Spotlight on
NewSQL

sof®

Why NewSQL?

e Pros NoSQL
o Scalability

Often by relaxing strong consistency
e Performance
e Practical APIs for programming

* Pros Relational
e Strong consistency

e Transactions
e Standard SQL

Makes it easy for tool vendors (BI, analytics, ...)

» NewSQL = NoSQL/relational hybrid

SBBD 2020 © P. Valduriez 2020

Transaction vs. Analytical Processing

Operational DB Data warehouse/lake
Transactions Analytics

e Problems
e ETL/ELT development cost up to 75% of analytics

e Analytical queries on obsolete data

Leads to miss business opportunities, e.g., proximity
marketing, real-time pricing, risk monitoring, etc.

SBBD 2020 © P. Valduriez 2020

HTAP*: blending OLTP & OLAP

Analytical queries
on operational data

» Advantages
e Cutting cost of business analytics by up to 75%
e Simpler architecture: no more ETLS/ELTs
e Real-time analytical queries on current data

*Gartner, 2015
SBBD 2020 © P. Valduriez 2020

Use Case: Google AdWords

» Application to produce sponsored links as results
of search engine

e Revenue: $50 billion/year
» Use of an auction system

e Pure competition between suppliers to gain access to
consumers, or consumer models (the probability of
responding to the ad), and determine the right price
offer (maximum cost-per-click (CPC) bid)

 The AdWords database with Google Spanner
e 30 billion search queries per month
e 1 billion historical search events
e Hundreds of Terabytes

SBBD 2020 © P. Valduriez 2020

Use Case: Network Monitoring

NoSQL to store data at high rates

e Data is put in a data store able to ingest data at very
high rates

E.g. network performance monitoring information about packets
sniffed in the network

Problems

o Because NoSQL is used to store the data, BI tools
cannot be used for real time data

e Data needs to be aggregated and exported periodically
to an SQL database to query the data with BI tools

SBBD 2020 © P. Valduriez 2020 6

Use Case: Oil & Gas

e Context: drilling oil in a given location

* Objective: detect ASAP that the drilling prospection
will fail
e Save millions of $ by preventing useless drilling

e Requirements

e Efficient ingestion of real-time data from drillers
With transactions to guarantee data consistency

o Real time analytics of all the data produced by the
drillers

e Problem
e Transactions and real-time analytics on driller data

SBBD 2020 © P. Valduriez 2020 7

HTAP and Big Data

Challenges

e Scaling out transactions
Millions of transactions per second

e Mixed OLTP/OLAP workloads on big data

e Big data ingestion from remote data sources
Ingest data fast, query it with SQL

o Polystore capabilities
To access HDFS, NoSQL and SQL data sources

SBBD 2020 © P. Valduriez 2020

Main Techniques

From SQL

e Parallel, in-memory query processing

e Fault-tolerance, failover and synchronous replication
e Streaming

From NoSQL

e Key-value storage and access
e JSON data support
e Horizontal and vertical data partitioning (sharding)

New
e Scalable transaction management

e Polyglot language and polystore
Access to SQL, NoSQL and HDFS data stores

SBBD 2020 © P. Valduriez 2020

NewSQL Distributed Architecture

SBBD 2020

Ul |BI | App |... UL |BI | App |...
DB client DB client
SQL & KV
APIs
Query engine
QE — QE —| OF —| OF
KV client KV client KV client KV client
E ——3 Lt_g\ 3
XN engine
J Txn / >n Txn
‘[y 4 \ \ y \
KV store / \ \ j
\ 4
KVE KVE KVE
DS server DS server DS server

© P. Valduriez 2020

10

LEANSZCALE
| eanXcale Architecture

4)
OLAP | App | App]
Appllcatlon JDBC Drv JDBC Drv

J
Query Engln A
5 Qe]

KVCllent wcnent | KVClient] | KVClient |

Txn Engine

KV Store
(KiVi)

independent scale out
independent scale out

SBBD 2020 © P. Valduriez 2020 11

LeanXcale Scalable Transaction Processing™

Traditional approach

Single-node bottleneck

N
N

e °
S

& °
o ¥
N\

e °
S

.

LEANSZCALE

Processes &
commits
transactions
in parallel

Provides a
consistent
view

* R. Jimenez-Peris, M. Patifo-Martinez. System and method for highly scalable decentralized and low contention
transactional processing. Priority date: 11t Nov. 2011. European Patent #EP2780832, US Patent #US9,760,597.

SBBD 2020

© P. Valduriez 2020

12

Traditional Approach

Centralized Transaction Manager

omic

Single-node bottleneck

SBBD 2020 © P. Valduriez 2020

Traditional Approach

SBBD 2020

Centralized Transaction Manager
f—

latio
ead

Single-node bottleneck

© P. Valduriez 2020

14

LeanXcale: Scaling ACID Properties

k >€ &

SBBD 2020 © P. Valduriez 2020 15

LeanXcale Scaling ACID Properties

& o
Local TMS ' Conflict managers
Atom|C|ty \ / Isolation

Writes
Isolation \ .
Reads / \ Durability
O E

Snapshot Commlt I
Server sequencer

Loggers

SBBD 2020 © P. Valduriez 2020 16

LeanXcale Transaction Mgt Principles

o Separation of commit from the visibility of
committed data

» Proactive pre-assignment of commit timestamps to
committing transactions

e Detection and resolution of conflicts before commit

» Transactions can commit in parallel because:

e They do not conflict

e They have their commit timestamp already assigned
that will determine their serialization order

e Visibility is reqgulated separately to guarantee the
reading of fully consistent states

SBBD 2020 © P. Valduriez 2020 17

Transactional Life Cycle: start

‘ = &P
, S
\0 A
& &
Snapshot
P S e

The local txn mng
gets the “start TS”
from the snapshot
server.

\ ¥ / Local Txn

Manager

SBBD 2020 © P. Valduriez 2020

18

Transactional Life Cycle: execution

The transaction will read the state
as of “start TS”.

Write-write conflicts are detected Conflict
by conflict managers on the fly. Manager

Run on start
TS snapshot

Getstart TS

" g : ./
\ / Local Txn

Manager

SBBD 2020 © P. Valduriez 2020

19

Transaction Life Cycle: commit

The local transaction
manager orchestrates
the commit.

Run on start
TS snhapshot

Getstart TS

¢s & _ « .)
<

Vo
\a::/ Local Txn
Manager

SBBD 2020 © P. Valduriez 2020

20

Transaction Life Cycle: commit

« .) Local Txn
Manager

Public Report
Updates Snaps Serv
| Commit TS 1 Writeset Ierteset lCommlt TS

001

Commit Logger Data Store
Sequencer

Snapshot
Server

SBBD 2020 © P. Valduriez 2020 21

Transaction Life Cycle: commit

Sequence of commit timestamps received by the Snapshot Server

10

SBBD 2020 © P. Valduriez 2020

22

LeanXcale Transactional Scalability

Scalability Transactional Processing
2,500,000

» 2.35 Million TPS
2,000,000

1,500,000

1,000,000

Transactions/second

500,000

0
0 50 100 150 200 250

Number of Cores

» Without data manager/logging to see how much
TP throughput can be attained

e Based on a micro-benchmark to stress the TM

SBBD 2020 © P. Valduriez 2020

23

LeanXcale Polystore Architecture

rOLAP
Application App App

e v
JDBC Drv JDBCDrv ____J

k)uery Engi%:\ — _\

. QE ¥ QE ¥ QE & QE |

DataLake API] | ! |

_. DSClient DSClient DSClient DSClient

External /, /
Data
Store

o Workers access directly data shards through wrappers
e Datalake API: get list of shards; assign shard to worker

A

independent scale out

Wrapper

V

independent scale out

SBBD 2020 © P. Valduriez 2020

Parallel Polystore Query Processing

Objectives

e Intra-operator parallelism
Apply parallel algorithms

e Exploit data sharding in data stores
Access data shards (partitions) in parallel

e Polyglot capabilities
o Optimization
Select pushdown, bindjoin, etc.
Solution

e The LeanXcale Distributed Query Engine (DQE)
... with CloudMdsQL polyglot extensions

*B, Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaca, R. Gongalves, R. Jiménez-Peris, P. Kranas. Parallel
Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Big Data, 2018.

SBBD 2020 © P. Valduriez 2020

25

Query on LeanXcale and MongoDB

LineItem(L ORDERKEY int, ..)@mongo = {*
return db.lineitem.findSharded (
{1 quantity: {$1lt: 5}});

*}
[:‘App] SELECT count(*) FROM LineItem L, Orders O
Q WHERE L ORDERKEY = O_ORDERKEY
1
S O) O)
VV1 W2 VVn
: 4N : 4 N 3
ONY A Ny X
g [V g [V| £S
L O L O L o]

listShards ()

Mongo db lineifef. find (.

Router
Mongo Mongo | Mongo KVDS | KVDS | KVDS
Shard

Shard Shard

SBBD 2020 © P. Valduriez 2020

26

