
P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

Distributed and Parallel Databases 7, 99–121 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Load Balancing for Parallel Query Execution
on NUMA Multiprocessors∗
LUC BOUGANIM luc.bouganim@inria.fr
DANIELA FLORESCU daniela.florescu@inria.fr
PATRICK VALDURIEZ patrick.valduriez@inria.fr
INRIA Rocquencourt, France

Received ; Revised June 9, 1997; Accepted August 1, 1997

Recommended by: Tamer Ozsu

Abstract. To scale up to high-end configurations, shared-memory multiprocessors are evolving towards Non
Uniform Memory Access (NUMA) architectures. In this paper, we address the central problem of load balancing
during parallel query execution in NUMA multiprocessors. We first show that an execution model for NUMA
should not use data partitioning (as shared-nothing systems do) but should strive to exploit efficient shared-memory
strategies like Synchronous Pipelining (SP). However, SP has problems in NUMA, especially with skewed data.
Thus, we propose a new execution strategy which solves these problems. The basic idea is to allow partial
materialization of intermediate results and to make them progressivly public, i.e., able to be processed by any
processor, as needed to avoid processor idle times. Hence, we call this strategy Progressive Sharing (PS). We
conducted a performance comparison using an implementation of SP and PS on a 72-processor KSR1 computer,
with many queries and large relations. With no skew, SP and PS have both linear speed-up. However, the impact
of skew is very severe on SP performance while it is insignificant on PS. Finally, we show that, in NUMA, PS can
also be beneficial in executing several pipeline chains concurrently.

Keywords: parallel databases, query execution, load balancing, NUMA, synchronous pipeline, execution
engines

1. Introduction

Commercial database systems implemented on shared-memory multiprocessors, such as
Sequent, Sun, Bull’s Escala, are enjoying a fast growing success. There are several reasons
for this [45]. First, like almost all parallel database systems, they are used primarily for
decision support applications, (e.g., data warehouse) a strong market which is now doubling
every year. Second, shared-memory provides a uniform programming model which eases
porting of database systems and simplifies database tuning. Third, it provides the best
performance/price ratio for a restricted number of processors (e.g., up to 20) [3].

Unlike shared-nothing [12], shared-memory does not scale up to high-end configurations
(with hundreds of processors and disks). To overcome this limitation, shared-memory multi-
processors are evolving towards Non Uniform Memory Access (NUMA) architectures.

∗This work has been done in the context of Dyade, a joint R&D venture between Bull and INRIA.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

100 BOUGANIM, FLORESCU AND VALDURIEZ

The objective is to provide a shared-memory programming model and all its benefits, in a
scalable parallel architecture.

Two classes of NUMA architecture have emerged: Cache Coherent NUMA machines
(CC-NUMA) [1, 16, 26, 28, 29], which statically divide the main memory among the nodes
of the system, and Cache Only Memory Architectures (COMA) [14, 18], which convert the
per node memory into a large cache of the shared address space. When a processor accesses
a data item which is not locally cached, the item is shipped transparently from the remote
memory to the local memory. Because shared-memory and cache coherency are supported
by hardware, remote memory access is very efficient, only several times (typically four
times) the cost of local access.

NUMA is now based on international standards and off-the-shelf components. For ins-
tance, the Data General nuSMP machine and the Sequent NUMA-Q 2000 [31] using the
ANSI/ IEEE Standard Scalable Coherent Interface (SCI) [23] to interconnect multiple Intel
Standard High Volume (SHV) server nodes. Each SHV node consists of 4 Pentium Pro
processors, up to 4 GB of memory and dual peer PCI/ IO subsystems [10, 24]. Other
examples of NUMA computers are Kendal Square Research’s KSR1 and Convex’s SPP1200
which can scale up to hundreds of processors.

The “strong” argument for NUMA is that it does not require any rewriting of application
software. However, some rewriting is necessary in the operating system and in the database
engine. In response to the nuSMP announcement from Data General, SCO has provided a
NUMA version of Unix called Gemini [9], Oracle has modified its kernel [8] in order to
optimize the use of 64 GB of main memory allowed by NUMA multiprocessors.

In this paper, we consider the parallel execution of complex queries in NUMA Multi-
processors. We are interested in finding an execution model well suited for NUMA which
provides a balanced parallel execution. There are two dimensions for parallelizing complex
queries: intraoperator parallelism (by executing each operator in parallel) and interoper-
ator pipelined or independent parallelism (by executing several operators of the query in
parallel). The objective of parallel query execution is to reduce query response time by
balancing the query load among multiple processors. Poor load balancing occurs when
some processors are overloaded while some others remain idle. Load balancing strategies
have been proposed on either shared-nothing [2, 5, 11, 15, 25, 33, 38, 40, 47], shared-disk
[22, 30, 32] or shared-memory [6, 21, 35, 41].

In shared-nothing, the use of a nonpartitioned execution model, i.e., where each processor
potentially accesses all the data, is inefficient because of intensive remote data access. Thus,
parallelism is obtained through data partitioning, i.e., relations are physically partitioned
during query processing using a partitioning function like hashing. Then, each processor
accesses only a subset of the data, thus reducing interference and increasing the locality of
reference. However, a partitioned execution model has three main drawbacks: (i) overhead
of data redistribution for complex queries, (ii) processor synchronization, (iii) difficult load
balancing which requires much tuning.

One of the key advantages of shared-memory over shared-nothing is that execution
models based on partitioning [17] or not [21, 32, 36] can be used. The use of nonpartitioned
techniques eases load balancing and tuning. Moreover, there is no redistribution. However,
it can lead to high interference and poor locality of reference. Shekita and Young [41]

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 101

analytically compared the two approaches in a shared-memory context. It is concluded
that, if cache effects are ignored, the two approaches have similar behavior.

A very efficient execution strategy for shared-memory isSynchronous Pipelining(SP)
[21, 37, 41]. It has three main advantages. First, it requires very little processor synchroniza-
tion during execution. Second, it does not materialize intermediate results, which incurs
little memory consumption. Third, unlike shared-nothing approaches, it does not suffer
from load balancing problems such as cost model errors, pipeline delay and discretization
errors [49].

NUMA also allows using either model. However, the heterogeneous structure of the
memory may impact the choice of one model. In this paper, we first show that an execution
model for NUMA should not use data partitioning but should strive to exploit efficient
shared-memory strategies like Synchronous Pipelining (SP). However, considering NUMA
has two consequences which can worsen the impact of skewed data distributions [48] on
load balancing. First, the global memory is potentially very large, and makes it possible for
the optimizer to consider execution plans with long pipeline chains. Second, the number
of processors is potentially large. We show that these two factors have a negative impact
on SP in case of skew.

We propose a new execution strategy which solves the inherent problems of SP, which
are magnified in NUMA. The basic idea is to allow partial materialization of intermediate
results and make them progressivlypublic, i.e., able to be processed by any processor, as
needed to avoid processor idle times. Hence, we call this strategyProgressive Sharing(PS).
It yields excellent load balancing, even with high skew. In addition, PS can be beneficial in
executing several pipeline chains concurrently. To validate PS and study its performance,
we have implemented SP and PS on a 72-processor KSR1 computer which is a COMA
multiprocessor.1

The paper is organized as follows. Section 2 presents the parallel execution plans,
which are the input for the execution model. Section 3 discusses the relevance of shared-
memory and shared-nothing execution models for NUMA. Section 4 details the SP stra-
tegy and discusses its problems in NUMA, in particular, with data skew. Section 5 de-
scribes our parallel execution model for NUMA. Section 6 describes our implementation
on the KSR1 computer and gives a performance comparison of SP and PS. Section 7
concludes.

2. Definitions

Parallel execution plans are the input for the parallel execution model. Aparallel execution
plan consists of an operator tree with operator scheduling. Different shapes can be con-
sidered: left-deep, right-deep, segmented right-deep, or bushy. Bushy trees are the most
appealing because they offer the best opportunities to minimize the size of intermediate
results [41] and to exploit all kinds of parallelism [27].

The operator treeresults from the “macroexpansion” of the query tree [19]. Nodes
represent atomic operators that implement relational algebra and edges represent dataflow.
In order to exhibit pipelined parallelism, two kinds of edges are distinguished: blocking

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

102 BOUGANIM, FLORESCU AND VALDURIEZ

Figure 1. A query tree and the corresponding operator tree.

and pipelinable. A blocking edge indicates that the data is entirely produced before it can
be consumed. Thus, an operator with a blocking input must wait for the entire operand to
be materialized before it can start. A pipelinable edge indicates that data can be consumed
“one-tuple-at-a-time”. To simplify the presentation, we consider an operator tree that uses
only hash join2 [39, 46]. In this case, three atomic operators are needed: scan to read
each base relation, build and probe. The build operator is used to produce a hash table with
tuples from the inner relation, thus producing a blocking output. Then, tuples from the
outer relation are probed with the hash table. Probe produces a pipelinable output, i.e., the
result tuples.

An operator tree can be decomposed as a set of maximum pipeline chains, i.e., chains
with highest numbers of pipelined operators, which can be entirely executed in memory.
These pipeline chains are called fragments [41] or tasks [21]. Figure 1 shows a right-deep
tree involving four relations and the corresponding parallel execution plan. Reading of
relations R2, R3 and R4 as well as creation of the corresponding hash tables H2, H3 and
H4 can be done in parallel. The execution of the last pipeline chain probing the hash tables
is started only when H2, H3 and H4 have been built.

Assuming NUMA impacts the parallelization decisions made by the optimizer [43] since
the available global memory is supposed to be large. Thus, with complex queries, we
can expect that the best execution plans produced by the optimizer will often be bushy
trees with long pipeline chains (at the extreme, only one pipeline chain) because they
avoid materialization of intermediate results and provide good opportunities for inter- and
intraoperator parallelism.

3. Execution models relevant for NUMA

In this section, we expose the two basic ways to process a multi-join query on a multipro-
cessor: (i) partitioned execution model with real pipeline, well suited for shared-nothing;
and (ii) nonpartitioned execution model with implicit pipeline (synchronous pipeline), well
suited for shared-memory. Then we present some experimental results from a previous
study which help us selecting the best execution model for NUMA multiprocessors.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 103

3.1. Partitioned execution model

In a shared-nothing architecture, a partitioned execution model is used in order to avoid
intensive communication between processors. In such model, the execution of an algebra
operator is split in suboperators, each one applied to a subset of the data. For example, the
result ofR join Scan be computed as the union of the join ofRi andSi , if Ri andSi were
obtained by a partitioning function like hashing on the join attribute.

The problem of such approach is that each join operand must be redistributed on the join
attribute, using the same partitioning function, before processing the join. This has three
main drawbacks:

• The communication implied by the redistribution phase itself is very costly (however
unavoidable in shared-nothing architecture).
• The redistribution phase implies a lot of synchronization between producers and con-

sumers.
• Even with a perfect partitioning function, skewed data distributions [48] may induce

uneven partitions. These uneven partitions may destroy thelocality of referenceob-
tained by the partitioning (to avoid unbalanced execution, the data will be dynamically
redistributed).

3.2. Synchronous pipeline strategy

SP has proven to yield excellent load balancing in shared-memory [21, 37, 41]. Each
processor is multiplexed between I/O and CPU threads and participates in every operator
of a pipeline chain. I/O threads are used to read the base relations into buffers. Each
CPU thread reads tuples from the buffers and applies successively each atomic operator
of the pipeline chain using procedure calls. SP is, in fact, a simple parallelization of the
monoprocessor synchronous pipeline strategy.

To illustrate this strategy, we describe below the algorithm of operator ProbeH2 (see
figure 1):

1. ProbeH2(tR1: Tuple(R1), H2: HashTable(R2))

2. foreach tuple tH2 in H2 matching with tR1

3. if pred(tR1,tH2) then ProbeH3([tR1,tH2], H3)

A procedure call to ProbeH2 is made for each tuple tR1 that satisfies the Scan predicate.
For each tuple produced by probing tuple tR1 with the hash table H2, a procedure call is
made to ProbeH3, and so on until producing the last result tuple of the pipeline chain.

Therefore, with synchronous pipeline, there is no synchronization between processors.
In fact, the producer of a tuple is also its consumer (the tuple is the argument of the procedure
call). However, during the join, each processor potentially accesses all the data involved in
the join (and not a subset of the data as in a partitioned execution model).

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

104 BOUGANIM, FLORESCU AND VALDURIEZ

3.3. Previous study

In [7], we have proposed an execution model, based on partitioning, calledDynamic Pro-
cessing(DP), for a hierarchical architecture (i.e., a shared-nothing system whose nodes are
shared-memory multiprocessors). In DP, the query work is decomposed in self-contained
units of sequential processing, each of which can be carried out by any processor. In-
tuitively, a processor can migrate horizontally and vertically along the query work. The
main advantage is to minimize the communication overhead of internode load balancing by
maximizing intra- and interoperator load balancing within shared-memory nodes. Experi-
mental comparison between DP and a classic static load balancing technique have shown
performance gains between 14 and 39%.

In this study, we also compare the performance of DP and SP on a shared-memory ma-
chine. For this purpose, we had to simulate shared-memory on the KSR1. All data accesses
were artificially made in the local memory, in order to avoid the effect of NUMA (remote
memory access). The experiments have shown that, in a shared-memory multiprocessor,
the performance of DP is close to that of SP (see figure 2(a)), which confirmed the analysis
in [41].

As a starting point of the work herein described, we have modified our implementation
on the KSR1 computer in order to take into account the NUMA properties of the KSR1, by
making remote memory access for reading or writing tuples. To assess the relevance of a
partitioned execution model for NUMA, we made measurements with the NUMA version
of SP and DP. The same measurements as in [7] have shown a performance difference of
the order of 35% in favor of SP (see figure 2(b)).3

The performance degradation of DP stems from intensive data redistribution (all rela-
tions), which implies interference between processors and remote data writing (much more
costly than remote data reading during the probe phase of the synchronous pipeline strategy).

To summarize, a partitioned execution model is well suited for shared-nothing or hierar-
chical architectures. However, the use of a nonpartitioned execution model like SP seems
more appropriate for NUMA.

Figure 2. Speed-up of SP and DP: (a) on shared-memory, (b) on NUMA.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 105

Figure 3. Processing of one tuple of R1.

4. Synchronous pipelining and data skew

Skewed (i.e., nonuniform) data distributions are quite frequent in practice and can hurt load
balancing. The effects of skew on parallel execution are discussed in [48] in a shared-
nothing context. The taxonomy of [48] does not directly apply to execution models which
do not use data partitioning, as is the case for SP. As an evidence,redistribution skewdoes
not hurt SP.

Figure 3 illustrates the processing of one tuple along the probe chain. The tuples produced
by a tuple t of the base relation R1 form a virtual tree. Two observations can be made. First,
SP does depth-first processing of this tree (for instance, t9 is produced before t21). At any
time, the tuples being processed are referenced in the stacks of procedure calls. Second,
all the tuples in the tree rooted at t are produced and processed by a single thread. On this
simple example, we can indentify two kinds of skew that do hurt SP.

• High selectivity skewappears on a select operator (if any) at the beginning of the pipeline
chain, if the result reduces to a small number of tuples, less than the number of threads.
Since each tuple produced by the select operator is entirely processed (across the entire
pipeline) by a single thread, this can lead to poor load balancing. An extreme case is
when a single tuple is initially selected and the entire load generated is done by a single
thread (while all the other threads are idle).
• Product skewappears on a join operator, when there are high variations in the numbers

of matching tuples of the inner relation for the tuples of the outer relation. This is rare for
joins on a key attribute, but quite frequent for inequi-joins or joins on non-key attributes.

These two kinds of skew lead to high differences in tuple processing time. Moreover,
consuming base relations one-tuple-at-a-time can yield high interference overhead [6, 20]
and this is generally avoided by having each thread consuming several tuples in batch mode.
Given the fact that each batch is entirely processed by one thread, this can worsen the impact
of skew.

To evaluate the negative effects of skew on a parallel execution in NUMA, we use a
simple analytical model based on the following assumptions. (i) Only one operator of the
pipeline chain, at ther th rank amongn operators, has skew (we consider that the operators

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

106 BOUGANIM, FLORESCU AND VALDURIEZ

are numbered from 1 ton following their order in the pipeline chain). (ii) The global cost
of each operator is the same, i.e., assumingT to be the total CPU time of the sequential
execution,T/n is the execution time of each operator. (iii) One tuple, the “skewed” tuple
producesk% of that operator’s result, and there arep threads allocated to the query.

The thread processing the skewed tuple doesk% of the skewed operator and of all the
subsequent operators, thus taking,k ∗ (n− r + 1) ∗T/n to process this tuple. For instance,
if the skewed operator is the first one, it will processk% of the entire pipeline. Thus, the
maximum speed-up can be computed by:

min

(
p,

n

k ∗ (n− r + 1)

)
. (1)

Figure 4 shows the speed-ups obtained versusk for different ranksr from one graph to the
other. The results illustrate that even a small (but realistic) skew factor can have a very
negative impact on the performance of SP.

Based on this simple model, we can observe that the speed-up degradation in case of
skew depends on: (i) the skew factork, (ii) the positionr of the skewed operator in the
pipeline chain and (iii) the number of threadsp. The speed-up gets worse as the skewed
operator reaches the beginning of the chain. Furthermore, the maximum speed-up is bound
by a factor independent on the number of processors. Therefore, the loss of potential gain
increases with the number of processors.

Although it does not appear on our analytical model, the length of the pipeline chain also
impacts load balancing in case of skew. When several operators are skewed, the negative
effects can be, in the worst case, exponential in the length of the pipeline chain. A final
consideration is the impact of batch size (the granule of parallelism) on load balancing. It
seems obvious that load unbalancing, i.e., variations in batch processing time, increases
with the batch size [20].

Figure 4. Maximal theoretical speed-up.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 107

In NUMA, because the number of processors is higher and the pipeline chains tend to be
longer,4 all these problems are magnified.

5. Parallel execution model for NUMA

In this section, we propose a parallel execution model for NUMA which strives to keep the
advantages of SP without load unbalancing in case of skew. Since SP does not materialize
intermediate tuples, there is no easy way to do load balancing. Our PS strategy is based
on partial materialization of intermediate results, using activations [7], in order to enable
load redistribution. Load balancing is then achieved by allowing any thread to process any
materialized tuple (activation), thus ensuring that no thread will be idle during the query
execution.

A naive implementation of this idea could yield high overhead. Public access (by all
processors) to intermediate results induces much interference for synchronization. Fur-
thermore, tuple materialization incurs copying and memory consumption. One priority in
designing our execution model was to minimize those overheads. Synchronization over-
head is reduced by using two execution modes. Innormal mode, when no processor
is idle, partially materialized results can be accessed only by the processors that pro-
duced them, thereby avoiding processor interference.5 In degraded mode, i.e., as soon
as one processor is idle, intermediate results are progressively made public to allow load
redistribution. Furthermore, our implementation avoids data copying and limits memory
consumption.

In the rest of this section, we present the basic concepts underlying our model. Then, we
present in more details PS in normal and degraded modes. Finally, we illustrate PS with an
example.

5.1. Basic concepts

A simple strategy for obtaining good load balancing is to allocate a number of threads much
higher than the number of processors and let the operating system do thread scheduling.
However, this strategy incurs a lot of system calls which are due to thread scheduling,
interference and convoy problems [4, 21, 37]. Instead of relying on the operating system
for load balancing, we choose to allocate only one thread per processor per query. The
advantage of this one-thread-per-processor allocation strategy is to significantly reduce the
overhead of interference and synchronization.

An activationrepresents the finest unit of sequential work [7]. Two kinds of activations
can be distinguished:trigger activationused to start the execution of a scan on one page of
a relation andtuple activationdescribing a tuple produced in pipeline mode. Since, in our
model, any activation may be executed by any thread, activations must be self-contained
and reference all information necessary for their execution: the code to execute and the data
to process. A trigger activation is represented by an (Operator, Page) pair which references
the scan operator and the page to scan. A tuple activation is represented by an (Operator,
Tuple, HashTable) triple which references the operator to process (build or probe), the tuple

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

108 BOUGANIM, FLORESCU AND VALDURIEZ

to process, and the corresponding hash table. For a build operator, the tuple activation
specifies that the tuple must be inserted in the hash table. For a probe operator, it specifies
that the tuple must be probed with the hash table.

The processing of one activation by one operator implies the creation of one or more
activations corresponding to result tuples, for the next operator. These activations are stored
in activation bufferswhose size is a parameter of our model. At any time, a thread has an
input activation bufferto consume activations and anoutput activation bufferto store result
tuples.

Activation buffers associated with an operator are grouped inactivations queues. To avoid
activation copies (from activation buffers to activation queues), only references to buffers
are stored in queues. To unify the execution model, queues are used for trigger activations
(inputs for scan operators) as well as tuple activations (inputs for build or probe opera-
tors). Each operator has a queue to receive input activations, i.e., the pipelined operand. We
create one queue per operator and thread. Assumingp processors executing a pipeline
chain withn operators numbered from 1 ton (operatorn produces the final result), the
set of queues can be represented by a matrixQ. Qi, j (i ∈ [1, n], j ∈ [1, p]) represents
the queue of threadj associated with operatori . A column represents the set of queues
associated with a thread while a row represents all the queues associated with an operator.
The sizes of the buffers and queues impose a limit to memory consumption during query
execution.

Each queue is locked by a semaphore (mutex) to allow concurrent read and write op-
erations. Each thread holds aqueue lockon all its associated queues at the beginning of
the execution. We callprivate queuea queue associated with a thread. During normal
execution mode, access to private queues, i.e.,private access, is restricted to the owner
only, thus without synchronization. Degraded execution mode implies releasing some
queue locks. When a thread releases a lock on a private queue, the queue becomespub-
lic. Access to public queues, i.e.,public access, is allowed to every thread, but with syn-
chronization.

Figure 5 illustrates all these concepts with an initial configuration of our model while
executing the last pipeline chain presented in figure 1. There are four operators executed
by three threads. Therefore, we have 12 queues, each one protected by a lock. ThreadT1 is

Figure 5. Initial configuration of PS.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 109

executing operatorProbe R3, so its input buffer contains activations from queueQ3,1 and
writes results in the output buffer, which is flushed in QueueQ4,1.

5.2. Execution in normal mode

During execution in normal mode, a thread consumes and produces activations in its set of
private queues (each thread has one private queue for each operator of the pipeline chain),
without requiring synchronization.

Processing activations of the pipeline chain proceeds as follows. For each activation
(trigger or tuple) of the input buffer, the thread executes the code of the operator referenced
by the activation on the corresponding tuples, thus producing activations for the next operator
in the output buffer. When an output buffer gets full, its reference is inserted in the queue of
the next operator and an empty buffer is allocated. When the input buffer has been entirely
processed, it becomes the output buffer of the next operator which becomes current. This
process is repeated until the end of the pipeline chain. If the input buffer of the current
operator is empty (there are no more activations to process), the thread tries to consume
in the queue of the previous operator(s). Thus, when a thread executes an operator, all
the queues of the following operators are necessarily empty. In other words, operators at
the end of the pipeline chain get consumed in priority with respect to the operators at the
beginning. This minimizes the size of intermediate results.

Processing activations of the first operator (scan) is slightly different. At the beginning
of execution, trigger activations are inserted in the queues of the scan operator. This is done
in a way that maximizes I/O parallelism. For instance, assuming that each processor has its
own disk, the trigger activations inserted inQ1, j must yield accesses to diskj . Thus, when
p threads read in parallelp trigger activations of the scan operator, they also do parallel
access top disks. Trigger activations are processed as follows. The thread first performs a
synchronous I/O to read the first page and initiates asynchronous I/Os for the subsequent
pages. After reading the first page, the thread selects (and projects) the tuples in the output
buffer. When the trigger activation (i.e., one page) has been consumed, the next operator
is started and execution proceeds as described above. When the thread comes back to the
scan operator (to consume other trigger activations), asynchronous I/Os are likely to be
completed and there is no waiting.

A problem occurs when processing an activation produces more tuples than what can be
stored in the queue of the next operator. There are two main reasons for this. Either the
current activation produces too many results tuples because of data skew, or the memory
space allocated to activation buffers and queues is not enough. In either case, the thread
suspends its current execution by making a procedure call to process the output activation
buffer which cannot be flushed into the full activation queue. Thus, context saving is done
efficiently by procedure call, which is much less expensive than operating system-based
synchronization (e.g., signals).

To summarize, each activation is processed entirely and its result is materialized. This is
different from SP where an activation is always partially consumed. If we consider the tree
of tuples produced by a trigger activation (see figure 3), activation consumption is partially
breadth-first in PS versus strictly depth-first in SP.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

110 BOUGANIM, FLORESCU AND VALDURIEZ

5.3. Execution in degraded mode

Execution in normal mode continues until one thread gets idle, because there is no more
activation to process in any of its private queues. Then, a form of load sharing is needed
whereby the other threads make public some of their activations which can then be consumed
by the idle thread.

Any thread can make a queue public, simply by releasing the lock it holds since the
beginning of execution. After releasing the lock, subsequent access to the queue by all
threads (including the initial thread) requires synchronization. To further reduce interfer-
ence in degraded mode, only a subset of the queues is made public at a time. We use a
simple heuristic for the choice and the number of queues to be made public:6 (i) all queues
Qk, j corresponding to operatork are made public together; (ii) operators are chosen in
increasing order of the pipeline chain (from 1 ton).

At any time, two global indicators are maintained: FirstActiveOp and SharingLevel.
FirstActiveOpindicates the first active operator in the pipeline chain. Thus, at the be-
ginning of execution, we haveFirstActiveOp= 1. SharingLevelindicates the operator of
highest rank whose queues have been made public. At the beginning of execution, we have
SharingLevel= 0. These two indicators can be updated by any thread and can only increase
during execution, i.e., a public queue cannot become private again. Query execution ends
whenFirstActiveOpis n+ 1.

Query execution can now be summarized as follows. During normal execution, each
threadt consumes activations in its private queuesQi,t (i ∈ [SharingLevel+ 1, n]), without
any synchronization. When it has no more activations in its private queues, a thread
attempts to consume activations in the set of public queues (Q(i, j), i ∈ [FirstActiveOp,
SharingLevel], j ∈ [1, p]), by locking them. When no more activations are available
in the public queues,SharingLevelis increased by 1 which notifies all threads that they
must release their lock, i.e., make public the queues associated with operatorSharingLevel.
Notice that a thread may consume activations from public queues during degraded mode
but will always produce activations for its private queues.

5.4. Simple example of PS execution

We now illustrate the main concepts of our model on the example given in figure 1, executing
the join of R1, R2, R3 and R4, with three processors and thus three threads. We concentrate
on the degraded mode, with one idle thread, which is more interesting. We assume that the
join with R2 of tuple t, resulting from the select of R1, produces a high number of tuples
for operatorProbe R3because of product skew. ThreadT2 processes this tuple.

Figure 6 gives an execution snapshot whenT2 is still producing tuples resulting from
joining t with R2. T3 ends processing its activation buffer, coming from queueQ4,3. When
T3 finishes its last activation, it tries to find new activations in its private queuesQ4,3 and
Q3,3. Since it fails, it looks up the public queuesQ2,3, Q2,2 andQ2,1, using synchronized
accesses. Again, it fails finding activations. So it incrementsSharingLeveland tries to
consume in queueQ3,2 (which contains activations), however, it gets blocked becauseT2 is
currently holding the lock. WhenT2 detects the change ofSharingLevel, it makes public the

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 111

Figure 6. A simple example of PS execution.

queueQ3,2 by releasing its lock (for further access to this queue,T2 will use synchronized
accesses).T3, having requested the lock ofQ3,2 gets it, and consumes its activations. This
produces activations for queueQ4,3 (simply becauseT3 is processing these activations)
which can then be stored and consumed byT3 without locking (because it is still private).

Two observations can be made. IfSharingLevelis rarely tested,T3 can remain blocked
on the lock of queueQ3,2 for a while. Thus, it is important thatSharingLevelbe often
tested. However, since it is potentially accessed by all threads,SharingLevelcould become
a bottleneck. In fact, this does not happen for two reasons. First, each thread frequently
accessesSharingLevelwhich gets locally cached. Second, even if writingSharingLevel
implies invalidating it in each cache, this happens onlyn times (n is the length of the pipeline
chain) which has a negligible effect.7

This simple example shows the benefits of using partial materialization of intermediate
results, and partial access by all threads to intermediate results.

5.5. Execution of bushy trees

For simplicity, we have considered the execution of only one pipeline chain. However, our
execution model can be easily generalized. We now show how this model can deal with
more general bushy trees.

The best parallel plan produced by the optimizer is not necessarily a pure right-deep
tree and can well be a bushy tree connecting long pipeline chains. The pros and cons of
executing several pipeline chains concurrently in shared-memory are discussed in [21, 41].
The main conclusion is that it would almost never make sense to execute several pipeline
chains concurrently since it increases resource consumption (memory and disk). In [41],
it is shown that, assuming ideal speed-up, this strategy may be used in only two cases: (i)
one pipeline chain is I/O-bound and the other is CPU-bound; (ii) the two pipeline chains
access relations which are partitioned over disjoint sets of disks.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

112 BOUGANIM, FLORESCU AND VALDURIEZ

In NUMA, this conclusion must be reconsidered since the assumption of ideal speed-up
with a high number of processors [41] is no longer valid. Also, the memory limitation
constraint is relaxed. Thus, the execution of several CPU-bound8 pipeline chains is bene-
ficial only if each one is executed on a disjoint subset of processors. This strategy would
have the following advantages. First, as the locality of reference decreases with the number
of processors, fewer remote data accesses will be performed, specially if the execution
occurs on a subset of the processors at the same node (shared-memory node in the Con-
vex’SPP, NUMA-Q and nuSMP). Second, less interference will occur. Finally, executing
each pipeline chain with a restricted number of processors will yield better speed-up on
each pipeline chain. However, we cannot conclude that independent parallelism is always
better. The choice must be made by the optimizer based on several parameters: esti-
mated response time, degree of partitioning, available memory, length of pipeline chains,
etc.

Executing several pipeline chains can be done easily in our model. The allocation of
pipeline chains to the processors is decided based on their relative estimated work. Normal
execution proceeds as before. However, in degraded mode,SharingLevelis global to all
concurrent pipeline chains. Thus, a public queue can be accessed by any processor, even
if it was initially working on a different pipeline chain. This is possible simply because
each activation is self-contained. The only necessary modification is to create a number of
queues for each thread that is equal to the length of the longest pipeline chain. In this way,
load balancing is globally achieved on the set of pipeline chains.

6. Performance evaluation

Performance evaluation of a parallel execution model for complex queries is made difficult
by the need to experiment with many different queries and large relations. The typical
solution is to use simulation which eases the generation of queries and data, and allows
testing with various configurations. However, simulation would not allow us to take into
account the effect of NUMA as well as important performance aspects such as the overhead
of thread interference. On the other hand, using full implementation and benchmarking
would restrict the number of queries and make data generation very hard. Therefore, we
decided to fully implement our execution model on a NUMA multiprocessor and simulate
the execution of operators. To exercise the effect of NUMA, real tuples are actually ex-
changed, i.e., read and written, but their content is ignored. Thus, query execution does
not depend on relation content and can be simply studied by generating queries and setting
relation parameters (cardinality, selectivity, skew factor, etc.).

In the rest of this section, we describe our experimentation platform and report on per-
formance results.

6.1. Experimentation platform

We now introduce the multiprocessor configuration we have used for our experiments
and discuss the influence of NUMA on query execution. We also explain how we have

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 113

Figure 7. KSR1 architecture.

generated parallel execution plans, and present the methodology that was applied in all
experiments.

6.1.1. KSR1 multiprocessor.We have implemented SP and PS on a 72-processor KSR1
computer at Inria. Each processor is 40 MIPS and has its own 32 Mbytes memory, called
local cache. The KSR1 computer implements the concept of NUMA with a hardware-based
shared virtual memory system, called Allcache. The time to access a data item depends on
the kind of operation (read, write) and on its location (processor’s subcache, local cache,
remote cache).

To better understand the effect of virtual shared memory on query execution, we have
performed an experiment comparing two basic operators (build and probe) implemented
in two different ways: one which exercises NUMA and the other which simulates pure
shared-memory. In the NUMA implementation, data accesses are done randomly in any
cache (local or remote). In the shared-memory simulation, data accesses are made all local.
Each processor accesses 30 MB of data.9 For the build operator, only references to tuples
are written (in the global hash table) whereas, for the probe operator, only a portion (2/3) of
the tuple is accessed (to test the matching predicate). In this experiment, there is no I/O and
no synchronization. The results are summarized below, as ratios of the NUMA response
time versus the simulated shared-memory response time.

16 proc. 32 proc. 64 proc.

Build operator 1.6 1.8 2.5

Probe operator 1.2 1.3 1.6

They suggest the following comments:

• Read operations, even intensive, have much less impact on performance than write op-
erations. This is because writing implies broadcasting a cache line invalidation to all
processors having a local copy.
• Remote operations have less impact than expected (the KSR technical documentation

indicates a factor 6 between local and remote access). This is because memory access

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

114 BOUGANIM, FLORESCU AND VALDURIEZ

represents a small portion of the operator’s execution time. Taking disk accesses and
synchronizations into account would further reduce this proportion.
• The relative overhead increases with the number of processors, especially for write op-

erations. This is due to the increasing number of invalidations.

To summarize, this experiment illustrates the effectiveness of NUMA for database ap-
plication and confirms the intuition that an execution model designed for shared-memory
is a good choice.

As only one disk of the KSR1 was available to us, we simulated disk accesses to base
relations. One disk per processor was simulated with the following typical parameters:

Parameter Value

Rotation time [33] 17 ms

Seek time 5 ms

Transfer rate 6 MB/s

Asynchronous I/O init. 5000 inst.

Page size 8 KB

I/O cache size 8 pages

6.1.2. Parallel execution plans.The input to our execution model is a parallel execution
plan obtained after compilation and optimization of a user query. To generate queries, we use
the algorithm given in [41] with three kinds of relations: small (10K–20K tuples), medium
(100K–200K tuples) and large (1M–2M tuples). First, an acyclic predicate connection
graph for the query is randomly generated. Second, for each relation involved in the query,
a cardinality is randomly chosen in one of the small, medium or large ranges. Third, the
join selectivity factor of each edge (R, S) in the predicate connection graph is randomly
chosen in the range [0.5 ∗min(|R|, |S|)/|R× S|, 1.5 ∗max(|R|, |S|)/|R× S|].

The result of query generation is an acyclic connected graph adorned with relation car-
dinalities and edge selectivities. We have generated 20 queries, each involving 7 relations.
Each query is then run through our DBS3 query optimizer [27] to select the best right-deep
tree.

Without any constraint on query generation, we would obtain very different executions
which would make it difficult to give meaningful conclusions. Therefore, we constrain the
generation of operator trees so that the sequential response time is between 20 and 35 min.
Thus, we have produced 20 parallel execution plans involving about 0.7 GB of base relations
and about 1.3 GB of intermediate results. Note that executions with too small relations (in
particular, internal ones which need to be materialized) would not allow to appreciate the
effects of NUMA.

In the following experiments, each point in a graph will be obtained from a computation
based on the response times of 20 parallel execution plans. Computing the average response
time does not make sense. Therefore, the results will always be in terms of comparable
execution times. For instance, in a speed-up experiment, let the speed-up be the ratio of

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 115

response time withp processors over the response time with one processor, each point will
be computed as the average of the speed-ups of all plans. To obtain precise measurements,
each response time is computed as the average of five successive measurements.

6.2. Performance comparisons with no skew

This experiment was done to study the overhead of PS over SP when there is no skew. SP
could be easily implemented by changing PS. The only modification we did was to replace
the call to the function that store tuples in buffers (and then buffers in queues) by a procedure
call to the next operator. Therefore, SP and PS are identical in terms of processing the trigger
activations and performing (asynchronous) I/Os. The use of asynchronous I/O instead of
multiplexing processors between I/O threads and CPU threads gives a small performance
enhancement, because there are less synchronization and fewer system calls.

For PS, the size of the activation buffers is one page (8 KB) and the queue size is fixed to
20 buffer references. Also, a buffer size of 200 KB is allocated per processor. For instance,
with 32 processors, a maximum of 6.4 MB of activations can be materialized. These values
were experimentally defined and are directly related to the quality of load balancing which
can be achieved.

Figure 8(a) shows the average speed-up of all query executions for SP and PS while
figure 8(b) the relative performance of PS and SP, i.e., the average of the ratios of PS versus
SP response times.10 We can make two important observations.

First, SP and PS show near-linear speed-up. We may remark that the effects of the
nonuniform memory access are also visible with one processor. For instance, with a single
processor executing the entire query, the memory of other processors would also be used,
because the outer relations do not fit in one processor’s local cache. Furthermore, when
more processors access the same large amount of data, the overhead implied by NUMA gets
parallelized, i.e., the overhead of cache misses are shared between threads. This explains
the very good speed-up which we obtain.

Figure 8. (a) Speed-up of SP and PS, (b) relative performance of PS versus SP.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

116 BOUGANIM, FLORESCU AND VALDURIEZ

Second, the performance of PS is very close to that of SP (the major difference does not
exceed 4%) because the design of PS minimizes the overhead of materializing and sharing
tuples. Without skew, execution proceeds in normal mode for almost all processing time
(the degraded mode is activated at the end of the execution, but has no significant effect).
Thus, there is no synchronization and no interference, even with a high number of threads.
Furthermore, SP has no locality of reference [42] because it is always switching from one
operator to another. As PS uses buffered input and outputs, it exhibits more locality of
reference than SP.

6.3. Impact of data skew

In this experiment, we study the impact of data skew on the performance of SP and PS. We
introduce skew in only one operator, at ther th rank of the pipeline chain. One tuple (or
one batch for the first operator) of this operator producesk% of that operator’s result. The
other operators have no skew, so the production of result tuples is uniform. Such modeling
of data skew is calledscalar skew[13, 36, 48]. We chose to havek between 0 and 6%. This
is reasonable and rather optimistic since we consider that only one operator of the pipeline
chain has skew.

Figures 9(a) and (b) show the speed-up obtained for SP and PS for different skew factors.
The skewed operator is placed at the beginning or in the middle (rank 4) of the pipeline
chain. It is obvious that SP suffers much from data skew. With a skew factor of 4% on
the first operator, the speed-up is only 22, which means a performance degradation of more
than 200% compared with no skew. The theoretical speed-up (as computed in Section 2)
is never reached. This is because the skewed tuple can be consumed at any time during the
execution. A final remark on SP is that, when the number of processors is less than 10, the
effect of skew is much reduced. This confirms the value of SP for small shared-memory
multiprocessors.

Figure 9. (a) Speed-up of SP with skew, (b) speed-up of PS with skew.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 117

Figure 10. (a) Private versus public access, (b) gain of concurrent executions.

The impact of skew on PS is insignificant. Depending on the skew factor, the degraded
mode starts sooner or later, producing thread interferences. However, thread interference is
minimized by doing progressive load sharing. For instance, when the queues of operators
1 and 2 become public, the other operators (3–7) keep being processed without synchro-
nization. Figure 10(a) shows the variation of the ratio of locked access to queues versus
unlocked one with the skew (with 32 processors). We can observe that this ratio stays low
(less than 10% withk = 6%) because of our progressive load sharing mechanism.

6.4. Parallel execution of several pipeline chains

As discussed in Section 4, the concurrent execution of different CPU-bound pipeline chains,
each by a disjoint subset of processors, seems better in NUMA because it reduces interfer-
ence and remote data access, thereby yielding better speed-up.

In this experiment, we use a bushy tree containing three CPU-bound pipeline chains that
can be executed concurrently, consisting of 3, 2 and 4 joins. We only consider the execution
of these pipeline chains, ignoring the other operators of the bushy tree. We measured the
response time of sequential versus concurrent execution of the three pipeline chains. For the
concurrent execution, each pipeline chain is executed on a number of processors computed
based on a simple estimate of their response time. This is achieved using a very simple cost
model to evaluate the complexity of each pipeline chain and making a ratio of the number
of processors (as in [22]).

Figure 10(b) shows the gain presented as the ratio of the response time of sequential
versus concurrent execution, as a function of the number of processors. With less than
three processors, some processors may execute several pipeline chains, thus in a sequential
fashion. The gain is steadily increasing and gets significant (24%) with a high number of
processors. As the number of processors increases, the speed-up obtained by a sequential
execution worsens whereas it gets better for a concurrent execution. This confirms the
benefit of executing several pipeline chains concurrently for large NUMA configurations.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

118 BOUGANIM, FLORESCU AND VALDURIEZ

7. Conclusion

In this paper, we have addressed the problem of parallel execution and load balancing
of complex queries in NUMA. We started by arguing the relevance of execution models
designed for shared-nothing or shared-memory. We first concluded that an execution model
for NUMA multiprocessors should not use data partitioning (as shared-nothing systems
do) because the overhead of data redistribution would be exacerbated when writing in
remote memories. Instead, it should strive to exploit the efficient shared-memory model.
Second, we have argued that the Synchronous Pipelining (SP) strategy which is excellent
in shared-memory could be used in NUMA. Using an analytical model, we showed that,
as a consequence of the scalability feature of NUMA (high number of processors and large
memory), SP does not resist two forms of skew which we identified.

Thus, we have proposed a new execution model called PS, which is robust to data skew.
The major difference with SP is to allow partial materialization of intermediate results, made
progressively public in order to be processed by any processor which would otherwise be
idle. This yields excellent load balancing, even with data skew. In addition, PS can exploit
the concurrent execution of several pipeline chains.

To validate PS and study its performance, we have conducted a performance comparison
using an implementation of SP and PS on a 72-processor KSR1 (NUMA) computer, with
many queries and large relations. With no skew, SP and PS have both near-linear speed-up.
However, the impact of skew is very severe on SP performance while it is insignificant on
PS. For instance, with a skew factor of 4%, the performance degradation of SP is 200%
while it is only 15% with PS. Finally, we have shown that executing several pipeline chains
concurrently yields significant performance gains with a high number of processors.

To summarize, the experiments have shown that PS outperforms SP as soon as there is
skew and can scale up very well. Although if the measurements have been conducted on
the KSR1 (Cache Only Memory Architecture), we can expect the same behavior on Cache
Coherent NUMA,11 ho and pure shared-memory multiprocessors, since no specific feature
of the KSR1 was used in our PS strategy. Thus, PS should be considered a strategy of choice
for implementing database systems on both shared-memory and NUMA multiprocessors.

Acknowledgments

The authors wish to thank C. Mohan, B. Dageville and J.R. Gruser for many fruitful dis-
cussions on parallel execution models and Jean-Paul Chieze for helping us with the KSR1.

Notes

1. The goal of our analysis is not to compare different classes of NUMA (see [44, 34] for a discussion), but to
propose an effective execution strategy for these architectures.

2. Any algorithm that allows pipeline execution, for example, index join, nested-loop join, pipelined hash join
[49] could be used. However, some algorithms can be inefficient in NUMA because of data reorganizations
which may incur intensive remote data reading or writing. Studying this issue is beyond the scope of this
paper.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 119

3. The performance of the classical partitioned execution model (called Fixed Processing (FP) in [7]) were
always worse than DP.

4. Considering a large main memory.
5. Of course, the interferences inherent in SP (I/O, page management, etc.) cannot be avoided.
6. We have tried other appealing heuristics and we obtained similar performance.
7. We use a global variable instead of operating system signals, but the two approaches seem equivalent.
8. The optimization of I/O-bound tasks cannot be done at runtime because it essentially depends on data parti-

tioning on disks.
9. With more than 32 MB of data, a local execution could not be obtained.

10. Speedup measurement is not sufficient since it does not show relative performance.
11. Considering CC-NUMA architecture, however, raises some new issues (e.g., initial configuration).

References

1. A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and
D. Yeung, “The MIT alewife machine: Architecture and performance,” Int. Symp. on Computer Architecture,
June 1995.

2. P.M.G. Apers, C.A. van den Berg, J. Flokstra, P.W.P.J. Grefen, M.L. Kersten, and A.N. Wilschut,
“PRISMA/DB: A parallel main memory relational DBMS,” IEEE Trans. Knowledge and Data Engineer-
ing, vol. 4, no. 6, December 1992.

3. A. Bhide, “An analysis of three transaction processing architectures,” Int. Conf on VLDB, Los Angeles,
August 1988.

4. M. Blasgen, J. Gray, M. Mitoma, and T. Price, “The convoy phenomenon,” Operating Systems Review,
vol. 13, no. 2, April 1979.

5. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Valduriez,
“Prototyping Bubba: A highly parallel database system,” IEEE Trans. Knowledge and Data Engineering,
vol. 2, no. 1, March 1990.

6. L. Bouganim, B. Dageville, and P. Valduriez, “Adaptative parallel query execution in DBS3,” Industrial Paper,
Int. Conf. on EDBT Avignon, March 1996.

7. L. Bouganim, D. Florescu, and P. Valduriez, “Dynamic load balancing in hierarchical parallel database
systems,” Int. Conf. on VLDB, Bombay, September 1996. Can be retrieved at http://rodin.inria.fr/person-
nes/luc.bouganim/papers/VLDB.html

8. Data General Corporation, “Data general and oracle to optimize oracle universal server for ccNUMA system,”
can be retrieved at http://www.dg.com/news/pressreleases/114 96.html

9. Data General Corporation, “The NUMA invasion,” can be retrieved at http://www.dg.com/newdocs1/
ccnuma/iw16 97.html

10. Data General Corporation, “Standard high volume servers: The new building block,” can be retrieved at
http://www.dg.com/newdocs1/ccnuma/index.html#a

11. D.J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao, and R. Rasmussen, “The gamma
database machine project,” IEEE Trans. on Knowledge and Data Engineering, vol. 2, no. 1, March 1990.

12. D.J. DeWitt and J. Gray, “Parallel database systems: The future of high performance database processing,”
Communications of the ACM, vol. 35, no. 6, June 1992.

13. D.J. DeWitt, J.F. Naughton, D.A. Schneider, and S. Seshadri, “Practical skew handling in parallel joins,” Int.
Conf. on VLDB, Vancouver, August 1992.

14. S. Frank, H. Burkhardt, and J. Rothnie, “The KSR1: Bridging the gap between shared-memory and MPPs,”
Compcon’93, San Francisco, February 1993.

15. M.N. Garofalakis and Y.E. Yoannidis, “Multi-dimensional resource scheduling for parallel queries,” ACM-
SIGMOD Int. Conf., Montreal, June 1996.

16. J.R. Goodman and P.J. Woest, “The Wisconsin multicube: A new large-scale cache-coherent multiprocessor,”
University of Wisconsin-Madison, TR 766, April 1988.

17. G. Graefe, “Volcano: An extensible and parallel dataflow query evaluation system,” IEEE Trans. on Knowledge
and Data Engineering, vol. 6, no. 1, February 1994.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

120 BOUGANIM, FLORESCU AND VALDURIEZ

18. E. Hagersten, E. Landin, and S. Haridi, “Ddm—A cache-only memory architecture,” IEEE Computer,
vol. 25, no. 9, September 1992.

19. W. Hasan and R. Motwani, “Optimization algorithms for exploiting the parallel communication tradeoff in
pipelined parallelism,” Int. Conf on VLDB, Santiago, 1994.

20. Y. Hirano, T. Satoh, A.U. Inoue, and K. Teranaka, “Load balancing algorithms for parallel database processing
on shared memory multiprocessors,” Int. Conf. on Parallel and Distributed Information Systems, Miami Beach,
December 1991.

21. W. Hong, “Exploiting inter-operation parallelism in XPRS,” ACM-SIGMOD Int. Conf., San Diego, June
1992.

22. H. Hsiao, M.S. Chen, and P.S. Yu, “On parallel execution of multiple pipelined hash joins,” ACM-SIGMOD
Int. Conf., Minneapolis, May 1994.

23. IEEE Computer Society, “IEEE standard for scalable coherent interface (SCI),” IEEE Std 1596, New York,
August 1992.

24. Intel Corporation, “Standard high volume servers: Changing the rules for buiseness computing,” can be
retrieved at http://www.intel.com/procs/servers/feature/shv/

25. M. Kitsuregawa and Y. Ogawa, “Bucket spreading parallel hash: A new, robust, parallel hash join method for
data skew in the super database computer,” Int. Conf on VLDB, Brisbane, 1990.

26. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy, “The Stanford FLASH multiprocessor,” Int. Symp.
on Computer Architecture, April 1994.

27. R. Lanzelotte, P. Valduriez, and M. Zait, “On the effectiveness of optimization search strategies for parallel
execution spaces,” Int. Conf. on VLDB, Dublin, August 1993.

28. D. Lenoski, J. Laudon, K. Gharachorloo, W.D. Weber, A. Gupta, J. Henessy, M. Horowitz, and M.S. Lam,
“The Stanford dash multiprocessor,” IEEE Computer, vol. 25, no. 3, March 1992.

29. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, “The DASH prototype:
Logic overhead and performance,” IEEE Transactions of Parallel and Distributed Systems, vol. 4, no. 1,
January 1993.

30. M.L. Lo, M-S. Chen, C.V. Ravishankar, and P.S. Yu, “On optimal processor allocation to support pipelined
hash joins,” ACM-SIGMOD Int. Conf., Washington, May 1993.

31. T. Lovett and R. Clapp, “STiNG: A CC-NUMA computer system for the commercial marketplace,” Int. Symp.
on Computer Architecture, May 1996.

32. H. Lu, M.-C. Shan, and K.-L. Tan, “Optimization of multi-way join queries for parallel execution,” Int. Conf.
on VLDB, Barcelona, September 1991.

33. M. Metha and D. DeWitt, “Managing intra-operator parallelism in parallel database systems,” Int. Conf. on
VLDB, Zurich, September 1995.

34. C. Morin, A. Gefflaut, M. Banˆatre, and A.M. Kermarrec, “COMA: An opportunity for building fault-tolerant
scalable shared memory multiprocessors,” Int. Symp. on Computer Architectures, 1996.

35. M.C. Murphy and M.-C. Shan, “Execution plan balancing,” IEEE Int. Conf. on Data Engineering, Kobe, April
1991.

36. E. Omiecinski, “Performance analysis of a load balancing hash-join algorithm for a shared-memory multi-
processor,” Int. Conf on VLDB, Barcelona, September 1991.

37. H. Pirahesh, C. Mohan, J. Cheng, T.S. Liu, and P. Selinger, “Parallelism in relational database systems:
Architectural issues and design approaches,” Int. Symp. on Databases in Parallel and Distributed Systems,
Dublin, July 1990.

38. E. Rahm and R. Marek, “Dynamic multi-resource load balancing in parallel database systems,” Int. Conf. on
VLDB, Zurich, Switzerland, September 1993.

39. D. Schneider and D. DeWitt, “A performance evaluation of four parallel join algorithms in a shared-nothing
multiprocessor environment,” ACM-SIGMOD Int. Conf., Portland, May-June 1989.

40. A. Shatdal and J.F. Naughton, “Using shared virtual memory for parallel join processing,” ACM-SIGMOD
Int. Conf., Washington, May 1993.

41. E.J. Shekita and H.C. Young, “Multi-join optimization for symmetric multiprocessor,” Int. Conf. on VLDB,
Dublin, August 1993.

42. A.J. Smith, “Cache memories,” ACM Computing Surveys, vol. 14, no. 3, September 1982.

P1: SYD

Distributed and Parallel Databases kl651-02-Bouga October 9, 1998 21:17

QUERY EXECUTION WITH SKEW IN NUMA MULTIPROCESSORS 121

43. J. Srivastava and G. Elsesser, “Optimizing multi-join queries in parallel relational databases,” Int. Conf. on
Parallel and Distributed Information Systems, San Diego, January 1993.

44. P. Stenstrom, T. Joe, and A. Gupta, “Comparative performance evaluation of cache-coherent NUMA and
COMA architectures,” Int. Symp. on Computer Architecture, May 1992.

45. P. Valduriez, “Parallel database systems: Open problems and new issues,” Int. Journal on Distributed and
Parallel Databases, vol. 1, no. 2, 1993.

46. P. Valduriez and G. Gardarin, “Join and semi-join algorithms for a multiprocessor database machine,” ACM
Trans. on Database Systems, vol. 9, no. 1, March 1984.

47. C.A. van den Berg and M.L. Kersten, “Analysis of a dynamic query optimization technique for multi-join
queries,” Int. Conf. on Information and Knowledge Engineering, Washington, 1992.

48. C.B. Walton, A.G. Dale, and R.M. Jenevin, “A taxonomy and performance model of data skew effects in
parallel joins,” Int. Conf. on VLDB, Barcelona, September 1991.

49. A.N. Wilshut, J. Flokstra, and P.G. Apers, “Parallel evaluation of multi-join queries,” ACM-SIGMOD Int.
Conf., San Jose, 1995.

