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Cloud & Big Data Landscape Cloud & Big Data Landscape 

NoSQL Databases Data Processing Frameworks 

Easy to get lost 
No "one size fits all" 

No standard 
Keeps evolving 
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General Problem 

BI 
Analytics 

NoSQL
DS1 

NoSQL
DS2 
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Application 

(e.g. in Java) 

•  Very complex, ad-hoc development 
•  Querying different data sources 
•  Managing intermediate results 
•  Delivering (e.g. sorting) the final results 

•  Hard to extend 
•  What if a new SQL DS appears? 
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Outline 

•  Polystores 
•  The CloudMdsQL polystore 
•  Query language 
•  Distributed architecture 
•  Extending CloudMdsQL with MFR 
•  CloudMdsQL contributions 
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Origins of Polystores 

•  Multidatabase systems (or federated 
database systems) 
•  A few databases (e.g. less than 10) 

•  Corporate DBs 

•  Powerful queries (with updates and 
transactions) 

•  Web data integration systems 
•  Many data sources (e.g. 1000’s) 

•  DBs or files behind a web server 

•  Simple queries (read-only) 

•  Mediator/wrapper architecture 
Fourth Edition, 2018  
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Polystores 

•  Also called multistore systems 
•  A major topic of research [The Case for Polystores. M. 

Stonebraker's blog. July 2015] 
•  Provide integrated access to multiple, heterogeneous 

cloud data stores such as NoSQL, HDFS, CEP and RDBMS 
•  Great for integrating structured (relational) data and big 

data 
•  But typically trade data store autonomy for performance 

or work only for certain categories of data stores (e.g. 
RDBMS and HDFS) 
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Taxonomy of Polystores* 

•  Three kinds  
•  Loosely-coupled 

• Similar to mediator/wrapper 
• Common interface 
• Autonomy of data stores, i.e. the ability to be locally 

controlled (independent of the multistore) 
•  Tightly-coupled 

• Exploit local interfaces for efficiency 
• Trade data store autonomy for performance 

• Materialized views, indexes 
•  Hybrid 

• Compromise between loosely- and tightly-coupled 

*C. Bondiombouy, P. Valduriez. Query Processing in Cloud Multistore Systems: an overview. 
Int. Journal of Cloud Computing,  5(4): 309-346, 2016.  
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Comparisons: functionality 
Polystore  Objective Data model Query language Data stores 

Loosely-coupled 

BigIntegrator 
(Uppsala U.) 

Querying relational 
and cloud data 

Relational SQL-like BigTable, RDBMS 

Forward 
(UC San Diego) 

Unyfing relational 
and NoSQL 

JSON-based SQL++ RDBMS, NoSQL 

QoX (HP labs) Analytic data flows Graph 
 

XML based 
 

RDBMS, ETL 
 

Tightly-coupled 

Polybase 
(Microsoft) 

Querying Hadoop 
from RDBMS 

Relational SQL HDFS, RDBMS 

HadoopDB 
(Yale U.) 

Querying RDBMS 
from Hadoop 

Relational SQL-live (HiveQL) HDFS, RDBMS 

Estocada (Inria) Self-tuning No common 
model 

Native query languages RDBMS, NoSQL 

Hybrid 

SparkSQL (UCB) SQL  atop Spark Nested SQL-like HDFS, RDBMS 

BigDAWG (MIT) Unifying relational 
and NoSQL 

No common 
model 

Island query languages, 
with CAST and SCOPE 
operators 

RDBMS, NoSQL, 
Array DBMS, DSMSs 
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Comparisons: implementation 
Polystore Special  modules Schema mgt Query  processing  Query 

optimization 

Loosely-coupled 

BigIntegrator 
(Uppsala U.) 

Importer, absorber,   
finalizer 

LAV Access filters Heuristics 

Forward (UC San 
Diego) 

Query processor GAV Data store capabilities Cost-based 

QoX (HP Labs) Dataflow engine No Data/ function shipping, 
operation decomposition 

Cost-based 

Tightly-coupled 

Polybase (Microsoft) HDFS bridge GAV Query splitting Cost-based 

HadoopDB 
(Yale U.) 

SMS planer, 
dbconnector 

GAV Query splitting Heuristics 

Estocada (Inria) Storage advisor Materialized 
views 

View-based query 
rewriting 

Cost-based 

Hybrid 

SparkSQL (UCB) Catalyst extensible 
optimizer 

Dataframes In-memory caching using 
columnar storage 

Cost-based 

BigDAWG (MIT) Island query 
processors 

GAV within 
islands 

Function/ data shipping Heuristics 
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The CloudMdsQL Polystore* 
 
•  A hybrid polystore 

•  Context: CoherentPaaS FP7 (2013-2016) 

•  Objectives 
•  Design an SQL-like query language to query multiple 

data sources in a cloud 
•  Autonomous data stores 

•  Design a query engine for that language 
•  Fully distributed over a cluster’s nodes 
•  Compiler/optimizer 

•  To produce efficient query execution plans 

•  Design an ultra-scalable transaction manager 

*B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The 
CloudMdsQL Multistore System. SIGMOD 2016. 
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The CloudMdsQL Language* 

•  Functional SQL-like query language 
•  Can represent all query building blocks as functions 

•  A function can be expressed in one of the DS 
languages, as a native function 

•  E.g. a breadth-first search on a graph DS 

•  Function results can be used as input to 
subsequent functions 

•  Functions can transform types and do data-
metadata conversion 

 

*B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J. Pereira. CloudMdsQL: 
Querying Heterogeneous Cloud Data Stores with a Common Language. Distributed and 
Parallel Databases, 34(4): 463-503, 2016. 
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CloudMdsQL Table Expressions 

•  Named table expression 
•  Expression that returns a table representing a nested query 

[against a data store] 
•  Name and Signature (names and types of attributes) 
•  Query is executed with a schema on read 

•  No need for global schema 

•  3 kinds of table expressions 
•  Native named tables 

•  Using a data store’s native query mechanism 
•  SQL named tables 

•  Regular SELECT statements 
•  Python named tables 

•  Embedded blocks of Python statements that produce relations 
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CloudMdsQL Query Example 

T1(x	int,	y	int)@DS1	=	(	SELECT	x,	y	FROM	A	)	
	
T2(x	int,	z	string)@DS2	=	{*	
		db.B.find(	{$lt:	{x,	10}},	{x:1,	z:1,	_id:0}	)	
*}	
	
SELECT	T1.x,	T2.z	
FROM	T1,	T2	
WHERE	T1.x	=	T2.x	AND	T1.y	<=	3	

SQL subquery 
on PostgreSQL 

Native subquery 
on MongoDB 

Integration subquery 
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Centralized Query Engine 

Query engine 

User 
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JDBC 
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Query 
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Query 

Straighforward M/W architecture 
=> 

High communication cost DS – QE 
Little optimization opportunities 
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Distributed Query Engine 

Fully distributed architecture 
=> 

Many optimization opportunities 
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Extending CloudMdsQL with MFR* 

•  Objectives 
•  Integration of relational and HDFS data 

•  With autonomy of data stores, unlike e.g. Polybase 

•  Query data stored in HDFS using a data processing 
framework (DPF) like Spark or Flink 

•  Using powerful functions lile Map, Filter, Reduce, etc. 

•  Issues 
•  Execute joins between RDBMS and HDFS 
•  Extend the CloudMdsQL Query Engine to work with Spark 

•  Solution 
•  Map-Filter-Reduce (MFR) expression 

*C. Bondiombouy, B. Kolev, O. Levchenko, P. Valduriez. Integrating Big Data and Relational 
Data with a Functional SQL-like Query Language. DEXA 2015. Extended version in 
SpringerTLDKS journal 9940:48-74, 2016. 
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Motivating Example 

An editorial office needs to find appropriate reporters for a 
list of publications based on given keywords 

2014-12-13, alice, storage, cloud 

2014-12-22, bob, cloud, virtual, app 

2014-12-24, alice, cloud 

keyword expert freq 

cloud alice 2 

storage alice 1 

virtual bob 1 

app bob 1 

title author kw 

On cloud storage 
… 

charlie cloud 

On cloud storage 
… 

charlie storage 

Publications (relational data) 

Posts (HDFS) 

After MapReduce processing 
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MFR Expression 

•  Works on a dataset, i.e. an abstraction for a set 
of tuples in a DPF 
•  For instance, a Resilient Distributed Dataset in Spark 
•  Consists of key-value tuples 

•  Using Map-Filter-Reduce operations 
•  Map, Filter, Reduce : the main operations 
•  Other operations : Scan, FlatMap, Project, … 
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MFR Expression Example 

•  Example: count the words that contain the string 
‘cloud’ 

 

 
 

Dataset 
SCAN(TEXT,’words.txt’) 

                                
.MAP(KEY,1) .FILTER( KEY LIKE ‘%cloud%’ ) .REDUCE (SUM) 
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Example Query with MFR 

/* SQL subquery */ 
T1(title	string,	kw	string)@rdbms	=	(	SELECT	title,	kw	FROM	
tbl	)	
 
/* MFR subquery */ 
T2(word	string,	count	int)@hdfs	=	{* 		
							SCAN(TEXT,'words.txt’)		
							.MAP(KEY,1)	
							.REDUCE(SUM)	
							.PROJECT(KEY,VALUE)		*}	
 
/* Integration subquery */ 
SELECT	title,	kw,	count	FROM	T1	JOIN	T2	ON	T1.kw	=	T2.word	
WHERE	T1.kw	LIKE	'%cloud%'		

•  Query: retrieve data from RDBMS and HDFS 
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Query Optimization 

•  We apply known optimization techniques to 
reduce execution time and communication costs 
•  Selection pushdown inside subqueries 
•  Bind join 
•  MFR operators reordering 
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Bind Join - example 

T1(id	int,	x	string)@DS1	=	(	SELECT	id,	x	FROM	A	)	/*	SQL	subquery	*/	
	

T2(id	int,	y	int)@DS2	=	{ 	 	 	/*	DPF	subquery	*/	
	SCAN(…).MAP(…).REDUCE(…).PROJECT(KEY,	VALUE)	*}	

	
SELECT	T1.x,	T2.y 	 	 	 	/*	integration	subquery	*/	
FROM	T1	BIND	JOIN	T2	ON	T1.id	=	T2.id	

					Query		Processor	

RDBMS	
Wrapper	

HDFS	
Wrapper	

SELECT	id,	x	FROM	A	
SCAN(…).MAP(…).REDUCE(…)	
.FILTER(KEY	IN	(1,3))	
.PROJECT(…)	
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MFR Rewrite Rules 

•  Rules for reordering MFR operators, based on their 
algebraic properties 

•  Focus on permuting FILTER with 
•  PROJECT 
•  REDUCE 
•  MAP 
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Rule PROJECT / FILTER 

T1(a	int,	b	int)@db1	={*	…	.	
FILTER(KEY>VALUE[0]).PROJECT(KEY,VALUE[0])*}	
SELECT	a,	b	FROM	T1	

T1(a	int,	b	int)@db1	=	{*	…	.PROJECT	(KEY,	VALUE[0])	*}	
SELECT	a,	b	FROM	T1	WHERE	a	>	b	

PROJECT (<expr_list>).SELECT(<predicate1>) 
=> 
FILTER(<predicate2>).PROJECT(<expr_list>)  
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Rule REDUCE / FILTER 

 
REDUCE(<transformation>).FILTER(<predicate>) 
=> 
FILTER(<predicate>).REDUCE(<transformation>)  

REDUCE (SUM) .FILTER(KEY LIKE ‘%cloud%) 

 FILTER (KEY LIKE ‘%cloud%’) . REDUCE (SUM) 
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Rule MAP / FILTER 

MAP(<expr_list>).FILTER(<predicate1>) 
=> 
FILTER(<predicate2>).MAP(<expr_list>)  

MAP(VALUE [0], KEY) .FILTER(KEY > VALUE) 

FILTER (VALUE [0] > KEY) . MAP (VALUE [0], KEY) 
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Map/Filter/Reduce => Spark 

•  We need to translate MFR operators to Spark 
operators 
•  map 
•  flatMap 
•  reduceByKey 
•  aggregateByKey 
•  filter 
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CloudMdsQL Contributions 

•  Advantage 
•  Relieves users from building complex client/server 

applications in order to access multiple data stores 

•  Innovation 
•  Adds value by allowing arbitrary code/native query to be 

embedded 
•  To preserve the expressivity of each data store’s query 

mechanism 

•  Provision for traditional distributed query optimization 

•  Validation 
•  With 10 different data stores, including SQL, NoSQL and 

Spark 
•  Transfer to the Leanxcale startup 


