
Spotlight on
NewSQL

2SBBD 2020 © P. Valduriez 2020

Why NewSQL?

• Pros NoSQL
• Scalability

• Often by relaxing strong consistency
• Performance
• Practical APIs for programming

• Pros Relational
• Strong consistency
• Transactions
• Standard SQL

• Makes it easy for tool vendors (BI, analytics, …)

• NewSQL = NoSQL/relational hybrid

3SBBD 2020 © P. Valduriez 2020

Transaction vs. Analytical Processing

• Problems
• ETL/ELT development cost up to 75% of analytics
• Analytical queries on obsolete data

• Leads to miss business opportunities, e.g., proximity
marketing, real-time pricing, risk monitoring, etc.

Data warehouse/lake
Analytics

ETL/ELT

Operational DB
Transactions

OLTP OLAP

4SBBD 2020 © P. Valduriez 2020

HTAP*: blending OLTP & OLAP

• Advantages
• Cutting cost of business analytics by up to 75%
• Simpler architecture: no more ETLs/ELTs
• Real-time analytical queries on current data

OLT
P

OLAP

Analytical queries
on operational data

OLTP OLAPHTAP

*Gartner, 2015

5SBBD 2020 © P. Valduriez 2020

Use Case: Google AdWords
• Application to produce sponsored links as results

of search engine
• Revenue: $50 billion/year

• Use of an auction system
• Pure competition between suppliers to gain access to

consumers, or consumer models (the probability of
responding to the ad), and determine the right price
offer (maximum cost-per-click (CPC) bid)

• The AdWords database with Google Spanner
• 30 billion search queries per month
• 1 billion historical search events
• Hundreds of Terabytes

6SBBD 2020 © P. Valduriez 2020

Use Case: Network Monitoring
• NoSQL to store data at high rates

• Data is put in a data store able to ingest data at very
high rates

• E.g. network performance monitoring information about packets
sniffed in the network

• Problems
• Because NoSQL is used to store the data, BI tools

cannot be used for real time data
• Data needs to be aggregated and exported periodically

to an SQL database to query the data with BI tools

7SBBD 2020 © P. Valduriez 2020

Use Case: Oil & Gas

• Context: drilling oil in a given location
• Objective: detect ASAP that the drilling prospection

will fail
• Save millions of $ by preventing useless drilling

• Requirements
• Efficient ingestion of real-time data from drillers

• With transactions to guarantee data consistency
• Real time analytics of all the data produced by the

drillers
• Problem

• Transactions and real-time analytics on driller data

8SBBD 2020 © P. Valduriez 2020

HTAP and Big Data

• Challenges
• Scaling out transactions

• Millions of transactions per second
• Mixed OLTP/OLAP workloads on big data
• Big data ingestion from remote data sources

• Ingest data fast, query it with SQL
• Polystore capabilities

• To access HDFS, NoSQL and SQL data sources

9SBBD 2020 © P. Valduriez 2020

Main Techniques

• From SQL
• Parallel, in-memory query processing
• Fault-tolerance, failover and synchronous replication
• Streaming

• From NoSQL
• Key-value storage and access
• JSON data support
• Horizontal and vertical data partitioning (sharding)

• New
• Scalable transaction management
• Polyglot language and polystore

• Access to SQL, NoSQL and HDFS data stores

10SBBD 2020 © P. Valduriez 2020

NewSQL Distributed Architecture

UI BI App …

SQL & KV
APIs

DB client

QE

DS server

UI BI App …

DB client

Query engine

…

KV store

KV client

QE …

KV client

QE …

KV client

QE …

KV client

Txn
Txn engine TxnTxn

KVE

DS server

KVE

DS server

KVE

11SBBD 2020 © P. Valduriez 2020

LeanXcale Architecture
in

de
pe

nd
en

t s
ca

le
 o

ut

in
de

pe
nd

en
t s

ca
le

 o
ut

KV Store
(KiVi)

KV Master
Server

KV Data
Server

KV Data
Server

KV Data
Server

Query Engine

QE
KVClient

QE
KVClient

QE
KVClient

QE
KVClient

OLAP
Application

App

Elastic Drv

JDBC Drv

App

Elastic Drv

JDBC Drv

Txn Engine Txn Txn Txn

12SBBD 2020 © P. Valduriez 2020

LeanXcale Scalable Transaction Processing*

Time

Processes &
commits
transactions
in parallel

Provides a
consistent
view

Single-node bottleneck

Time

Traditional approach

vs

* R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable decentralized and low contention
transactional processing. Priority date: 11th Nov. 2011. European Patent #EP2780832, US Patent #US9,760,597.

13SBBD 2020 © P. Valduriez 2020

Traditional Approach

Centralized Transaction Manager

Single-node bottleneck

Central
TM

Atomicity Isolation

DurabilityConsistency

14SBBD 2020 © P. Valduriez 2020

Traditional Approach

Centralized Transaction Manager

Single-node bottleneck

Central
TM

Atomicity Isolation
Writes

DurabilityIsolation
Reads

15SBBD 2020 © P. Valduriez 2020

LeanXcale: Scaling ACID Properties

AtomicityAtomicityAtomicity

Isolation
Reads

Durability

Isolation
Writes

16SBBD 2020 © P. Valduriez 2020

LeanXcale Scaling ACID Properties

Conflict managers

Loggers

Commit
sequencer

Snapshot
server

Local TMs

Atomicity

Isolation
Reads

Isolation
Writes

Durability

17SBBD 2020 © P. Valduriez 2020

LeanXcale Transaction Mgt Principles
• Separation of commit from the visibility of

committed data
• Proactive pre-assignment of commit timestamps to

committing transactions
• Detection and resolution of conflicts before commit
• Transactions can commit in parallel because:

• They do not conflict
• They have their commit timestamp already assigned

that will determine their serialization order
• Visibility is regulated separately to guarantee the

reading of fully consistent states

18SBBD 2020 © P. Valduriez 2020

Snapshot
Server Curr

en
t c

on
sis

ten
t

sn
ap

sh
ot

The local txn mng
gets the “start TS”
from the snapshot
server.

Get start TS

Local Txn
Manager

Transactional Life Cycle: start

19SBBD 2020 © P. Valduriez 2020

Local Txn
Manager

Get start TS

Run on start
TS snapshot

Conflict
Manager

The transaction will read the state
as of “start TS”.
Write-write conflicts are detected
by conflict managers on the fly.

Transactional Life Cycle: execution

20SBBD 2020 © P. Valduriez 2020

Get start TS

Run on start
TS snapshot

Commit

The local transaction
manager orchestrates
the commit.

Local Txn
Manager

Transaction Life Cycle: commit

21SBBD 2020 © P. Valduriez 2020

Data Store

Commit TS Writeset Writeset Commit TS

Local Txn
Manager

Get
Commit TS Log Public

Updates
Report

Snaps Serv

Commit
Sequencer

Snapshot
ServerLogger

Transaction Life Cycle: commit

22SBBD 2020 © P. Valduriez 2020

TIMESTAMP 11
TIMESTAMP 15 TIMESTAMP 12

TIMESTAMP 14
TIMESTAMP 13

Time

Sequence of commit timestamps received by the Snapshot Server

Evolution of the current snapshot at the Snapshot Server (starting at 10)

TIMESTAMP 11
TIMESTAMP 12

TIMESTAMP 12
TIMESTAMP 15

TIMESTAMP 11

11 15 12 14 13

11 11 12 12 15

Transaction Life Cycle: commit

10

23SBBD 2020 © P. Valduriez 2020

LeanXcale Transactional Scalability

• Without data manager/logging to see how much
TP throughput can be attained

• Based on a micro-benchmark to stress the TM

2.35 Million TPS

24SBBD 2020 © P. Valduriez 2020

LeanXcale Polystore Architecture

• Workers access directly data shards through wrappers
• DataLake API: get list of shards; assign shard to worker

in
de

pe
nd

en
t s

ca
le

 o
ut

in
de

pe
nd

en
t s

ca
le

 o
ut

External
Data
Store DS

Shard
DS

Shard
DS

Shard

Query Engine

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

OLAP
Application App

JDBC Drv

App
JDBC Drv

DataLake API

25SBBD 2020 © P. Valduriez 2020

Parallel Polystore Query Processing

• Objectives
• Intra-operator parallelism

• Apply parallel algorithms
• Exploit data sharding in data stores

• Access data shards (partitions) in parallel
• Polyglot capabilities
• Optimization

• Select pushdown, bindjoin, etc.

• Solution
• The LeanXcale Distributed Query Engine (DQE)

• … with CloudMdsQL polyglot extensions

• *B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-Peris, P. Kranas. Parallel
Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Big Data, 2018.

26SBBD 2020 © P. Valduriez 2020

Query on LeanXcale and MongoDB

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

Mongo
Shard

KVDSMongo
Shard

KVDSMongo
Shard

Mongo
Router

listShards()

db.lineitem.find(…)

LineItem(L_ORDERKEY int, …)@mongo = {*
return db.lineitem.findSharded(

{l_quantity: {$lt: 5}});
*}
SELECT count(*) FROM LineItem L, Orders O
WHERE L_ORDERKEY = O_ORDERKEY

