
Distributed and Parallel Database Systems
M. TAMER ÖZSU

Department of Computing Science, University of Alberta, Edmonton, Canada ^ozsu@cs.ualberta.can&

PATRICK VALDURIEZ

INRIA, Rocquencourt, Le Chesnay Cedex, France

The maturation of database manage-
ment system (DBMS) technology has co-
incided with significant developments
in distributed computing and parallel
processing technologies. The end result
is the emergence of distributed database
management systems and parallel data-
base management systems. These sys-
tems have started to become the domi-
nant data-management tools for highly
data-intensive applications.
A distributed database (DDB) is a col-

lection of multiple, logically interrelated
databases distributed over a computer
network. A distributed database man-
agement system (distributed DBMS) is
then defined as the software system
that permits the management of the
distributed database and makes the dis-
tribution transparent to the users [Özsu
and Valduriez 1991].
There are many possible distributed

DBMS implementation alternatives.
Client/server architectures [Orfali et al.
1994], where multiple clients access a
single database server, is the most
straightforward. Multiple-client/multi-
ple server architectures are more flexi-
ble because the database is distributed
across multiple servers. Each client ma-
chine has a “home” server to which it
directs user requests. The communica-
tion of the servers among themselves to
execute user queries and transactions is
transparent to the users. Most current
database management systems imple-
ment one or the other type of client-
server architectures.
A truly distributed DBMS does not

distinguish between client and server
machines. Ideally, each site can perform
the functionality of a client and a
server. Such architectures, called peer-
to-peer, require sophisticated protocols
to manage the data distributed across
multiple sites. The complexity of re-
quired software has delayed the offering
of peer-to-peer distributed DBMS prod-
ucts.
The database is physically distributed

across the data sites by fragmenting
and replicating the data. Given a rela-
tional database schema, fragmentation
subdivides each relation into horizontal
(by a selection operation) or vertical (by
a projection operation) partitions. Frag-
mentation is desirable because it makes
possible the placement of data in close
proximity to its place of use, thus poten-
tially reducing transmission cost, and it
reduces the size of relations involved in
user queries.
Based on the user access patterns,

each of the fragments may also be repli-
cated. This is preferable when the same
data are accessed from applications that
run at a number of sites. In this case, it
may be more cost-effective to duplicate
the data at a number of sites rather than
continuously move it between them.
A parallel DBMS [Valduriez 1993]

can be defined as a DBMS implemented
on a tightly coupled multiprocessor. The
differences between a parallel DBMS
and a distributed DBMS are somewhat
unclear. In particular, shared-nothing
parallel DBMS architectures, which we
discuss in the following, are quite simi-

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



lar to the loosely interconnected distrib-
uted systems. Perhaps an important
distinction is that distributed DBMSs
assume loose interconnection between
processors that have their own operat-
ing systems and operate independently.
Parallel DBMSs exploit recent multi-
processor computer architectures in or-
der to build high-performance and high-
availability database servers at a much
lower price than equivalent mainframe
computers.
Parallel system architectures range

between two extremes, the shared-noth-
ing and the shared-memory architec-
tures. A useful intermediate point is the
shared-disk architecture. In the shared-
nothing approach, each processor has
exclusive access to its main memory and
disk unit(s). Thus each node can be
viewed as a local site (with its own
database and software) in a distributed
DBMS. In the shared-memory ap-
proach, any processor has access to any
memory module or disk unit through a
fast interconnect (e.g., a high-speed bus
or a cross-bar switch). In the shared-
disk approach, any processor has access
to any disk unit through the intercon-
nect, but exclusive (nonshared) access
to its main memory. Each processor can
then access database pages on the
shared disk and copy them into its own
cache. To avoid conflicting accesses to
the same pages, global locking and pro-
tocols for the maintenance of cache co-
herency are needed.
Distributed and parallel DBMSs pro-

vide the same functionality as central-
ized DBMSs except in an environment
where data are distributed across the
sites on a computer network or across
the nodes of a multiprocessor system.
This functionality is provided transpar-
ently; thus the users are unaware of
data distribution, fragmentation, and
replication. Maintaining this view
places significant challenges on system
functions, which we summarize in the
following.

Query Processing and Optimization.
In a distributed DBMS, query process-

ing and optimization techniques have to
address difficulties arising from the
fragmentation and distribution of data.
To deal with fragmentation, data local-
ization techniques are used where an
algebraic query, which is specified on
global relations, is transformed into one
that operates on fragments rather than
global relations. In the process, opportu-
nities for parallel execution are identi-
fied (because fragments are stored at
different sites) and unnecessary work is
eliminated (because some of the frag-
ments are not involved in the query).
Localization requires the optimization
of global operations, which is under-
taken as part of global query optimiza-
tion. Global query optimization involves
permuting the order of operations in a
query, determining the execution sites
for various distributed operations, and
identifying the best distributed execu-
tion algorithm for distributed opera-
tions (especially the joins).
Parallel query optimization takes ad-

vantage of both intra-operation parallel-
ism and inter-operation parallelism. In-
tra-operation parallelism is achieved by
executing an operation on several nodes
of a multiprocessor machine. Parallel
optimization to exploit intra-operation
parallelism can make use of some of the
techniques devised for distributed data-
bases. Inter-operation parallelism oc-
curs when two or more operations are
executed in parallel, either as a data-
flow or independently. We designate as
dataflow the form of parallelism in-
duced by pipelining. Independent paral-
lelism occurs when operations are exe-
cuted at the same time or in arbitrary
order. Independent parallelism is possi-
ble only when the operations do not
involve the same data.
Concurrency control. In distributed

DBMSs, the challenge in synchronizing
concurrent user transactions is to ex-
tend both the serializability argument
and the concurrency control algorithms
to the distributed execution environ-
ment. In these systems, the operations
of a given transaction may execute at

126 • M. Tamer Özsu and Patrick Valduriez

ACM Computing Surveys, Vol. 28, No. 1, March 1996



multiple sites where they access data.
Thus global serializability requires that

(a) the execution of the set of transac-
tions at each site be serializable,
and

(b) the serialization orders of these
transactions at all these sites be
identical.

If locking-based algorithms are used,
lock tables and lock management re-
sponsibility may be centralized or dis-
tributed. A well-known side effect of all
locking-based concurrency control algo-
rithms is that they cause deadlocks. The
detection and management of distrib-
uted deadlocks involving a number of
sites is difficult.

Reliability Protocols. In addition to
transaction, system, and media failures
that can occur in a centralized DBMS, a
distributed DBMS must also deal with
communication failures. In particular,
the existence of both system and com-
munication failures poses complications
because it is not always possible to dif-
ferentiate between the two. Distributed
DBMS protocols have to deal with this
uncertainty.
Distributed reliability protocols en-

force atomicity (all-or-nothing property)
of transactions by implementing atomic
commitment protocols such as the two-
phase commit (2PC) [Gray 1979]. 2PC
extends the effects of local atomic com-
mit actions to distributed transactions
by insisting that all sites involved in the
execution of a distributed transaction
agree to commit the transaction before
its effects are made permanent (i.e., all
sites terminate the transaction in the
same manner).
The inverse of termination is recov-

ery. Distributed recovery protocols deal
with the problem of recovering the data-
base at a failed site to a consistent state
when that site recovers from the failure.

Replication Protocols. In replicated
distributed databases, each logical data
item has a number of physical in-
stances. The issue in this type of a

database system is to maintain some
notion of consistency among the physi-
cal instance copies when users trans-
parently update logical data items. A
straightforward consistency criterion is
one copy equivalence, which asserts that
the values of all physical copies of a
logical data item should be identical
when the transaction that updates it
terminates. A typical replica-control
protocol that enforces one-copy serializ-
ability is known as Read-One/Write-All
(ROWA) protocol. ROWA protocol is
simple and straightforward, but it re-
quires that all copies of all logical data
items that are updated by a transaction
be accessible for the transaction to ter-
minate. Failure of one site may block a
transaction, reducing database avail-
ability.
A number of alternative algorithms

have been proposed that reduce the re-
quirement that all copies of a logical
data item be updated before the trans-
action can terminate. They relax ROWA
by mapping each write to only a subset
of the physical copies. One well-known
approach is quorum-based voting, where
copies are assigned votes and read and
write operations have to collect votes
and achieve a quorum to read/write
data.
Distributed and parallel DBMS tech-

nologies have matured to the point that
fairly sophisticated and reliable com-
mercial systems are now available. As
expected, a number of issues have yet to
be satisfactorily resolved. These deal
with skewed data placement in parallel
DBMSs, network scaling problems (in
particular, calibrating distributed
DBMSs for the specific characteristics
of emerging communication technolo-
gies such as broadband networks and
mobile and cellular networks), advanced
transaction models (now commonly
called workflow models) [Elmagarmid
1992], multidatabase systems and in-
teroperability [Sheth and Larson 1990],
and distributed object management
[Dogac et al. 1994; Özsu et al. 1994].

Distributed and Parallel Database Systems • 127

ACM Computing Surveys, Vol. 28, No. 1, March 1996



REFERENCES

DOGAC, A., ÖZSU, M. T., BILIRIS, A., AND SELLIS, T.
Eds. 1994. Advances in Object-Oriented
Database Systems. Springer-Verlag, Berlin.

ELMAGARMID, A. K., ED. 1992. Transaction
Models for Advanced Database Applications.
Morgan-Kaufmann, San Mateo, CA.

GRAY, J. N. 1979. Notes on data base operating
systems. In Operating Systems: An Advanced
Course. R. Bayer, R. M. Graham, and G. Seeg-
müller, Eds., Springer-Verlag, New York,
393–481.

ORFALI, R., HARKEY, D., AND EDWARDS, J. 1994.

Essential Client/Server Survival Guide.
Wiley, New York.

ÖZSU, M. T. AND VALDURIEZ, P. 1991. Principles
of Distributed Database Systems. Prentice-
Hall, Englewood Cliffs, NJ.

ÖZSU, M. T., DAYAL, U., AND VALDURIEZ, P.,
EDS. 1994. Distributed Object Manage-
ment. Morgan-Kaufmann, San Mateo, CA.

SHETH, A. AND LARSON, J. 1990. Federated da-
tabases: Architectures and integration. ACM
Comput. Surv. 22, 3 (Sept.), 183–236.

VALDURIEZ, P. 1993. Parallel database systems:
Open problems and new issues. Distrib. Par-
allel Databases 1, 2 (April), 137–165.

128 • M. Tamer Özsu and Patrick Valduriez

ACM Computing Surveys, Vol. 28, No. 1, March 1996


