
An Overview of Polystores

Patrick Valduriez
Inria, Montpellier, France

Joint work with Boyan Kolev, Carlyna Bondiombouy,
Oleksandra Levchenko and Ricardo Jimenez-Peris

2

Cloud & Big Data Landscape Cloud & Big Data Landscape

NoSQL Databases Data Processing Frameworks

Easy to get lost
No "one size fits all"

No standard
Keeps evolving

3

General Problem

BI
Analytics

NoSQL
DS1

NoSQL
DS2

Query
SQL
DS3 ?

Client
Application

(e.g. in Java)

•  Very complex, ad-hoc development
•  Querying different data sources
•  Managing intermediate results
•  Delivering (e.g. sorting) the final results

•  Hard to extend
•  What if a new SQL DS appears?

4

Outline

•  Polystores
•  The CloudMdsQL polystore
•  Query language
•  Distributed architecture
•  Extending CloudMdsQL with MFR
•  CloudMdsQL contributions

5

Origins of Polystores

•  Multidatabase systems (or federated
database systems)
•  A few databases (e.g. less than 10)

•  Corporate DBs

•  Powerful queries (with updates and
transactions)

•  Web data integration systems
•  Many data sources (e.g. 1000’s)

•  DBs or files behind a web server

•  Simple queries (read-only)

•  Mediator/wrapper architecture
Fourth Edition, 2018

6

Polystores

•  Also called multistore systems
•  A major topic of research [The Case for Polystores. M.

Stonebraker's blog. July 2015]
•  Provide integrated access to multiple, heterogeneous

cloud data stores such as NoSQL, HDFS, CEP and RDBMS
•  Great for integrating structured (relational) data and big

data
•  But typically trade data store autonomy for performance

or work only for certain categories of data stores (e.g.
RDBMS and HDFS)

7

Taxonomy of Polystores*

•  Three kinds
•  Loosely-coupled

• Similar to mediator/wrapper
• Common interface
• Autonomy of data stores, i.e. the ability to be locally

controlled (independent of the multistore)
•  Tightly-coupled

• Exploit local interfaces for efficiency
• Trade data store autonomy for performance

• Materialized views, indexes
•  Hybrid

• Compromise between loosely- and tightly-coupled

*C. Bondiombouy, P. Valduriez. Query Processing in Cloud Multistore Systems: an overview.
Int. Journal of Cloud Computing, 5(4): 309-346, 2016.

8

Comparisons: functionality
Polystore Objective Data model Query language Data stores

Loosely-coupled

BigIntegrator
(Uppsala U.)

Querying relational
and cloud data

Relational SQL-like BigTable, RDBMS

Forward
(UC San Diego)

Unyfing relational
and NoSQL

JSON-based SQL++ RDBMS, NoSQL

QoX (HP labs) Analytic data flows Graph

XML based

RDBMS, ETL

Tightly-coupled

Polybase
(Microsoft)

Querying Hadoop
from RDBMS

Relational SQL HDFS, RDBMS

HadoopDB
(Yale U.)

Querying RDBMS
from Hadoop

Relational SQL-live (HiveQL) HDFS, RDBMS

Estocada (Inria) Self-tuning No common
model

Native query languages RDBMS, NoSQL

Hybrid

SparkSQL (UCB) SQL atop Spark Nested SQL-like HDFS, RDBMS

BigDAWG (MIT) Unifying relational
and NoSQL

No common
model

Island query languages,
with CAST and SCOPE
operators

RDBMS, NoSQL,
Array DBMS, DSMSs

9

Comparisons: implementation
Polystore Special modules Schema mgt Query processing Query

optimization

Loosely-coupled

BigIntegrator
(Uppsala U.)

Importer, absorber,
finalizer

LAV Access filters Heuristics

Forward (UC San
Diego)

Query processor GAV Data store capabilities Cost-based

QoX (HP Labs) Dataflow engine No Data/ function shipping,
operation decomposition

Cost-based

Tightly-coupled

Polybase (Microsoft) HDFS bridge GAV Query splitting Cost-based

HadoopDB
(Yale U.)

SMS planer,
dbconnector

GAV Query splitting Heuristics

Estocada (Inria) Storage advisor Materialized
views

View-based query
rewriting

Cost-based

Hybrid

SparkSQL (UCB) Catalyst extensible
optimizer

Dataframes In-memory caching using
columnar storage

Cost-based

BigDAWG (MIT) Island query
processors

GAV within
islands

Function/ data shipping Heuristics

10

The CloudMdsQL Polystore*

•  A hybrid polystore

•  Context: CoherentPaaS FP7 (2013-2016)

•  Objectives
•  Design an SQL-like query language to query multiple

data sources in a cloud
•  Autonomous data stores

•  Design a query engine for that language
•  Fully distributed over a cluster’s nodes
•  Compiler/optimizer

•  To produce efficient query execution plans

•  Design an ultra-scalable transaction manager

*B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The
CloudMdsQL Multistore System. SIGMOD 2016.

11

The CloudMdsQL Language*

•  Functional SQL-like query language
•  Can represent all query building blocks as functions

•  A function can be expressed in one of the DS
languages, as a native function

•  E.g. a breadth-first search on a graph DS

•  Function results can be used as input to
subsequent functions

•  Functions can transform types and do data-
metadata conversion

*B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J. Pereira. CloudMdsQL:
Querying Heterogeneous Cloud Data Stores with a Common Language. Distributed and
Parallel Databases, 34(4): 463-503, 2016.

12

CloudMdsQL Table Expressions

•  Named table expression
•  Expression that returns a table representing a nested query

[against a data store]
•  Name and Signature (names and types of attributes)
•  Query is executed with a schema on read

•  No need for global schema

•  3 kinds of table expressions
•  Native named tables

•  Using a data store’s native query mechanism
•  SQL named tables

•  Regular SELECT statements
•  Python named tables

•  Embedded blocks of Python statements that produce relations

13

CloudMdsQL Query Example

T1(x	int,	y	int)@DS1	=	(SELECT	x,	y	FROM	A)	
	
T2(x	int,	z	string)@DS2	=	{*	
		db.B.find({$lt:	{x,	10}},	{x:1,	z:1,	_id:0})	
*}	
	
SELECT	T1.x,	T2.z	
FROM	T1,	T2	
WHERE	T1.x	=	T2.x	AND	T1.y	<=	3	

SQL subquery
on PostgreSQL

Native subquery
on MongoDB

Integration subquery

14

Centralized Query Engine

Query engine

User
Application

JDBC
Client

Query
Mediator

Query
Processor

Execution
Engine

Wrapper
DS1

Wrapper
DS2

Table
Store

Connector

DS1

DS2

Table
Store

CloudMdsQL
Query

Straighforward M/W architecture
=>

High communication cost DS – QE
Little optimization opportunities

15

Distributed Query Engine

Fully distributed architecture
=>

Many optimization opportunities

16

Extending CloudMdsQL with MFR*

•  Objectives
•  Integration of relational and HDFS data

•  With autonomy of data stores, unlike e.g. Polybase

•  Query data stored in HDFS using a data processing
framework (DPF) like Spark or Flink

•  Using powerful functions lile Map, Filter, Reduce, etc.

•  Issues
•  Execute joins between RDBMS and HDFS
•  Extend the CloudMdsQL Query Engine to work with Spark

•  Solution
•  Map-Filter-Reduce (MFR) expression

*C. Bondiombouy, B. Kolev, O. Levchenko, P. Valduriez. Integrating Big Data and Relational
Data with a Functional SQL-like Query Language. DEXA 2015. Extended version in
SpringerTLDKS journal 9940:48-74, 2016.

17

Motivating Example

An editorial office needs to find appropriate reporters for a
list of publications based on given keywords

2014-12-13, alice, storage, cloud

2014-12-22, bob, cloud, virtual, app

2014-12-24, alice, cloud

keyword expert freq

cloud alice 2

storage alice 1

virtual bob 1

app bob 1

title author kw

On cloud storage
…

charlie cloud

On cloud storage
…

charlie storage

Publications (relational data)

Posts (HDFS)

After MapReduce processing

18

MFR Expression

•  Works on a dataset, i.e. an abstraction for a set
of tuples in a DPF
•  For instance, a Resilient Distributed Dataset in Spark
•  Consists of key-value tuples

•  Using Map-Filter-Reduce operations
•  Map, Filter, Reduce : the main operations
•  Other operations : Scan, FlatMap, Project, …

19

MFR Expression Example

•  Example: count the words that contain the string
‘cloud’

Dataset
SCAN(TEXT,’words.txt’)

.MAP(KEY,1) .FILTER(KEY LIKE ‘%cloud%’) .REDUCE (SUM)

20

Example Query with MFR

/* SQL subquery */
T1(title	string,	kw	string)@rdbms	=	(SELECT	title,	kw	FROM	
tbl)	

/* MFR subquery */
T2(word	string,	count	int)@hdfs	=	{* 		
							SCAN(TEXT,'words.txt’)		
							.MAP(KEY,1)	
							.REDUCE(SUM)	
							.PROJECT(KEY,VALUE)		*}	

/* Integration subquery */
SELECT	title,	kw,	count	FROM	T1	JOIN	T2	ON	T1.kw	=	T2.word	
WHERE	T1.kw	LIKE	'%cloud%'		

•  Query: retrieve data from RDBMS and HDFS

21

Query Optimization

•  We apply known optimization techniques to
reduce execution time and communication costs
•  Selection pushdown inside subqueries
•  Bind join
•  MFR operators reordering

22

Bind Join - example

T1(id	int,	x	string)@DS1	=	(SELECT	id,	x	FROM	A)	/*	SQL	subquery	*/	
	

T2(id	int,	y	int)@DS2	=	{ 	 	 	/*	DPF	subquery	*/	
	SCAN(…).MAP(…).REDUCE(…).PROJECT(KEY,	VALUE)	*}	

	
SELECT	T1.x,	T2.y 	 	 	 	/*	integration	subquery	*/	
FROM	T1	BIND	JOIN	T2	ON	T1.id	=	T2.id	

					Query		Processor	

RDBMS	
Wrapper	

HDFS	
Wrapper	

SELECT	id,	x	FROM	A	
SCAN(…).MAP(…).REDUCE(…)	
.FILTER(KEY	IN	(1,3))	
.PROJECT(…)	

23

MFR Rewrite Rules

•  Rules for reordering MFR operators, based on their
algebraic properties

•  Focus on permuting FILTER with
•  PROJECT
•  REDUCE
•  MAP

24

Rule PROJECT / FILTER

T1(a	int,	b	int)@db1	={*	…	.	
FILTER(KEY>VALUE[0]).PROJECT(KEY,VALUE[0])*}	
SELECT	a,	b	FROM	T1	

T1(a	int,	b	int)@db1	=	{*	…	.PROJECT	(KEY,	VALUE[0])	*}	
SELECT	a,	b	FROM	T1	WHERE	a	>	b	

PROJECT (<expr_list>).SELECT(<predicate1>)
=>
FILTER(<predicate2>).PROJECT(<expr_list>)

25

Rule REDUCE / FILTER

REDUCE(<transformation>).FILTER(<predicate>)
=>
FILTER(<predicate>).REDUCE(<transformation>)

REDUCE (SUM) .FILTER(KEY LIKE ‘%cloud%)

 FILTER (KEY LIKE ‘%cloud%’) . REDUCE (SUM)

26

Rule MAP / FILTER

MAP(<expr_list>).FILTER(<predicate1>)
=>
FILTER(<predicate2>).MAP(<expr_list>)

MAP(VALUE [0], KEY) .FILTER(KEY > VALUE)

FILTER (VALUE [0] > KEY) . MAP (VALUE [0], KEY)

27

Map/Filter/Reduce => Spark

•  We need to translate MFR operators to Spark
operators
•  map
•  flatMap
•  reduceByKey
•  aggregateByKey
•  filter

28

CloudMdsQL Contributions

•  Advantage
•  Relieves users from building complex client/server

applications in order to access multiple data stores

•  Innovation
•  Adds value by allowing arbitrary code/native query to be

embedded
•  To preserve the expressivity of each data store’s query

mechanism

•  Provision for traditional distributed query optimization

•  Validation
•  With 10 different data stores, including SQL, NoSQL and

Spark
•  Transfer to the Leanxcale startup

