transformations. Weaving
models are models that contain different kinds of relation-
ships between model elements. These relationships capture
different transformation patterns. Matching transformations
are a special kind of transformations that implement methods
that create weaving models. We present a practical
solution that enables the creation and the customization of
different creation methods in an efficient way. We combine
different methods, and present a metamodel-based method
that exploits metamodel data to automatically produce wea-
ving models. The weaving models are derived into model
integration transformations. To validate our approach, we
present an experiment using metamodels with distinct size
and complexity, which show the feasibility and scalability of
our solution.
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1 Introduction

Model transformations are a central component in model dri-
ven engineering practices. Many model transformation lan-
guages have emerged from industrial and academic research
[4,18,20,21]. As a consequence, there are an increasing num-
ber of model transformations that are being developed for
different applications scenarios. For instance, there are trans-
formations to provide tool interoperability, to translate from
textual to graphical representations, or to merge models.

However, the development of transformations involves
many repetitive tasks. Consider for example a generic model
integration scenario that transforms one source model into
one target model. The transformation development consists
of creating rules that transform a set of elements of the source
model into a set of elements of the target model. The proper-
ties of these elements are transformed using a set of trans-
formation expressions. Most of these expressions consist of
1:1 relationships or other common patterns, such as nesting
or concatenation.

These transformations are often created manually. To the
best of our knowledge, there is no Model Driven Enginee-
ring (MDE) approach that provides enough generic mecha-
nisms to semi-automate the development of transformations.
A semi-automatic process based on well-defined patterns
brings many advantages: it accelerates the development time
of transformations, diminishes the errors that may occur in
manual coding, and increases the quality of transformational
code.

The discovery of transformation patterns to integrate
models is closely related to schema and ontology matching
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approaches (see the survey in [33]). These approaches aim
at discovering semantic relationships between elements of
different schemas or ontologies [8,13,29]. However, these
approaches have some drawbacks. Most solutions cannot
be applied to models conforming to different metamodels.
Metamodels are models that describe the structure of models.
The distance between the conceptual basis (models) and the
implementation (methods) is too big. This makes it difficult to
decompose and to customize different methods. There is no
support for different kinds of relationships between models.
Hence, native constructs of transformation languages are not
supported, such as rule inheritance or nested relationships.

In this paper, we present a novel solution to semi-automate
the development of model transformations. We present the
execution of matching transformations, transformations that
select a set of elements from a set of input metamodels and
produce links between these elements. As we presented in
[10], these links are saved in a weaving model. A weaving
model conforms to the extensions of a weaving metamodel.
A weaving model contains abstract and declarative links
that are used to produce model integration transformations.
Model integration transformations are used in standard inter-
operability applications.

The overall process is the following:

• the designer provides the input metamodels MMA and
MMB;

• a sequence of matching transformations is executed. They
produce a weaving model with a set of links between
MMA and MMB;

• the designer verifies the links (and correct them, if neces-
sary);

• a transformation model is generated based on the set of
links;

• the transformation produced is used to transform a model
conforming to MMA into a model conforming to MMB.

Matching transformations enable to rapidly implement
or adapt methods to create weaving models. We propose
a metamodel-based method that exploits the internal fea-
tures of the set of input metamodels to produce weaving
models. This method is executed together with a link rewri-
ting method that analyzes the weaving metamodel extensions
to produce frequently used transformation patterns.

The main contributions of this paper are the following.
We propose a methodology to semi-automate the develop-
ment of model transformations. The methodology is based
on MDE best practices, which enables the rapid development
and reuse of different methods. The main innovation is to use
matching transformations to allow an easy development of
different matching methods. We propose a metamodel-based
method that exploits the information from the set of input

metamodels and from the weaving metamodel. These mat-
ching transformations automatically create weaving models.
The matching transformations can be combined and parame-
terized using configuration models. The configuration models
can be shared among developers to reuse the execution para-
meters. To validate our approach, we present an experiment
using large metamodels, showing the feasibility and scalabi-
lity of our approach in real world scenarios.

This paper extends our previous work [11] with three
major improvements. First, we define more precisely our
metamodel-based method and we present a method for sto-
ring model elements that are not matched using this method.
Second, we present a configuration model that enables to
easily configure the execution of chains of matching trans-
formations. Finally, we present an experiment using large
metamodels, in a metamodel comparison application scena-
rio. These experiments demonstrate the feasibility and sca-
lability of our approach.

This paper is organized as follows. Section 2 gives the
motivating example. Section 3 presents the core MDE
concepts used in this paper. Section 4 presents the general
process of the production of model transformations. Sec-
tion 5 presents weaving metamodel extensions that capture
different kinds of relationships between models. Section 6
describes the matching transformations in more details. Sec-
tion 7 describes the experiments. Section 8 presents the rela-
ted work. Section 9 concludes.

2 Motivating example

We motivate the need to automatically create model transfor-
mations using two simple metamodels MM1 and MM2. Both
metamodels are illustrated in Fig. 1. They describe the tea-
chers and the students of different educational institutions.
These metamodels have similar attributes and references, but
they are organized differently. Metamodel MM1 contains an
abstract class Person, with attributes name, SSN (Social Secu-
rity Number), street, city and zip_code.

The class Teacher inherits from Person, and has the affilia-
tion of the teacher. MM1 has two types of students: undergra-
duate students (Undergraduate) and master students (Mas-
ter). Only master students have an advisor. Metamodel MM2
does not support inheritance. MM2 contains a class Professor
and only one class Student. The presence of an advisor indi-
cates that the student is undergraduate or master. The address
of the professors and the students is factored out on the class
Address.

In Fig. 2, we show a model transformation used to trans-
form models conforming to MM1 (i.e., source model) into
models conforming to MM2 (i.e., target model). The trans-
formation is written in ATL (a complete description of the
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Fig. 1 Two simple metamodels
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definition

rule CreateProfessor {
from source : MM1!Teacher
to target : MM2!Professor (

name <- source.name,
SSN <- source.SSN,
address <- address ),

address : MM2!Address (
street <- source.street,
city <- source.city,
code <- source.zip_code )

}

rule CreateStudent1 {
from source : MM1!Undergraduate
to target : MM2!Student (

-- copy bindings from CreateProfessor
)

}
rule CreateStudent2 {

from source : MM1!Master
to target : MM2!Student (

advisor <- source.advisor
-- copy bindings from CreateProfessor

)
}

language is available in [21]). We choose ATL because it
provides a simple syntax adapted for model transformations.

This transformation has three rules; while executing the
transformation, each rule matches one element of the source
model and creates elements in the target model. In a typical
development scenario, the developer creates the transforma-
tion manually. He must know that Teacher is transformed
into Professor and that Master and Undergraduate are trans-
formed into Student. Then, all the attributes and references
of each class must be translated as well (name, SSN, address,
advisor, street, code, etc.).

This transformation has two kinds of expressions: trans-
formations between self-contained elements (i.e., classes),
and the setup of their properties (i.e., attributes and refe-
rences). Thus, in the three rules, the transformation has a
source class and a set of target classes. The rule CreatePro-
fessor assigns the attributes of Teacher to Professor. These
attributes are inherited from Person. The attributes from both
classes have similar properties, such as name and type. These
attributes are transformed in the containing class, or in a
newly created class (Address). The same set of expressions
must be rewritten in CreateStudent1 and in CreateStudent2

rules, because Undergraduate and Master inherit from
Student, that inherits from Person. The transformation deve-
loper has two choices: to copy and paste the code, or to apply
rule inheritance predicates.

These expressions are common patterns in transforma-
tions that involve similar metamodels, for example in model
integration or in model comparison scenarios. Despite this
example being simple, it is easy to envisage the creation of
transformations between very large source and target meta-
models. The same kinds of expressions presented would be
coded several times. This is a known problem when develo-
ping large model integration applications. Many of them are
not trivial, for instance, to handle elements Undergraduate
and Master. The automatic discovery of these transforma-
tion patterns can increase the development speed of model
transformations. The intervention of qualified transforma-
tion developers is left essentially to more complex expres-
sions that do not occur frequently and that cannot be created
automatically.

In order to automate the development of transformations,
it is necessary to discover the different kinds of relation-
ships (links) between metamodel elements. These links must
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be saved in another model. This model can be validated or
modified by the transformation developer (see Appendix A
for a complete example).

Methods already used in ontology and schema matching
solutions can be applied to discover these links. However,
model transformations can be executed over several different
source and target metamodels, with different attributes, rela-
tions, properties, etc. The patterns applied vary from case
to case. Consequently, it is also important to have a simple
methodology that enables the implementation of new
methods and the adaptation of existing ones in an efficient
way. As final step, these links must be translated into the cor-
rect transformation expressions, for instance links between
attributes of abstract classes must be translated into bindings
(a binding is denoted by the “⇓” symbol) in the inherited
classes.

3 Model driven engineering

In this section we present the central MDE definitions used
in this paper. The basic assumption in MDE is to consider
models as first-class entities (following [9]).

Definition 3.1 (Directed multigraph) A directed labeled
multi-graph G = (NG, EG, �G) consists of a finite set of
nodes NG and a finite set of edges EG, a mapping function
�G : EG → NG × NG.

Definition 3.2 (Model) A model M = (G, ω, µ) is a triple
where:

– G = (NG, EG, �G) is a directed multigraph,
– ω is itself a model associated to a multigraph Gω =

(Nω, Eω, �ω),
– µ : NG ∪ EG → Nω is a function associating elements

(nodes and edges) of G to nodes of Gω. The function µ

associates every node and edge of G (NG ∪EG) with one
element in ω(Nω).

Definition 3.3 (Reference model) Given a model M1=(G1,

ω1, µ1), and a model M2 = (G2, ω2, µ2), if ω1 = M2, M2

is called the reference model of M1.
Some models are their own reference model (ω = M).

This allows stopping the recursion introduced in this defini-
tion. The relation between a model and its reference model
is called conformance. However, we observe from different
domains (XML, RDBMS, ontologies) that only three levels
are needed. We call these three levels metametamodel (M3),
metamodel (M2) and terminal model (M1). A metametamo-
del is a model that is its own reference model. A metamodel
is a model such that its reference model is a metametamodel.
A terminal model is a model such that its reference model is
a metamodel.

In order to capture the relationships (i.e., links) between
model elements, we propose using weaving models. A wea-
ving model conforms to a weaving metamodel. The weaving
metamodel defines the kinds of links that may be created.

Definition 3.4 (Weaving metamodel) A weaving metamo-
del is a model MMW = (GM, ωM, µM ), that defines link
types, such that:

– GM = (NM, EM, �M),
– NM = NL ∪ NLE ∪ NO, NL denotes the link types; NLE

denotes the link endpoint types and NO denote other auxi-
liary nodes,

– �M : EM → (NL × NLE) ∪ (NO × NM), i.e., a link type
refers to multiple link endpoint types and the auxiliary
nodes refer to any kind of node.

Definition 3.5 (Weaving model) A weaving model is a
model MW=(GW, ωW, µW), a graph GW=(NW, EW, �W),
such that its reference model is a weaving metamodel
(ωW = MMW).

We present a core weaving metamodel based on the pre-
vious definitions. The metamodel is illustrated in Fig. 3. The
core metamodel has elements with information about link
types, link endpoints and element identifications. Element
identification is a practical solution for saving unique iden-
tifiers for the linked elements. These values are used by a
function to access the elements of the linked model elements.

• WElement is the base element from which all other ele-
ments inherit.

• WModel represents the root element that contains all
model elements. It is composed by the weaving elements
and the references to woven models.

• WLink expresses a link between model elements, i.e., it
has a simple linking semantics.

• WLinkEnd defines the link endpoint types. Every link
endpoint represents a linked model element. It allows
creating N-ary links.

• WElementRef elements are associated with a dereferen-
cing function. This function takes as parameter the value
of the ref attribute and it returns the linked element. For
practical reasons, we define a string attribute.

Weaving models enable the creation of abstract links bet-
ween model elements, though they are not executable. Exe-
cutable operations between models are implemented using
model transformations.

Definition 3.6 (Model transformation) A model transforma-
tion is an operation that given as input a set of models, eva-
luates their elements and produces as output a set of models.
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Fig. 3 Core weaving
metamodel
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A model transformation has the following signature:

〈OUT1 : MMOUT1, . . ., OUTm : MMOUTm〉
= T(〈IN1 : MMIN1, . . ., INn : MMINn〉)

T is the operation name; 〈IN1 − INn〉 is the set of input
models (n ≥ 1); the input models conform to the input meta-
models 〈MMIN1 −MMINn〉; the input metamodels may be
equal; OUT1 − OUTm is the set of output models
(M ≥ 1); the output models conform to the output meta-
models 〈MMOUT1−MMOUTn〉; the output metamodels may
be equal.

4 General overview

In this section, we present a general overview of our approach
to automate the production of model transformations. There
are three major phases: weaving metamodel specification,
creation of weaving models and transformation production.

4.1 Weaving metamodel specification

To capture various transformation patterns, we define dif-
ferent kinds of links in a weaving metamodel. For instance,
the motivation example contains different transformation pat-
terns, such as class inheritance, nesting of elements, or classes
with different names. The weaving metamodels are created
as extensions of a core weaving metamodel. Each kind of link
corresponds to one transformation pattern. For instance, one
of the most common patterns of declarative transformation
rules is to create a new Class in the source model for every

MMb

OUTIN
Transformation 1 

Weaving 
model

OUT
IN

IN
Transformation N 

Weaving 
model

IN
Transformation 2

OUT
IN

Weaving 
model

MMa

Fig. 4 Creation and refinement of weaving models

Class in the target model. The creation of the weaving meta-
model is a manual task, based on design decisions. Conse-
quently, its specification is a key process of our approach.

4.2 Creation of weaving models

The second phase is the creation of weaving models with the
concrete links between the input metamodels. We have two
metamodels as input, which are used to produce one weaving
model as output. This weaving model has different kinds of
links. we propose using model transformations to produce
the weaving model.

However, there is not a unique solution/transformation
that produces a weaving model between the two input meta-
models, with all the desired links. The process is iterative.
Several methods are executed sequentially, as shown in Fig. 4.
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Each one takes as input a weaving model and the two meta-
models as input, and then produces another weaving model
as output, which is in turn taken as input by another method.
The links of the weaving model are refined after the execution
of each transformation.

However, it is not always possible to create a weaving
model with only correct links between the model elements.
For instance, a transformation that performs a Cartesian pro-
duct between two metamodels creates links between name-
name attributes and name-SSN attributes. A second trans-
formation may compute a similarity distance between every
linked element (a value between 0 and 1), to select only links
with similar name (we explain different methods in the sub-
sequent sections). Different similarity values enables setting
the impact of the transformations in the overall process, i.e.,
the higher similarity values have a higher impact. In this
case, the name-name link has a higher similarity value than
the code-zip_code link.

Then, we select the links with best similarity values to
produce a more accurate weaving model with only a subset
of links. After the execution of these transformations, the
final weaving model can still be manually modified, because
these methods cannot discover all the possible links. Conse-
quently, link selection methods are very important to obtain
the final integration transformations. For example, the simi-
larity between the abstract class Person and class Professor
is high, and thus a link between these elements is created.
This link is used to produce a rule that transforms Person
into Professor.

4.3 Producing transformations

The production of transformations is the last phase in the
overall process. We implement higher-order transformations
(HOT’s) that interpret the different kinds of links captured
by a weaving model, as shown in Fig. 5. These HOT’s take as
input the weaving model, and produce a model transforma-
tion. The weaving model conforms to a weaving metamodel
MMw and the transformation models conform to a trans-
formation metamodel (the conformance relation is indicated
by c2). In other words, the weaving models are transfor-
med into transformation models. The transformation models
can be extracted into a textual language, for instance ATL
or XSLT, to be executed in a specific transformation engine.
The produced transformation is used to transform the termi-
nal models conforming to the input metamodels (e.g., MM1)

into the terminal models conforming to the output metamo-
dels (e.g., MM2).

The whole process of producing model transformations is
completely based on MDE concepts. In the following sec-
tions, we explain in detail these different phases.

MMw

Mw

c2

c2

Transforms

ATL

HOT

c2

MtMt (v1-v2)

Fig. 5 Producing a model transformation

5 Metamodel extensions for matching

In this section, we present an extension to the core weaving
metamodel (see Fig. 6) that captures a set of common trans-
formation patterns. The class Element is a concrete extension
of WLinkEnd. It enables referring to any kind of (meta)model
element. The class Equivalent contains two references to save
the source and target elements. The class Equivalent has a
similarity value that is computed by the transformations. This
value is a numeric value that measures the semantic proxi-
mity of the linked elements. The other classes capture five
different transformation patterns. In order to support additio-
nal patterns, for instance, multiple inheritances or the conca-
tenation/union of elements, it is necessary to create different
metamodel extensions, following the same approach.

• Generic equality: the class Equal indicates that the lin-
ked elements represent the same information.

• Element binding: the class 〈T ype〉Binding captures bin-
ding patterns between two metamodel elements. The
〈T ype〉 tag must be replaced by the type of the element
that is linked. For example, AttributeBinding when lin-
king attributes, or ReferenceBinding for references.

• Attribute to references: the class AttributeToRef cap-
tures links between attributes in the source model and

class Element extends WLinkEnd {} 
class Equivalent extends WLink { 

attribute similarity : Double;
reference source container : Element; 
reference target container : Element; 

}
class <Type>Equal extends Equivalent {} 
class <Type>Binding extends Equivalent {} 
class ElementMatch extends Equivalent {} 
class AttributeToRef extends Equivalent { 

reference targetAttribute container : Element 
}
class ElementInheritance extends Equivalent { 

reference super container : WLink; 
}

Fig. 6 Metamodel extensions
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references in the target model. The targetAttribute
contains an attribute of the element referred by the target
reference.

• Element matching: the class ElementMatch denotes the
from/to link between a source and a target element.

• Element inheritance: the class ElementInheritance
relates elements that inherit from others. The reference
super points to the parent element of a given element.

6 Matching transformations

In this section, we present the different kinds transformations
that produce weaving models. We define one generic model
management operation for each kind of transformation.

Definition 6.1 (Matching) Matching is the process of esta-
blishing relationships between elements belonging to dif-
ferent models.

The whole process is encapsulated in an operation called
Match.

Definition 6.2 (Match) The Match operation takes two
models MaandMb as input and produces a weaving model
Mw as output. Maand Mb conform to MMa and MMb;Mw

conforms to MMw.

Mw : M Mw = Match(Ma : M Ma, Mb : M Mb).

This definition allows creating elements between metamo-
dels or terminal models. The matching process uses different
techniques to create links between a set of model elements.
The goal is to discover the relationships between a set of input
models and to create a weaving model. We implement the
match operation using model transformations. This means
that the matching techniques are implemented as domain-
specific model transformations. These domain-specific
transformations are called matching transformations.

Definition 6.3 (Matching transformation) A matching trans-
formation is a domain-specific transformation T that takes
two or more models as input, and that transform them into a
new weaving model MW .

〈MW 1 : M MW 1, . . ., MW n : M MW n〉
= T (〈I N1 : M MI N1, . . ., I Nm : M MI Nm〉)

A matching transformation implements different methods
that produce weaving models. We may consider that the set
of input models are transformed in a weaving model. A wea-
ving can also be the input of a matching transformation. We
first execute a matching transformation that creates an initial
weaving model. This weaving model is refined (in order to
improve its accuracy) using additional matching transforma-
tions. We explain the different kinds of matching transfor-
mations in the following sections.

6.1 Creating weaving models

Transformations that create weaving models are the first kind
of matching transformations. The model management ope-
ration that creates weaving models is called CreateWeaving.
The transformation takes two models Ma and Mb as input and
transforms them into a weaving model Mw.Ma conforms to
M Ma, Mb conforms to M Mb and Mw conforms to M Mw.

Mw : M Mw = CreateW eaving(Ma : M Ma, Mb : M Mb).

This operation matches a set of elements of a given type of
Ma with a set of elements of a given type of Mb. It creates a
restricted Cartesian product Ma×Mb. The operation creates
a link between every pair of elements with the same type.

Figure 7 illustrates how the operation is implemented
using a generic transformation rule. M Maand M Mb denote
the input metamodels. M Mw denotes the output weaving
metamodel. This rule matches all elements of type 〈T ypeA〉
with elements of type 〈T ypeB〉 and produces an equivalence
link between a source and target element.

The operation can also be modified to update weaving
models (to create or remove other links). In this case, it has
a weaving model as extra input parameter.

Mw : M Mw = CreateW eaving

(Ma : M Ma, Mb : M Mb, M ′w : M Mw).

The weaving model with the type-restricted Cartesian Pro-
duct produces more links than necessary. The name simila-
rity method enables to match elements such as SSN-SSN,
or name-SSN. These links are further refined using different
transformations.

6.2 Calculating element similarity

These matching transformations compute a similarity value
between the elements referred by the source and target refe-
rences, for every link of a weaving model. This similarity
value is used to evaluate the semantic proximity between the
linked elements. A link with a high similarity value indicates
that there is a good probability that the source element must
be translated into the target element.

rule CreateLink { 
from

aSource : MMa!<TypeA>, aTarget : MMb!<TypeB> 
to

alink : MMw!Equivalent ( 
source <- aSource , 
target <- aTarget 

)
}

Fig. 7 Creation of equivalence links
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To compute the similarities, we define a model manage-
ment operation called AssignSimilarity. The operation takes
a weaving model M ′w and a weight as input, and it produces
a weaving model Mw as output. The input and the output
models conform to the same weaving metamodel M Mw. The
output weaving model has the new similarity values. Howe-
ver, there are many different methods to compute similarities
values. The tag 〈method〉 indicates the method that is imple-
mented.

Mw : MMw= AssignSimilarity〈method〉
(Mw

′ : MMw, weight : int).

The weight parameter is used to restrict the similarity
values between [0-weight]. If several transformations are
executed, the weights are normalized into 1, enabling a bet-
ter comparison of results between different methods. This
parameter enables adjusting the impact of a given similarity
method. For instance, a similarity method that compares ele-
ment names may have weight 0.8, and a similarity method
that compares types may have weight 0.2. This means that the
elements are considered more similar if they have the same
name as the same type. Different matching transformations
can be executed to obtain a more accurate similarity value.
We implement element-to-element and structural methods.
We explain them below.

6.2.1 Element-to-element similarities

Element-to-element similarities are computed taking the
source and target elements of an Equivalent link and compa-
ring the element names (or identifiers) in different ways. We
implement different methods:

• String similarity: the names of the model elements are
considered strings. The names are compared using string
comparison methods such as Levenshtein distance,
n-grams and edit distance [7].

• Dictionary of synonyms: the names are compared using
a dictionary of synonyms (we use WordNet [16]). This
dictionary provides a tree of synonyms. The similarity
between two terms (names of the model elements) is com-
puted according to the distance between these terms in
the synonym tree. This way, it is possible, for example,
to increase the similarity value between elements such as
Teacher and Professor, which does not yield good results
when using string comparison methods.

However, some of these methods are already implemen-
ted and available in public APIs. We thus extend the ATL
transformation engine to be able to call methods from exter-
nal APIs, such as the SimMetrics API [32] and the JWNL
API [22].

6.2.2 Structural similarity

Structural similarities are computed using the internal pro-
perties of the model elements, e.g., types, cardinality, and
the relationships between model elements, e.g., containment
or inheritance trees. These data are encoded in the
metamodels.

We implement a structural method called metamodel-
based similarity. The metamodel-based similarity method is
executed after an element-to-element method to improve the
accuracy of these methods. The metamodel-based method
calculates the similarity using the internal properties and the
relationships between model elements.

6.2.2.1 Internal properties Model elements have a set of
properties, such as type, cardinality, order, length, etc. Consi-
der two model elements a ∈ Ma and b ∈ Mb;Ma and Mb

are different models, but conform to the same metamodel. A
matching transformation compares the properties of a with
the properties of b. If a given property has the same value, a
temporary similarity value is increased by 1. This temporary
value is multiplied by the weight parameter and added to the
initial similarity value. However, this generic comparison is
valid only if Ma and Mb conform to the same metamodel.
When the metamodels are different, the operation is adapted
for every different property.

Consider two different metamodels, KM3 [19] and
SQL-DDL (the complete metamodels can be found in [1]).
We consider two elements from these metamodels, Attribute
from KM3 and Column from SQL-DDL. An Attribute has
properties such as type, lower, upper, isOrdered, or isUnique.
A Column has the following properties: default, type, keys,
canBeNull. These properties cannot be directly compared if
using a generic method, because their values are not com-
patible and there is no name equivalence. For example, the
transformation must take into account that canBeNull is a
Boolean. The same information is captured by analyzing the
value of lower property. We illustrate the transformation rule
for this case in Fig. 8.

This rule computes the similarity between KM3 and SQL-
DDL elements. It is a domain-specific rule, i.e., it is manually
designed and it is used uniquely with KM3 and SQL-DDL
metamodels. It selects an Equal link that satisfies the follo-
wing condition: the source reference points to an Attribute
of a KM3 model, and the target reference points to a Column
of a SQL-DDL model. The helper requiredSim compares the
required property with the CanBeNull property, and returns
1 if they satisfy the equality criteria.

6.2.2.2 Element relationships There are different kinds of
relationships between elements of the same metamodel, for
instance, containment or inheritance relationships. Most exis-
ting structural methods that exploit the element relationships
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rule UpdateStructuralSim { 
  from

mmw : MMw!Equal (mmw.source.isTypeOf(KM3!Attribute) 
and mmw.target.isTypeOf(SQLDDL!Column))

  to
alink : MMw!Equal ( 

similarity <- ( mmw.similarity + 
mmw.source.requiredSim( mmw.target )) * weight ) 

)

helper context KM3!Attribute def: requiredSim
(column : SQLDDL!Column) : Real = 

if (self.lower = 0 and column.canBeNull) then
1
else
0
endif;

Fig. 8 Structural similarity rule

rely on the following assumption: if two model elements are
similar, the neighbors of these elements are likely to be simi-
lar as well. For example, if a link between two attributes
of two different metamodels has a high similarity value, the
containing classes of these attributes have a good probability
to be similar.

We create a method inspired by the Similarity Flooding
(SF) algorithm [25]. We briefly explain the key idea of SF,
and then how we improve it. Consider two input metamo-
dels Maand Mb, and the model elements a, a′ ∈ Ma and
b, b′ ∈ Mb. Elements a and a′ are connected by an edge
(a, “containment”, a’). Elements b and b′ are connected by
an edge (b, “containment”, b’). Initially, the algorithm exe-
cutes a Cartesian product Ma × Mb and assigns a similarity
value for every pair of elements. Consider the pairs (a, b) and
(a’, b’), with similarities x and y, respectively. We can see
that a is related to a′ by a “containment” edge. The same is
valid for b and b′. The key idea of SF is to propagate the simi-
larity value between the pair of elements that are connected
by edges with the same label. In other words, it propagates
x to (b, b′) and updates the similarity value y.

Now, we explain our improvement to this solution. The
main advantage is the possibility of having different forms
of propagations based on different structural or semantic rela-
tionships between the elements of the input metamodels, and
not based only on the value of the label of the edges. Assu-
ming that the similarities are propagated between elements
connected by the same label is too restrictive, because it can-
not capture different semantic relationships between models.
In contrast, it is also too generic, because we cannot create
application-specific propagation models.

The propagation graph is encoded in a weaving model,
called weaving propagation model. The description of the
weaving propagation model is one of the extensions pre-
sented in this paper. The weaving model conforms to the
metamodel extension shown in Fig. 9 (it is written using
KM3).

The class WAssociation is an abstract class that depicts
relationships between extensions to WLinks within the same

weaving model. The class PropagationElement has two refe-
rences: outgoingLink refers to the link with the source simila-
rity value, and incomingLink refers to the link with the target
similarity value. The propagation attribute contains a value
that is multiplied with the similarity value of the outgoing
Link.

Our approach allows constructing different weaving pro-
pagation models and also propagating similarities between
elements conforming to different metamodels. The central
issue is how to create relevant propagation elements and pro-
pagation values between a set of links. We show how this
is done using the generic transformation rule from Fig. 10.
This rule assumes that the input model of the transformation
is a weaving model (AMW) that contains a set of links with
a similarity measure.

The rule input pattern matches two links. These links are
extensions of Equivalent links. The source link contains the
similarity value that is propagated. The target link contains
the similarity that is updated. This means the similarity is pro-
pagated from the source link to the target link. The
〈semanticguard〉 determines the condition that must be
filled to create a propagation element (we show different
semantic guards later). These semantic guards are specific
for every different relation between the elements. The rule
creates a propagation element and assigns the source and

package mw_core { 

class WAssociation extends WElement { 

 } 

}

package mmw_propagation { 

class PropagationElement extends WAssociation { 

reference incomingLink : Equivalent;

reference outgoingLink : Equivalent;

attribute propagation : Double;

 } 

}

Fig. 9 Weaving propagation metamodel extension

rule CreatePropagationElement { 
  from

source_link : AMW!Equivalent,    
    target_link : AMW!Equivalent (   

<semantic guard> 
    )  
to

out : AMW!PropagationElement ( 
propagation <- 1 / <propagation_value>,  
outgoingLink <- source_link, 
incomingLink <- target_link 

} 

Fig. 10 Creation of propagation edges
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target links to the corresponding references. The propaga-
tion value is computed in this rule.

We develop three different kinds of propagation based on
this generic rule. We illustrate our approach assuming that
the input metamodels conform to KM3. However, the rules
can be adapted to match different metamodels or models.

Containment-tree propagation: the containment tree
propagation method enables propagating the similarity bet-
ween elements that have containment relationships, for ins-
tance, classes and attributes or classes and references (note
that this is not the containment between classes, but between
classes and its members). Consider for example a KM3 Class.
The reference structuralFeatures points to classes Reference
and/or Attribute. We create propagation elements from the
links between classes to the links between its attributes. The
guard of the rule is shown below. The getReferredLeft/Right
is a helper that returns the element of the input metamodel.

The link between classes is assigned to the outgoingLink,
and the link between the attributes is assigned to the inco-
mingLink. In the same way as the SF algorithm, we consider
that a given method can contribute to a maximum similarity
value of 1. Consequently, the propagation value is 1 divided
by the multiplication of the total number of attributes of the
two input classes.

Relationship-tree propagation: this propagation method
takes into account the type of the references of two given
classes. For instance, consider the links between classes
(a, b) and (c, d); a has a reference to c and b has a refe-
rence to d. The relationship graph is used to propagate the
similarity between these two links.

Inheritance-tree propagation: this method enables pro-
pagating the similarity value from the link between two
source classes to links between the parent classes of the
source classes, if any. It can be considered as an extension to
the relationship tree propagation method. However, it takes
into account only the references that represent inheritance
relationships. In KM3, this reference is called supertypes.

These propagation elements are created in the same wea-
ving model. However, it is also possible to have separate
weaving models that are used with specific input models.
For example, the inheritance tree propagation is not relevant
when creating a weaving model between SQL-DDL models
that do not have native inheritance relationships. Thus, this
propagation method is not used in this particular matching
scenario.

These structures can be used to propagate the similarity
between elements of different metamodels as well. Consider
again the SQL-DDL and KM3 metamodels. The contain-
ment trees from both metamodels are different. However,
the containment relationship between a Table and a Column
is equivalent to the relationship between a Class and an Attri-
bute. The matching transformations enable to build a contain-
ment tree of these two metamodels.

6.3 Selecting best links

The third kind of matching transformations selects only the
links that satisfy a set of conditions. The selected links are
included in the final weaving model. These matching trans-
formations are generalized by the operation Select〈method〉.
Mw : M Mw = Select〈condition〉(Mw

′ : MMw).

The operation takes a weaving model M ′w as input and pro-
duces another weaving model Mw as output. Both weaving
models conform to the same weaving metamodel M Mw. The
condition tag denotes the selection criteria. Links are selected
using two methods: link filtering and link rewriting. These
methods are explained below.

6.3.1 Link filtering

There are different kinds of link filtering methods. The sim-
plest method (and also most used) is to set up a minimum
threshold value and to select only the links that have a simi-
larity value higher than this threshold. The biggest drawback
of this method is the choice of a correct threshold method.
Creating a new weaving model based on low threshold values
may yield too much false links, i.e., that should not be crea-
ted. In contrast, too high threshold values may filter relevant
links.

We implement a link filtering method that selects only the
links with the highest similarity values for every source ele-
ment. This is because, in a model integration transformation,
it is necessary to translate all the elements of the source model
(or as most as possible) into the target model. However, due
to semantic differences, the target metamodel cannot always
represent all the information from the sources. If one element
has more than one link with the same similarity values, the
filtering methods select all links, enabling to have more than
just one to one relations. This is a simplifying assumption,
but different methods could be implemented in such cases.

6.3.2 Link rewriting

Link rewriting methods analyze the relationships between
links of a filtered weaving model. These relationships are
used to transform simple links (e.g., Equivalent, Equal) into
complex links that capture different transformation patterns.
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Common patterns are nesting, inheritance, data conversion,
concatenation, splitting, etc. For instance, if more than one
source element is linked with the same target element through
an Equal link, this link can be rewritten as a Concatenation
link. The most common form of link rewriting is the nes-
ting between elements with containment relationships, for
example classes and attributes, or tables and columns.

Consider a weaving model that links two KM3 metamo-
dels, M Ma and M Mb. After the execution of a link filtering
transformation, it contains a set of ElementMatch and Attri-
buteBinding links. The class ElementMatch contains links
between classes, and AttributeBinding contains links
between attributes. Now consider classes A ∈ M Ma and
B ∈ M Mb, attributes a ∈ A, b ∈ B, links ElementMatch
(A, B) and AttributeBinding (a, b). Since a is an attribute
of A and b is an attribute of B, the AttributeBinding link
is rewritten as a link child of ElementMatch. Note that the
rewriting is not based on the similarity values.

These transformations are executed always after the com-
putation of some similarity estimation. The different guards
in the transformation rules match the existing links. The to
part enables to recreate the same links (to copy them) or to
create new kinds of complex links.

Link rewriting transformations are closely related to the
application scenario. These methods use more specific kinds
of links (e.g., not only equality or equivalence), which means
they are less generic than similarity calculation method.

In addition to the creation of complex links, link rewriting
transformations can create links that record different kinds
of information about the overall matching process. After the
execution of a set of matching transformations, it is normal
that some elements of the source metamodel are not linked
with any element of the target metamodel, and vice-versa. We
create a link rewriting transformation that records the source
and/or target elements that are not referenced by any link.
This kind of link can be used for different purposes: to verify
if the resulting weaving model is correct, to record which
elements cannot be translated from one model to another, or
to use them as input to algorithms that calculate the diffe-
rence between models. Figure 11 depicts an extension to the
core weaving metamodel that record elements that are not
linked.

The class NotFound (extension to WLink) has two refe-
rences, left and right. These references point to a class that
contains a list of elements from the source (left) or target
(right) metamodels. ListNotFound contains a list with all the
elements not found.

6.4 Chains of matching transformations

In this section, we present a graphical approach to easily
chain and to customize different matching transformations.
As we have already seen, the matching transformations have a

class NotFound extends WLink { 
reference left container : ListNotFound;
reference right container : ListNotFound;

}  
class ListNotFound extends WLink {   

-- @subsets end 
reference element [*] container : Element;

} 

Fig. 11 Metamodel extension for elements not linked

pre-defined signature. These transformations take a weaving
model, a source model (or metamodel), and a target model
(or metamodel) as input, and produce a new weaving model
as output. The transformations are parameterized by values
such as weight or threshold.

The parameterization of the matching transformations is
defined in a configuration model. This configuration model
contains parameters. This model conforms to a match para-
meter metamodel. This metamodel specifies the transforma-
tions that are executed, the execution order, and a set of
tuning parameters. This allows combining different matching
methods. The match parameter metamodel is illustrated in
Fig. 12.

The class ParameterSet contains a set of transformations
(ordered) and the set of metamodel extensions. The class
Transformation defines the standard attributes of every trans-
formation. A transformation is executed if the selected attri-
bute is set to true. The reference metamodels contains the
matching metamodels that need to be loaded to be able to
execute a transformation. The reference depends indicates
that one transformation can be executed only if a depending
transformation has been previously executed. For instance,
the similarity flooding transformation cannot be executed if
the weaving propagation model has not been previously crea-
ted. There are four kinds of transformations. They correspond
to the different kinds of matching transformations presented
in this section: LinkGeneration, ElementToElement, Structu-
ral, and Filter.

We define an interface that interprets the models confor-
ming to this metamodel and produces a generic configuration
window, as illustrated in Fig. 13. This interface is an example
to illustrate the parameter model.

The configuration window has one group for each dif-
ferent kind of transformation. Each group shows the set of
available parameters. The “?” (question mark) button shows
the dependencies between the transformations and the meta-
models. The “Save intermediate models” button saves a new
weaving model after the execution of each matching transfor-
mation. This enables to compare the intermediate results. The
configuration model loaded in this window is only illustra-
tive (different values are used and explained in the validation
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Fig. 12 Match parameter
metamodel

package match_parameter { 
abstract class NamedElement { 

attribute name : String;    
 } 

class ParameterSet extends NamedElement { 
reference transformations[*] ordered container: Transformation
reference metamodels [*] container : Metamodel;

 } 
abstract class Transformation extends NamedElement { 

reference metamodels [*] : Metamodel;
attribute description : String;
attribute selected : Boolean;
reference depends [*] : Transformation;

 } 
class LinkGeneration extends Transformation { } 
class ElementToElement extends Transformation { 

attribute weight : Double;
 } 

class Structural extends Transformation { } 
class Filter extends Transformation { 

attribute threshold : Double;
 } 

class Metamodel extends NamedElement { 
attribute description : String;

 } 
}

Fig. 13 Matching transformation configuration

section). The model defines the execution of the following
transformations: a restricted Cartesian product based on the
type of elements; a comparison over the element names, with
a weight of 0.8; a comparison over the elements cardinality,

with weight 0.2; a selection of the links with similarity value
higher than 0.6; and the normalization of the results.

The configuration metamodel and model brings some
advantages when combining the execution of different mat-
ching transformations. The correct tuning of matching trans-
formations requires a lot of experience on matching. The
configuration model enables recording these matching para-
meters. The model can be reused later by other developers.
The tuning of matching transformations is a subject of study
by itself. Each application scenario can have different para-
meters with the objective to obtain the best matching results.
The variation of a single parameter can modify the final gene-
rated weaving model. Consequently, the exchange of these
configuration models among the developers may help to bet-
ter tune their methods and environments. An environment
where these models can be easily reused is a significant help.

6.5 Transformation generation

The transformation generation is the last phase in the produc-
tion of model transformations. This phase translates the wea-
ving model produced by the matching transformations into
a transformation model. We implement higher-order trans-
formations (HOT’s) to translate the extensions of WLink’s
into transformation rules and bindings. A higher-order trans-
formation is a transformation, such that the input and/or the
output models are transformation models. The higher-order
transformations are based on a generic transformation pattern
presented in [10].

The definition of the generic pattern of transformation
relies on three facts. First, the core weaving metamodel
is formed by links, link endpoints and extensions of these
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Fig. 14 A HOT example rule rule AttributeBinding { 
from

amw : AMW!AttributeEqual  
to

atl : ATL!Binding ( 
propertyName <-
   MOF!EClassifier.getInstanceById(amw.target.element.ref).name, 
value <- amw.source 

) 
 } 

elements. Second, declarative transformation languages
have similar structure. Third, we use declarative patterns of
transformation that specify only what to transform, and not
how to transform. The pattern of transformation expresses the
execution semantics of the weaving model, because it trans-
forms the different kinds of links into executable mapping
expressions in some transformation language.

The generic pattern is specified using higher-order trans-
formations (HOT). A HOT takes as input a weaving model
conforming to an extension of the weaving metamodel and
transforms it into a transformation model.

Definition 6.4 (Higher-order transformation) A higher-
order transformation is a transformation TOU T : M MT =
TH OT (TI N : M MT ), such that the input and/or the output
models are transformation models. Higher-order transforma-
tions either take a transformation model as input, either pro-
duce a transformation model as output, or both.

This pattern is the basis to define a model management
operation called TransfGen. We define this operation below.

Definition 6.5 (TransfGen operation) TransfGen is a higher-
order transformation that takes a weaving model MW as input
and that produces a transformation model MT as output. The
weaving model conforms to a domain-specific weaving meta-
model extension M MW .

MT : M MT = T rans f Gen(MW : M MW ).

This operation is used to produce the model integration
transformation that transforms the input terminal models into
the output terminal models. We show in Fig. 14 an example
of a HOT written in ATL, which produces an ATL model.

It produces a transformation binding (i.e., the expression
targetAttribute ← variable.sourceAttribute). The property-
Name is the name of the target attribute. The getInstanceById
helper is used to recuperate the target element; value is the
source element.

7 Experiment

In this section, we present an experiment using a metamo-
del comparison and model integration application. It has the

same goal as the motivating example, i.e., to translate a set of
input models into a set of output models. Metamodels need
to be compared for several reasons. One important reason is
to discover the equivalent elements between two versions of
a metamodel. The result of a comparison is used to migrate
between the models conforming to these metamodels. First,
we present a general overview of the experiments. Second,
we analyze the results grouped by the different kinds of mat-
ching transformations. Finally, we present the results of the
generation of transformations.

7.1 General overview

Consider two versions of a Scade metamodel, Scade (v1) and
Scade (v2). The metamodels conform to the Ecore metameta-
model [14]. An Ecore metamodel may have several packages.
A package has a set of classes; each class has a set of attri-
butes and references. Scade is a standard for development of
embedded software for the Aircraft Industry [12] (the meta-
models used here are not the official versions of the Scade
suite). We do not describe in detail the metamodel elements,
because they have approximately 400 elements. In brief, the
metamodels define embedded components; the components
are in a specific state; the state may change (using state
machine concepts); the changes are specified using equations
and arithmetic expressions. The v2 of the metamodel is deri-
ved from v1. This means the metamodels are semantically
close. An organization using Scade decides to migrate from
a model conforming to Scade (v1) into a model conforming
to Scade (v2).

We define two execution settings. In setting 1, we exe-
cute a set of matching transformations between two com-
plete Scade metamodels. In setting 2, we extract one part of
both metamodels. This enables the comparison of the execu-
tion of the matching transformations over metamodels with
different size.

The number of elements of the metamodels of setting 1
is shown in Table 1. This table also shows the total number
of elements, the number of classes, attributes and references.
The sum of these three kinds of elements is less than the total
because the metamodels have other kinds of elements not
described here, such as data types.
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Table 1 Number of elements of setting 1

Elements Classes Attributes References

Version 1 449 106 105 231

Version 2 381 95 89 190

Table 2 Number of elements of setting 2

Elements Classes Attributes References

Version 1 134 38 39 50

Version 2 114 28 49 30

The number of elements of the metamodels of setting 2
is shown in Table 2. The elements of these metamodels are
extracted randomly. The metamodels have approximately 4
times less elements (1/4) than in setting 1.

We produce weaving models that contain links with equi-
valence semantics between the metamodels’ elements. The
comparison weaving model conforms to a weaving metamo-
del that is an extension of the core weaving metamodel. We
use the extensions presented in the previous sections (e.g.,
〈T ype〉 Equal) to represent the equivalence between ele-
ments. NotFound links are used to store the elements that do
not have any equivalence in the two metamodel versions.

In order to compare the results between both settings, we
execute the same set of matching transformations, with the
same input parameters. The execution parameters are saved
in a configuration model. We execute 10 different matching
transformations:

(1) Restricted Cartesian product.
(2) Name similarity: weight: 0.8.
(3) Cardinality similarity: weight: 0.1.
(4) Type and conformance similarity: weight: 0.1.
(5) Propagation graph with inheritance and relationship

propagation.
(6) Similarity flooding.
(7) Threshold selection: value: 0.6.
(8) Select left best: only the links that have the best value

for a given left element are selected.
(9) Link rewriting: the links are rewritten to represent the

nested and inheritance relationships.
(10) Storage of links without equivalences.

The values of the parameters are chosen after executing the
transformations several times under smaller examples (e.g.,
the motivating example), and then copied into our experi-
ments. In the next subsections, we analyze the results grou-
ped by the kind of matching transformation.

Table 3 Links created by a restricted Cartesian product

Total links Class links Attribute links Reference links

Setting 1 63.305 10.070 9.345 43.890

Setting 2 4.684 1.064 1.170 2.450

Table 4 Links with the same name

Class links Attribute links Reference links

Setting 1 95 437 593

Setting 2 28 36 49

7.1.1 Weaving creation

Table 3 shows the number of links created in both settings.
The restricted Cartesian product enables to diminish the
number of possible links, especially in setting 1. The total
number of links is 36% smaller. The Cartesian product would
produce 449 × 381 = 171.069 links. The same is valid
for setting 2, where the Cartesian product would produce
134×114 = 15.276 links. The resulting weaving model has
31% of the number of possible links.

7.1.2 Element-to-element similarities

Table 4 shows the number of links that have the same name,
thus, with similarity equal to 0.8.

Although the elements with the same name have a high
probability to be similar, this does not guarantee that the
links are all correct. This is the case of attributes and refe-
rences, because different classes may contain attributes with
the same name. The most common case is the attribute name,
which is present in a large number of classes. The matching
transformation that interprets the cardinality values enables
to increase the similarity of references. This transformation
does not impact the similarity of attributes, because attributes
have cardinality [1–1]. This makes a more accurate distinc-
tion between different references with the same name. The
type and conformance transformation increase the similari-
ties between attributes and references.

Both settings have similar results with respect to the pro-
portion between elements with high similarity values. Howe-
ver, the big difference on the number of total links has a
major impact on the overall performance, because the trans-
formations visit every pair of links to compute the similarity
estimation. The average number of elements of setting 1 is
only 4 times bigger than in setting 2. However, the restricted
Cartesian product creates 13.5 times more links.

We evaluate the performance of these transformations
using a Pentium 4, at 2.6 MHz, with 1GB of RAM. Table 5
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Table 5 Execution time of both settings

Sequential Combined

Setting 1 1.320 360.73

Setting 2 50.87 14.87

shows the execution time, in seconds, of both settings. First,
we execute the matching transformations separately, one by
one (sequential approach). This includes model loading,
saving, and computation of similarities. The result of each
transformation is saved in a separated weaving model.
Second, we execute a single transformation that combines
all the methods (combined approach) and produces only one
weaving model with the final results.

In setting 1, the combined approach is executed 3.6 times
faster than the sequential approach. In setting 2, the combined
approach is 3.4 faster. Although the combined approach has
better performance, it is less modular, because the methods
are manually coded in a single transformation. This makes it
difficult to reuse and parameterize the methods for different
scenarios. Moreover, the sequential approach enables com-
paring the intermediate results of each transformation.

In the sequential approach, setting 2 is executed 25.9 times
faster than setting 1. In the combined approach, setting 2 is
executed 24.2 times faster than setting 1. The performance
ratio between both settings is almost the same in both exe-
cutions.

This high performance gain motivates the execution of the
matching transformations using smaller metamodels. This
means we may execute the matching transformations much
faster if we separate the metamodels of setting 1 in 4 sub-
metamodels. However, it is still necessary to check if the
weaving models produced have the same links.

7.1.3 Structural similarities

After the element-to-element similarities, we create a wea-
ving propagation model and execute the similarity flooding
transformation. These transformations enable producing a
more accurate result, because they increase the similarity
between references or attributes.

The main advantage of these methods is to increase the
similarity by analyzing the containment and inheritance rela-
tions between the metamodel elements. These methods
increase the difference between the elements with higher
and lower similarities. This enables better distinguishing ele-
ment equivalencies. For instance, the average difference bet-
ween the lowest and the highest similarity values is 0.2 using
element-to-element transformations. Using the propagation
graph and the similarity flooding, the difference augmented
to 0.6.

Table 6 Number of links of the link rewriting transformation

Class links Attribute links Reference links

Setting 1 95 91 193

Setting 2 28 29 31

Table 7 Elements not found and precision

Not found Precision (%)

Setting 1 95 91

Setting 2 28 73

7.1.4 Selection of best links

The last kind of transformations is the selection of the best
links. The threshold of 0.6 filters most of the links. This
threshold value does not have an impact on the final weaving
model, because the subsequent selection methods execute
more refined solutions. However, it improves performance,
since the subsequent methods have less links to process. The
threshold transformation returns a number of links that is
approximately the same as the links with a high similarity of
name.

The select left best and nested rewriting methods produce
a weaving model very close to the final result. Table 6 shows
the number of links created.

We can see that the biggest difference with the element-
to-element transformations is on the number of links between
attributes and references.

All the attribute and reference links are rewritten as
children of a class link. In addition, setting 1 creates 71
class links that are child of other class links. This means
that the transformations reconstruct the inheritance relation-
ships between classes. The last link rewriting transforma-
tion produces NotFound links to store the elements without
equivalence links. Table 7 shows the number of elements
not found in both settings and the precision of the trans-
formations (the precision is the percentage of correct
links).

The precision of setting 1 is better than setting 2. The
main reason is because setting 1 has all the metamodel ele-
ments to compute the similarities. The metamodel excerpts
of setting 2 were created randomly. Consequently, the trans-
formations have less information to compute the similarities.
However, setting 2 has much better performance results. The
choice of the appropriate method depends on the precision
desired, as well as on the computational resources available.
In addition, the matching of metamodels with too many ele-
ments hardens the task of verifying the correctness of the
results.
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abstract rule Object_2_Object26 { 
  from 
    v_left : Scadev1!Object 

to
    v_right : Scadev2!Object ( 
      name <- v_left.name, 
      runLine <- v_left.runLine 
    ) 
}
rule Label_2_Label21 extends Object_2_Object26 { 
  from 
    v_left : Scadev1!Label 

to
    v_right : Scadev2!Label ( 
      expression <- Set {v_left.expression} 
    ) 
}

Fig. 15 A part of the transformation generated automatically

7.1.5 Transformation generation

Once the weaving model is created, it is interpreted by a
HOT that transforms the declarative links of the weaving
model into an executable ATL transformation. Each Equal
link is transformed into an ATL rule. The left and right refe-
rences are transformed into the input and output elements.
The AttributeEqual and ReferenceEqual links are transfor-
med into bindings.

Figure 15 shows an excerpt of the transformation that is
generated for setting 1.

This transformation contains binding expressions between
the equivalent elements. The identifiers after the rule names
are automatically generated. This model transformation is
responsible to translate the model conforming to Scade (v1)
into the model conforming to Scade (v2). The transformation
generated in setting 1 has 1030 lines and that in setting 2 has
282 lines.

7.1.6 Summary

This experiment demonstrates how weaving models are used
to compare different metamodels and to migrate between the
models conforming to these metamodels. It shows that the
matching transformation scales to large metamodels. How-
ever, better performance results are achieved with smaller
metamodels, nevertheless, with lower precision. Thus, the
choice of the appropriate transformation depends on the pre-
cision desired, as well as on the resources available.

The different kinds of links enable to clearly identify the
relationships between the elements. The resulting weaving
model can be refined using graphical facilities of the weaving
engine used. The user interface of the weaving engine helps
a lot, because we are not experts in the aircraft domain.

We choose to implement a set of simple methods bet-
ween two metamodels that are semantically close. In order

to achieve good results with metamodels with a larger num-
ber of differences, additional methods should also be imple-
mented. For instance, domain ontologies could be used to
improve the result.

The easy configuration of the matching transformations
enables using methods adapted to the comparison use case.
The weaving extensions are simple, and can be generalized
for different scenarios. Finally, the weaving model is used to
successfully generate the executable ATL transformation to
perform the model migration.

The experiment is developed using the AMMA platform
(ATLAS Model Management Architecture). AMMA pro-
vides open-source plug-ins for model transformation
(ATLAS Transformation Language [21]) and for model wea-
ving (ATLAS Model Weaver [9]).This use case is available
for download at (http://www.eclipse.org/gmt/amw/usecases/
compare/). This page contains a fully implemented example,
with general documentation, a HowTo and the sources.

8 Related work

There has been extensive work on how to find relationships
between schemas and ontologies. These approaches have dif-
ferent goals, such as data and schema integration [2,8,24],
ontology merging and alignment [15,29,30], or ontology
integration [13]. Among these several approaches, COMA++
[2] and the API of Euzenat [15] are the solutions most similar
to ours.

COMA++ implements a set of methods, using, for ins-
tance, element-to-element methods or incremental matching.
COMA++ provides an interactive user interface to combine
these methods. Matching transformations provide a more
suitable mechanism for adaptation, because the declarative
nature of the transformations allows abstracting implemen-
tation details, such as the creation of new elements and the
match of several elements. Other methods can be imple-
mented and integrated into our platform, for instance, to use
domain ontologies to help on the matching process.

The work of Euzenat [15] factors out schema matching
features and proposes a generic API. The API provides inter-
face methods used to implement different matching methods
and to combine different matching results. The main draw-
back of this API is that the new matching methods must be
implemented almost from scratch. The API does not provide
interfaces for each different matching phase. We implement
these operations using model transformations. This enables
to create customized methods to match different metamodels.
However, we do not provide operations to evaluate different
matching results.

The solution in [13] proposes machine learning techniques
to select among a set of methods, and not to create methods as
in most part of solutions. This is a complementary approach.
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The machine learning techniques could be enhanced to
support our matching transformations as input.

iMAP [8] is one of the few approaches that create
complex links. However, the links are all created in the begin-
ning of a matching (equivalent to our CreateWeaving opera-
tion). We create complex mappings after filtering a weaving
model. Our link rewriting method creates a smaller num-
ber of complex links that are targeted to produce model
transformations.

The weaving models and metamodels are similar to triple
graph grammar. The major differences are that weaving
models conform an explicit metamodel, and they can also
be transformed. This enabled the use of weaving models as
input to the matching transformations.

The work from [34] presents a solution to help on the crea-
tion of model transformations. The main difference is that
it uses mappings between terminal models, and not meta-
models. MTBE [35] also uses mappings between terminal
models. The model transformation is then derived from these
mappings. These approaches can be effective when using ter-
minal models with reasonable size. However, they must have
at least one sample of the input and output models, which is
not the case of our approach.

Similarity Flooding (SF) [25] is a generic structural
method that propagates the similarity of a pair of nodes
through their neighbors. However, as the authors say, it is
not adapted to match models conforming to different meta-
models. This algorithm is the basis of our metamodel-based
matching transformations. We improve this method to sup-
port the matching of different metamodels, with two different
ways to propagate the similarities through the neighbors’
elements.

Clio [28] is one of the first solutions to provide a semi-
automatic mechanism to produce transformations based on
a set of relationships. Our proposal has a similar architec-
ture. Clio has evolved in [17] to support the production of
more complex mappings with nested structures. However,
the definition of the relationships cannot be extended,
which hardens the task of creating complex kinds of
mappings. Furthermore, Clio does not provide facilities to
easily develop or adapt matching methods, which are coded
in some programming language and plugged into the
tool.

Model management solutions [3,5,25,27] propose to
create operations that encapsulate the most frequently execu-
ted metadata tasks. The transformation and weaving engines
presented in our approach can be used as a generic solution
to develop other model management operations.

Model management solutions have been initially deve-
loped to consider simple kinds of mappings. The work in
[6] revises such solutions stating that model management
must support operations over complex mappings and that
the runtime is a central component. This tightens the relation

between model management and our solution, since the two
key aspects of our approach is the extensibility of the wea-
ving metamodels and the execution of different operations
using model transformations.

The work from [26] describes a mapping compilation
solution to bridge between applications and databases. Map-
ping compilation is an important aspect that has several
research issues yet to be solved. The mapping compilation
phase is equivalent to the generation of transformations
of our solution and Clio. The authors exploit different
aspects specific to databases, such as outer joins and case
statements.

The solution in [31] enables automating the tuning of mat-
ching parameters using synthetic scenarios. The results of
such solution could be stored in the form of our configura-
tion model to be shared among developers.

9 Conclusions

In this paper, we presented a solution to automate the produc-
tion of model transformations and proposed to use matching
transformations that create weaving models. These transfor-
mations execute different matching methods. The weaving
models capture common transformation patterns between
model elements. A weaving model is translated into exe-
cutable model transformations.

We showed that matching transformations are a practi-
cal solution to implement or adapt matching methods. The
use of declarative transformation languages enable to abs-
tract implementation details on how to apply these methods.
The separation of the whole matching process into different
kinds of matching transformations allows combining dif-
ferent methods in a straightforward way.

The matching transformations enable the creation of
weaving models between models conforming to different
metamodels, and the creation of links only between a res-
tricted set of elements. We proposed a metamodel-based
matching transformation that enables propagating the simila-
rity between elements in different ways. We presented a link
rewriting operation that analyzes the relationships between
the links of a weaving model. These links are transformed
into complex kind of links. In addition, we presented a trans-
formation that saves information about the elements that are
not matched, enabling to easily identify them.

We proposed saving the execution parameters of the mat-
ching transformations in a configuration model. This model is
used to share these execution parameters. This is an important
achievement, since the tuning of matching transformations
is a difficult task.

To validate our approach, we conducted a set of experi-
ments. The matching of large metamodels had better preci-
sion for the example provided. This does not mean, however,
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that small metamodels cannot produce good results.
Matching large metamodels may have performance
problems due to the large number of links. Moreover, too
large metamodels make it difficult to verify if the results are
correct.

The optimization of these matching transformations is
becoming important and is a subject for future work. For
instance, after choosing a set of operations to create a wea-
ving model, these operations can be merged by a transfor-
mation engine to be executed in a single rule. The major
performance concern is caused by the number of links crea-
ted by the Cartesian product. There are different possibilities
to diminish the number of initial links. For instance, to fil-
ter the links already on the moment of creation, by creating
links only with similarity higher than a minimum bound.
We saw that the development of matching transformations
helps on the specification of methods because it diminishes
the gap between the conceptual structures and the imple-
mentation. This motivates the creation of a domain speci-
fic language for developing matching methods, facilitating
even more the development, testing and reusability of such
methods.

Acknowledgments This work is partially supported by ModelPlex
European integrated project FP6-IP 034081 (Modeling Solutions for
Complex Systems).

Appendix A

This appendix presents the links created and the transform-
ation produced for the motivating example of Sect. 2.

We execute the following matching transformations
(in that order): (1) Cartesian product, (2) string comparison—
Levenshtein distance (with weight 1.0), (3) propagation wea-
ving model, (4) similarity flooding, (5) link rewriting and (6)
link rewriting (abstract refactoring). The transformation 1
creates the set of links. The transformations 2, 3 and 4 modify
the similarity value, without adding or deleting any links. The
transformations 5 and 6 select the links with higher similarity
value and re-organize the links in the weaving models. We
show the results of these 2 last transformations below.

The link rewriting transformation produces the links
shown in Table 8. These links are saved in a weaving model.

After the first rewriting of links, there are still some adjust-
ments to be done. It is necessary to reorganize the links invol-
ving abstract classes (Person), because abstract classes are
not transformed. Table 9 shows the links created after exe-
cuting the refactoring transformation.

The transformation deletes the ElementMatch links that
have at least one endpoint referring to an abstract class.
However, it does not delete the AttributeBinding links, since
they are needed to produce the final transformation.

Table 8 Link rewriting transformation results

Type of link Source Target

ElementMatch Person Professor

AttributeBinding Person : name Professor : name

AttributeBinding Person : SSN Professor : SSN

AttributeBinding Person : city Address : city

AttributeBinding Person : zip_code Address : code

AttributeBinding Person : street Address : street

ElementMatch Teacher Professor

ElementMatch Person Student

AttributeBinding Person : name Student : name

AttributeBinding Person : SSN Student : SSN

ElementMatch Student Student

ElementMatch Undergraduate Student

ElementMatch Master Student

ReferenceBinding Master : advisor Student : advisor

Table 9 Link rewriting (abstract refactoring) results

Type of link Source Target

AttributeBinding Person : name Professor : name

AttributeBinding Person : SSN Professor : SSN

AttributeBinding Person : city Address : city

AttributeBinding Person : zip_code Address : code

AttributeBinding Person : street Address : street

ElementMatch Teacher Professor

AttributeBinding Person : name Student : name

AttributeBinding Person : SSN Student : SSN

ElementMatch Undergraduate Student

ElementMatch Master Student

ReferenceBinding Master : advisor Student : advisor

These links are used to produce the transformation shown
in Listing A.1. The Inschema represents the input metamodel
(MM1), and the Outschema represents the output metamodel
(MM2). The transformation has three rules; each rule has a
set of bindings. The transformation copies the bindings of
the abstract class Person to its children classes. This trans-
formation is automatically produced. However, there is one
manual refinement that must be done to obtain the final desi-
red transformation (the same transformation of the motiva-
ting example). We manually create a new element Address
for each rule, and we correct the “address” bindings. The use
of matching transformations enables obtaining a good first
transformation, with some minor refinements. This avoids
writing repetitive transformation code.
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Listing A.1. Transformation produced automatically
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