
Patrick Valduriez

Principles of Distributed
Database Systems:

spotlight on NewSQL

Outline

• Distributed database systems
• NoSQL
• Polystores
• Spotlight on NewSQL
• Taxonomy of NewSQL systems
• Current trends

Principles of Distributed
Database Systems

Tamer Özsu & Patrick Valduriez

4SBBD 2020 © P. Valduriez 2020

The Story of the Book

1991

1999

2011

2020

Relational databases.
“In the following 10 years, centralized DBMSs would be an
antique curiosity and most organizations would move
towards distributed DBMSs.” M. Stonebraker (1988)

Advanced transaction models,
query optimization, object data
management, parallel DBMSs.

Data replication, database clusters,
web data integration, P2P, cloud.

Blockchain, big data, data streaming, graph
data analytics, NoSQL, NewSQL, polystores.

5SBBD 2020 © P. Valduriez 2020

Distributed Database - User View 1991

6SBBD 2020 © P. Valduriez 2020

Distributed Database - User View 2020

7SBBD 2020 © P. Valduriez 2020

Distributed DBMS – Reality

Communication
Subsystem

DBMS
Software

User
ApplicationUser

Query

DBMS
Software

DBMS
Software

DBMS
Software

User
Query

DBMS
Software

User
Query

User
Application

8SBBD 2020 © P. Valduriez 2020

Definitions

• A distributed database (DDB) is a collection of
multiple, logically interrelated databases
distributed over a computer network
• WAN, LAN, cluster interconnect

• A distributed database system (distributed DBMS)
is the software that manages the DDB and
provides an access mechanism that makes this
distribution transparent to the users

9SBBD 2020 © P. Valduriez 2020

Promises of Distributed DBMSs

• Transparent management of distributed, fragmented,
and replicated data
• Declarative query language (SQL)

• Improved reliability/availability through replication and
distributed transactions
• Strong ACID consistency
• Failover and online recovery

• Improved performance
• Proximity of data to its points of use
• Data-based parallelism
• Query optimization

• Easier and more economical system expansion
• Elasticity in the cloud

10SBBD 2020 © P. Valduriez 2020

Implementation Alternatives

& Polystores

11SBBD 2020 © P. Valduriez 2020

Speed Up

• Ideal: linear speed-up
• Linear increase of

performance by growing
the components

• For a fixed database size
and load

Perf.
ideal

Components size

12SBBD 2020 © P. Valduriez 2020

Speed-up Limits
• Hardware/software

• As we add more resources, arbitration conflicts increase
• E.g. Access to the bus by processors, latching, …

• Application
• Only part of a program can be parallelized
• Recall: Amdahl's law that gives the maximum speed-up

• Seq = fraction of code that cannot be parallelized

1
Seq + 1 - Seq

NbProc

Examples
• Seq=0, NbProc=4 => speed-up= 4
• Seq=30%, NbProc=4 => speed-up= 2,1
• Seq=30%, NbProc=8 => speed-up= 2,5

13SBBD 2020 © P. Valduriez 2020

Scalability

• Ideal: linear scale-up
• Sustained performance

for a linear increase of
database size and load

• By proportional increase
of components

ideal

Components size,
DB size & load

Perf.

14SBBD 2020 © P. Valduriez 2020

Vertical vs Horizontal Scaleup

• Typically in a computer cluster

P1

P2

Pn

P1

P2

Pn

P1

P2

Pn

P1

P2

Pn

Scale-out

Scale-up

15SBBD 2020 © P. Valduriez 2020

Query Parallelism

• Inter-query
• Different queries on the same

data
• For concurrent queries

• Intra-query inter-operator
• Different operations of the

same query on different data
• For complex queries

• Intra-query intra-operator
• The same operation on

different data
• For large queries

Q1 Qn…

R1 Rn

Join

Select

R S

Select

S1 Sn

…Select Select

16SBBD 2020 © P. Valduriez 2020

New Computing Hierarchy

NUMA (Non Uniform Memory Architecture)
• Memory-based communication
• Tens of processors

…

Cluster
• Massively parallel (MPP)
• Message-based comm.
• Thousands of nodes

Parallelism

Scalability

M
P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

17SBBD 2020 © P. Valduriez 2020

Shared-disk Architecture

UI BI App …

SQL API

DB client

Query
engine

Txn
engine

UI BI App …

DB client

DB server

Shared
disk

DB server DB server

… Query
engine

Txn
engine

… Query
engine

Txn
engine

…

+ Simple admin. & Txn
- Scalability (cache coherency)
- Cost of SAN

SAN

Best for OLTP

18SBBD 2020 © P. Valduriez 2020

Data StoreData Store

Shared-nothing Architecture
UI BI App …

SQL API

DB client

Query
engine

Txn
engine

UI BI App …

DB client

DB server

Data Store

DB server DB server

… Query
engine

Txn
engine

… Query
engine

Txn
engine

…

+ Scalability, cost
- Distributed updates

Perfect match for OLAP and
big data (read intensive)

NoSQL

20SBBD 2020 © P. Valduriez 2020

Why NoSQL?

21SBBD 2020 © P. Valduriez 2020

Why NoSQL?

• Trends
• Big data

• Unstructured data
• Data interconnection

• Hyperlinks, tags, blogs, etc.
• Very high scalability

• Data size, data rates, concurrent users, etc.

• Limits of SQL systems (in fact RDBMSs)
• Need for skilled DBA, tuning and well-defined schemas
• Full SQL complex
• Hard to make updates scalable

• Parallel RDBMS use a shared-disk for OLTP, which is hard to scale

22SBBD 2020 © P. Valduriez 2020

NoSQL (Not Only SQL) Definition

• Specific DBMS, typically for web-based data
• Specialized data model

• Key-value, table, document, graph
• Trade relational DBMS properties

• Full SQL, ACID transactions, data independence
• For

• Simplicity (schema, basic API)
• Horizontal scalability and performance
• Flexibility for the programmer (integration with programming

language)

23SBBD 2020 © P. Valduriez 2020

NoSQL Approaches

• Characterized by the data model, in increasing
order of complexity:

1. Key-value: DynamoDB, RockDB, Redis
2. Tabular: Hbase, Bigtable, Cassandra
3. Document (JSON): MongoDB, Coubase, CouchDB,

Expresso
4. Graph: Neo4J, AllegroGraph, MarkLogic, RedisGraph
5. Multimodel: OrientDB, ArangoDB

• What about object DBMSs or XML DBMSs?
• Were there much before NoSQL
• Sometimes presented as NoSQL
• But no horizontal scalability

24SBBD 2020 © P. Valduriez 2020

Key-value Store Distributed Architecture

UI App …

KV API

KV client

KV engine …

KV client

KV store

Data store

DS server

DS client DS client DS client

UI App …

DS serverDS server

KV engine … KV engine …

25SBBD 2020 © P. Valduriez 2020

Main NoSQL Systems
Vendor Product Category Comments
Amazon DynamoDB KV Proprietary
Apache Cassandra

Accumulo
KV
Tabular

Open source, Orig. Facebook
Open source, Orig. NSA

Couchbase Couchbase KV, document Origin: MemBase
Google Bigtable Tabular Proprietary, patents

FaceBook RocksDB KV Open source
Hadoop Hbase Tabular Open source, Orig. Yahoo

LinkedIn Voldemort
Expresso

KV
Document

Open source
ACID transactions

10gen MongoDB Document Open source
Oracle NoSQL KV Based on BerkeleyDB

OrientDB OrientDB Graph, KV, document Open source, ACID transactions
Neo4J.org Neo4J Graph Open source, ACID transactions

Ubuntu CouchDB Document Open source

Polystores

Query
Engine

Wrapper1 Wrapper3

Query Q

Q1 Q3

HDFSSQL

Q1' Q3'

Wrapper2

Q2

NoSQL

Q2'

27SBBD 2020 © P. Valduriez 2020

Polystores*

• Also called Multistores
• Provide integrated access to multiple cloud data

stores such as NoSQL, HDFS and RDBMS
• Great for integrating structured (relational) data

and big data
• A major area of research & development

*Michael Stonebraker.The Case for Polystores. ACM blog, July 2015.

28SBBD 2020 © P. Valduriez 2020

Differences with Federated Databases

• Multidatabase systems
• A few databases (e.g. less than 10)

• Corporate DBs
• Powerful queries (with updates and transactions)

• Web data integration systems
• Many data sources (e.g. 1000’s)

• DBs or files behind a web server
• Simple queries (read-only)

• In the cloud, more opportunities for an efficient
architecture
• Less restriction to where mediator and wrapper

components need be installed

29SBBD 2020 © P. Valduriez 2020

Classification of Polystores*

• We divide polystores based on the level of
coupling with the underlying data stores
• Loosely-coupled
• Tightly-coupled
• Hybrid

*C. Bondiombouy, P. Valduriez. Query Processing in Cloud Multistore Systems: an
overview. Int. Journal of Cloud Computing, 5(4): 309-346, 2016.

30SBBD 2020 © P. Valduriez 2020

Loosely-Coupled Polystores

• Reminiscent of multidatabase systems
• Mediator-wrapper architecture
• Deal with autonomous data stores
• One common interface to all data stores
• Common interface translated to local API

• Examples
• BigIntegrator (Uppsala University)
• Forward (UC San Diego)
• QoX (HP Labs)

31SBBD 2020 © P. Valduriez 2020

Tightly-Coupled Polystores

• Use the local interfaces of the data stores
• Use a single query language for data integration

in the query processor
• Allow data movement across data stores
• Optimize queries using materialized views or

indexes
• Examples

• Polybase (Microsoft Research, Madison)
• HadoopDB (Yale Univ. & Brown Univ.)
• Estocada (Inria)

32SBBD 2020 © P. Valduriez 2020

Hybrid Polystores

• Support data source autonomy as in loosely-
coupled systems

• Exploit the local data source interface as in tightly-
coupled systems

• Examples
• SparkSQL (Databricks & UC Berkeley)
• BigDaWG (MIT, U. Chicago & Intel)
• CloudMdsQL (Inria & LeanXcale)

33SBBD 2020 © P. Valduriez 2020

Polyglot Query Example

/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 = {*
db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})

*}

N x, z

p x, z

A

p x, y

T1@DB1
(RDB)

T2@DB2
(MongoDB)

@CloudMdsQL

*B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira.
The CloudMdsQL Multistore System. SIGMOD 2016.

• A query in CloudMdsQL* that integrates data from
• DB1 – relational (RDB)
• DB2 – document (MongoDB)

• Expressed as a Native subquery

34SBBD 2020 © P. Valduriez 2020

Comparisons: functionality
Polystore Objective Data model Query language Data stores
Loosely-coupled

BigIntegrator Querying relational
and cloud data

Relational SQL-like BigTable,RDBMS

Forward Unyfing relational
and NoSQL

JSON-based SQL++ RDBMS, NoSQL

QoX Analytic data flows Graph XML based RDBMS, ETL

Tightly-coupled

Polybase Querying Hadoop
from RDBMS

Relational SQL HDFS, RDBMS

HadoopDB Querying RDBMS
from Hadoop

Relational SQL-live (HiveQL) HDFS, RDBMS

Estocada Self-tuning No common model Native QL RDBMS, NoSQL

Hybrid

SparkSQL SQL on top of Spark Nested SQL-like HDFS, RDBMS

BigDAWG Unifying relational
and NoSQL

No common model Island query
languages

RDBMS, NoSQL,
Array DBMS, DSMSs

CloudMdsQL Querying relational
and NoSQL

JSON-based SQL-like with native
subqueries

RDBMS, NoSQL,
HDFS

35SBBD 2020 © P. Valduriez 2020

Comparisons: implementation techniques
Polystore Objective Data model Query language Data stores

Loosely-coupled

BigIntegrator Importer,absorber,
finalizer

LAV Access filters Heuristics

Forward Query processor GAV Data store capabilities Cost-based

QoX Dataflow engine No Data/function shipping Cost-based

Tightly-coupled

Polybase HDFS bridge GAV Query splitting Cost-based

HadoopDB SMS planer, db
conector

GAV Query splitting Heuristics

Estocada Storage advisor Materialzed views Query rewriting Cost-based

Hybrid

SparkSQL Dataframes Nested In-memory caching Cost-based

BigDAWG Island query GAV within islands Function/datashipping Heuristics

CloudMdsQL Query planner No Bind join Cost-based

