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When Big Data goes bad – 1 

•  Excerpts: 
Peter Lawrence's The Making of a Fly, a classic book in 
developmental biology, was listed on Amazon.com as having 17 
copies for sale: 15 used from $35.54, and two new from 
$23,698,655.93 (plus $3.99 shipping). 
 
What had happened was that two automated programs, one run 
by seller "bordeebook" and one by seller "profnath," were 
engaged in an iterative and incremental bidding war. Once a day 
profnath would raise their price to 0.9983 times bordeebook's 
listed price. Several hours later, bordeebook would increase their 
price to 1.270589 times profnath's latest amount. 
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When Big Data goes bad - 1 

•  Excerpts: 
Peter Lawrence's The Making of a Fly, a classic book in 
developmental biology, was listed on Amazon.com as having 17 
copies for sale: 15 used from $35.54, and two new from 
$23,698,655.93 (plus $3.99 shipping). 
 
What had happened was that two automated programs, one run 
by seller "bordeebook" and one by seller "profnath," were 
engaged in an iterative and incremental bidding war. Once a day 
profnath would raise their price to 0.9983 times bordeebook's 
listed price. Several hours later, bordeebook would increase their 
price to 1.270589 times profnath's latest amount. 

Problem: over simplified models, 
but reality is complex! 



6 

When Big Data goes bad – 2 

•  Excerpts: 
One t-shirt seller on Amazon.co.uk put up a shirt for sale 
emblazoned with the statement, "Keep Calm and Rape a Lot." 
 
But Solid Gold Bomb, the company that made the shirt, wasn't 
necessarily aware that it was even selling it. Solid Gold Bomb's 
business isn't in artfully designing T-shirts. Instead, it writes code 
that takes libraries of words that slot into popular phrases (such as 
"Keep Calm and Carry On," which enjoyed a brief mimetic 
popularity online) to make derivations that get dropped onto a 
template of a T-shirt and automatically get posted as an Amazon 
item for sale. 
 
Their mistake was overlooking a single word in a list of 4,000 or so 
others.  
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When Big Data goes bad – 2 

•  Excerpts: 
One t-shirt seller on Amazon.co.uk put up a shirt for sale 
emblazoned with the statement, "Keep Calm and Rape a Lot." 
 
But Solid Gold Bomb, the company that made the shirt, wasn't 
necessarily aware that it was even selling it. Solid Gold Bomb's 
business isn't in artfully designing T-shirts. Instead, it writes code 
that takes libraries of words that slot into popular phrases (such as 
"Keep Calm and Carry On," which enjoyed a brief mimetic 
popularity online) to make derivations that get dropped onto a 
template of a T-shirt and automatically get posted as an Amazon 
item for sale. 
 
Their mistake was overlooking a single word in a list of 4,000 or so 
others.  

Problem: context-independent model, 
but context does matter! 

! 
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The solution to big data processing! 

• Exploit a massively parallel computer 
• A computer that interconnects lots of CPUs, RAM and 

disk units 

•  To obtain 
•  High performance through data-based parallelism 

• High throughput for OLTP  loads 

•  Low response time for OLAP queries 

•  High availability and reliability through data replication 

•  Extensibility of the architecture 
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Extensibility 

• Ideal: linear speed-up  

•  Increase in performance 
and proportional increase 
of the system components 
(CPU, memory, disk) 

•  For a constant database 
size and load  

Perf. 
ideal 

Components 
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Speed-up limits 

•  Hardware/software 
•  As we add more resources, arbitration conflicts increase 

• E.g. Access to the bus by processors 

•  Application 
•  Only part of a program can be parallelized 
•  Recall: Amdahl's law that gives the maximum speed-up 

• Seq = fraction of code that cannot be parallelized 

1 
Seq +  1 - Seq 

NbProc 

  Examples 
•  Seq=0, NbProc=4 => speed-up= 4 
•  Seq=30%, NbProc=4 => speed-up= 2,1 
•  Seq=30%, NbProc=8 => speed-up= 2,5 
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Scalability 

• Ideal: linear scale-up 

• Sustained performance 
for a linear increase of 
database size and load,  
and proportional increase 
of components 

ideal 

Components & load 

Perf. 
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Vertical vs Horizontal Scaleup 

•  Typically in a computer cluster 

P1 

P2 

Pn 

P1 

P2 

Pn 

Switch 

P1 

P2 

Pn 

P1 

P2 

Pn 

Switch 

Switch 

Scale-out
  

Scale-up
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Cluster Architecture 

•  Collection of computers connected by a network 
•  High-speed switch-based bus 

•  Infiniband, Fibre Channel, etc. 
•  Each computer has its own address space 
•  Distributed programming through message-passing 

P1 

P2 

Pn 

P1 

P2 

Pn 

Switch 

P1 

P2 

Pn 

P1 

P2 

Pn 

Switch 

Switch 
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The Progress of Packaging 

The early days   Nowdays   
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Data-based Parallelism 

•  Inter-query 
•  Different queries on the same 

data 
•  For concurrent queries  

•  Inter-operation 
•  Different operations of the 

same query on different data 
•  For complex queries 

•  Intra-operation 
•  The same operation on 

different data 
•  For large queries 

Op3 

Op1 Op2 

Op 

D1 

Op 

Dn 

… 

D1 D2 

Q1 Qn 

D 

…
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Parallel Architectures for Data Management 

•  Three main alternatives, depending on how 
processors, memory and disk are interconnected 

•  Shared-memory computer 

•  Shared-disk cluster 

•  Shared-nothing cluster 
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Shared-memory Computer 

P … P 

M 

P … P 

Com. 
through 
memory 

•  All memory and disk are 
shared 
•  Symmetric Multiprocessor 

(SMP) 
•  Non Uniform Memory 

Architecture (NUMA) 
•  Examples: IBM Numascale, 

HP Proliant, Data General 
NUMALiiNE, Bull Novascale  

+  Simple pour apps 
+  Load balancing 
+  Fast com. 
-   Limited extensibility, cost 

For write-intensive workloads (OLTP), expensive for 
big data 
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Shared-disk (SD) Cluster 

M 

P … P 

M 

P … P 

Msg passing 

•  Disk is shared, memory is 
private 
•  High-speed bus to interconnect 

memory and disk (bloc level) 
•  Infiniband, Fibre Channel 

§  Needs distributed lock manager 
(DLM) for cache coherence 

•  Exemples 
•  Oracle RAC et Exadata 
•  IBM PowerHA 

+  Simple for apps, extensibility 
-  Complex DLM, cost 

For write-intensive workloads or big data 
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Shared-nothing (SN) Cluster 

M 

P … P 

M 

P … P 

Msg passing 

No sharing of either memory or 
disk across nodes 

•  No need for DLM 
•  But needs data partitioning 
•  Examples 

•  DB2 DPF, SQL Server Parallel DW, 
Teradata, MySQLcluster 

•  Google search, NoSQL 

+ Extensibility, cost 
-  Complex tuning 
-  Updates, distributed transactions 

 
Perfect match for OLAP and big data (read intensive) 
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SD versus SN 

•  SD 
•  Simple to manage 

(adding disks) 
•  Disk high-speed bus 
•  Good scalability 

• Some very good 
•  ex. Exadata 

database machine 

•  Good for OLTP 
(update-intensive) 

•  SN 
•  More complex 

(partitioning, tuning) 
•  Excellent performance/

cost ratio 
•  High scalability (scale 

out) 
•  Good for OLAP and big 

data (read-intensive) 
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When a Big Data Center Goes Bad 
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When a Big Data Center Goes Bad 

•  The NSA's Hugely Expensive Utah Data Center Has Major 
Electrical Problems And Basically Isn't Working. Forbes, 2013. 

•  Extraits: 
Well, this is good news for those with privacy concerns about the 
NSA and terrible news for those concerned about government 
spending. The National Security Agency’s new billion-dollar-plus 
data center in Bluffdale, Utah was supposed to go 
online in September, but the Wall Street Journal’s Siobhan Gorman 
reports that it has major electrical problems and that the facility 
known as “the country’s biggest spy center” is presently nearly 
unusable. 
….. 
“The problem, and we all know it, is that they put the appliances 
too close together,” a person familar with the database construction 
told FORBES, describing the arcs as creating “kill zones.” “They 
used wiring that’s not adequate to the task. We all talked about the 
fact that it wasn’t going to work.” 
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•  Big datasets 
•  Data partitioning and indexing 

•  Problem with skewed data distributions 
•  Disk is very slow (100K times slower than RAM) 

•  Exploit RAM data structures and compression 
•  Exploit SSD (read 10-100 times faster than disk) 

•  Query parallelization and optimization 
•  Automatic if the query language is declarative (e.g. SQL) 
•  Parallel algorithms for algebraic operators 

•  Select is easy, Join is difficult 
•  Programmer-assisted otherwise (e.g. MapReduce) 

•  Transaction support 
•  Hard: need for distributed transactions (distributed locks and 2PC) 

•  NoSQL systems don’t provide transactions 
•  Fault-tolerance and availability 

•  With many nodes (e.g. several thousand), node failure is the norm, 
not the exception 

•  Exploit replication and failover techniques 

Parallel Techniques 
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Data Partitioning 

Keys Values 

•  Vertical partitioning 
•  Base Basis for column stores 

(e.g. MonetDB, Vertica): 
efficient for OLAP queries 

•  Easy to compress, e.g. using 
Bloom filters 

A table 

•  Horizontal partitioning 
(sharding) 
•  Shards can be stored 

(and replicated) at 
different nodes 
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Sharding Schemes 

Round-Robin 
•  ith row to node (i mod n) 
•  perfect balancing 
•  but full scan only 

•••	

 •••	



•••	



•••	



Hashing 
•  (k,v) to node h(k) 
•  exact-match queries 
•  but problem with skew 

•••	



Range 
•  (k,v) to node that holds k’s interval 
•  exact-match and range queries 
•  deals with skew 
 

••• 

••• a-g h-m u-z 
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Indexing 

•  Functions 
•  Secondary index or 

inverted file 

•  Two levels 
•  Global index 

•  Index (attribute, listof 
(shard#, keys) 

•  Local index  
•  Index (key, value) 
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Replication 

Node 1 2 3 4 

Table R1 R2 R3 R4 

R1 r12 r13 r14 

R2 r21 r23 r24 

R3 r31 r32 r34 

R4 r41 r42 r43 

•  Mirror disk 
•  Improves availability 

and performance 
•  Load balancing 

problem in case of 
node failure 

Node 1 2 3 4 
Table R1 R2 R3 R4 

R1 R1 R1 

R2 R2 R2 

R3 R3 R3 

R4 R4 R4 

•  Chained partitioning 
(Teradata) 
•  Better load balancing 
•  More complex 
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Replication and Failover 

•  Replication 
•  The basis for fault-

tolerance and 
availability 

•  Have several copies of 
each shard 

•  Failover 
•  On a node failure, 

another node detects 
and recovers the node’s 
tasks 

Client 

Node 1 

connect1 

Node 2 Ping 

connect1 
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Parallel Query Processing 

1.  Query parallelization 
•  Produces an optimized 

parallel execution plan, with 
operators 

•  Based on partitioning, 
replication, indexing 

2.  Parallel execution 
•  Relies on parallel main 

memory algorithms for 
operators 

•  Use of hashed-based join 
algorithms 

•  Adaptive degree of 
partitioning to deal with skew 

Select … from R,S 
where …group by… 

Parallelization 

Sel. 

R1 R2 

Sel. 

R3 R4 

Sel. Sel. 

Join Join Join Join 

S1 S2 S3 S4 

Grb Grb Grb Grb 

Grb 
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Parallel hash join algorithm 

R1 

R2 

S1 

S2 

Parallel join 

Node A 

Node B 

Transfer Hash on join att. 

∪ R      S =        Ri       Si 
i=1 

n 
Objective: compute                                     with n nodes  
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Case Study: Google Search 

•  Massive data distribution and replication in 
multiple clusters 
•  Massive parallelism 
•  Documents index: <keyword, list of doc_ids> 
•  Data-intensive application 

•  Some numbers (estimation) 
•  Billions of search queries per day 
•  Tens of data centers in the world, each with 

•  A SN cluster with a copy of the web 
•  Several petabytes (billions of pages) 

•  Total estimated to several millions server nodes 
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Partitioning Algorithm 

Web crawl 

Hash (doc_id) 
eg. (doc_id mod 4) Partitioning 

Replication 

Search 
get(doc_id=10) => hash (10) 
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Processing of a Google Query 

Load balancer 
(router) 

A query q to 
www.google.com 

Redirection to one 
cluster 

Web 
servers 

Index Documents 

1.  Assignment of q to a 
web server 

•  Controls the parallel 
execution and formats 
the result in HTML 

2.  Access to index based 
on q's keywords 

•  Produces a list of doc_ids 
sorted by relevance 
(PageRank algorithm) 

3.  Access to the 
documents of the list 
•  Produces a summary per 

document 
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Parallel Database Machine 

• A DBMS on a parallel computer 
• Combination of hardware/software dedicated to data 

management 

• High-speed interconnexion network 
•  Infiniband, Fibre channel 

•  Large main memory (RAM) and in memory 
techniques 

•  Flash memory as cache 
• Solid State Disk 
• Multicore CPU/GPU  



35 

Main Systems 
Vendor Product Archi. Remarks 
EMC GreenPlum SN Hybrid SQL/MapReduce, based 

on PostgreSQL 

HP Vertica SN Column store 

IBM DB2 Pure Scale 
DB2 Database Partitioning Feature 
PureData System for Analytics 

SD 
SN 

Scalable POWERparallel (SP) 
Cluster Linux 
Acquisition of Netezza 

Microsoft SQL Server 
SQL Server PDW 

SD 
SN 

Windows only 

Oracle Real Application Cluster 
Exadata Database machine 
MySQL 

SD 
SD 
SN 

Portability 
 
OSS on cluster Linux 

ParAccel ParAccel Analytic Database SN Column store 

SAP High-Performance Analytic 
Appliance (HANA) 

SN In memory, column store 

Teradata Teradata Database 
Aster 

SN 
SN 

Unix and Windows 
Hybrid SQL/MapReduce 
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MapReduce 

•  A framework for big data analysis 
•  Invented par Google 

• Written in C++ 
• Proprietary (and protected by software patents) 

•  For unstructured, schemaless data 
•  SQL or Xquery too heavy 

•  Implemented on GFS on very large clusters 
•  Thousands of nodes 
•  Automatic partitioning and parallelization 
•  The basis for popular implementations 

• Hadoop (Apache), Hadoop++, Amazon MapReduce, 
etc. 
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Programming Model 

•  Data structured as (key, value) pairs 
•  E.g. (doc-id, content), (word, count), etc. 

•  The programmer provides the code of two functions : 
1.  Map (key, value) -> list(ikey, ivalue) 

•  To perform the same work in parallel on partitioned data  
2.  Reduce (ikey, list(ivalue)) –> list(ikey, fvalue) 

•  To aggregate the data processed by Map 

•  Parallel processing of Map and Reduce 
•  Data partitioning 
•  Fault-tolerance 
•  Scheduling of disk accesses 
•  Monitoring 
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MapReduce Typical Usages 

•  Counting the numbers of some words in a set of 
docs 

•  Distributed grep: text pattern matching 
•  Counting URL access frequencies in Web logs 
•  Computing a reverse Web-link graph 
•  Computing the term-vectors (summarizing the 

most important words) in a set of documents 
•  Computing an inverted index for a set of 

documents 
•  Distributed sorting 
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MapReduce Processing 

Map	
  

…	
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•  Simple programming model 
•  Key-value data storage 
•  Hash-based data partitioning 

Reduce	
  phase	
  Shuffle	
  phase	
  Map	
  phase	
  

Split	
  0	
  

Split	
  1	
  

Split	
  2	
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Ex1: word count in a text 

Map (key, value): 
// key: file name; value: content (of a part of) a file 

 for each word w in value 
  EmitIntermediate (w, 1) 

 
Reduce (key, values): 
// key: a word; values: a list of 1 

 result = 0 
 for each value v in values 
  result += v; 
 Emit (key, result) 
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Ex1: illustration 

Split1: eat, watch, run 
 
Split2: sleep, run, eat 

eat  1 
watch 1  
run  1 
sleep  1 
run  1 
eat  1 
 
 

eat  2  
watch 1 
run  2 
sleep  1 
 
 

Map Reduce 

Input: 
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Ex2: size of a web server 

•  Let a big file containing metadata on the size of a 
collection of web pages 
•  Lines of the form (Server, Page URL, page size, …) 

•  For each server, compute the total size of the 
pages 
•  I.e. the size of the pages of all URLs in the server 
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Ex2: pseudo-code  

Map (key, value): 
// key: file name; value: file lines 

 for each line L(Server, Page url, Page size, …) in value 
  EmitIntermediate (Server, page size); 

 
Reduce (key, values): 
// key: a server name; values: a list of page sizes 

 result = 0; 
 for each size s in values: 
  result += s; 
 Emit (key, result); 
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Ex3: reverse web links 

•  Let a big set of web pages 
•  For each page p in the set 

•  Find the set of pages that refer to p 

•  Ex. if in pages p1 and p2, there are links to page q, 
then we have: 
•  Sources(q) = {p1, p2, …} 
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Ex3. pseudo-code 

map(key, value): 
// key: a web page URL; value: content of the page 

 for each link to a target URL t in value 
  EmitIntermediate (t, {key}); 

 
reduce(key, values): 
// key: a URL; values: a list of URLs referencing key 

 src_set = {}; 
 for each value v in values 
  if v ∉ src_set then 

       src_set = src_set + v; 
 Emit(key, src_set); 
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Ex.4: group by 

EMP (ENAME, TITLE, CITY) 
Query: for each city, return the number of employees whose 

name is "Smith" 
 
 SELECT CITY, COUNT(*) 
 FROM EMP 
 WHERE  ENAME LIKE "\%Martin" 
 GROUP BY CITY 

  
Map (Input (TID,emp), Output: (CITY,1)) 
// TID: tuple identifier, emp: one row of EMP 
  if emp.ENAME like "%Martin" 
   EmitIntermediate (CITY,1) 

 
Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))  
    Emit (CITY,SUM(1*)) 
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MapReduce Architecture  

User 

Worker 

Worker 

Master 

Worker 

Worker 

Worker 

Submit  
Job 

assign 
map 

assign 
reduce 

read 
local 
write 

Sort, 
Group by keys 

Output 
write Split 0 

Split 1 
Split 2 

Input Data 
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Task Scheduling 

•  Dynamic approach 
•  State of a task: inactive, active, terminated 
•  Inactive tasks are activated as worker nodes become 

available 
• They are assigned to the workers that are closest to 

input data 
•  Eg. Local disk or same rack, to reduce inter-node transfers 

•  When a task ends, it sends to the master the addresses 
and sizes of intermediate data 

•  When all the Map tasks have terminated, the Reduce 
tasks start 
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Fault-tolerance 

•  Fault-tolerance is fine-grain and well suited for large 
jobs 

•  Input and output data are stored in GFS 
•  Already provides high fault-tolerance 

•  All intermediate data is written to disk 
•  Helps checkpointing Map operations, and thus provides 

tolerance from soft failures 

•  If one Map node or Reduce node fails during 
execution (hard failure) 
•  The tasks are made eligible by the master for scheduling 

onto other nodes 
•  It may also be necessary to re-execute completed Map tasks, 

since the input data on the failed node disk is inaccessible 
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Google File System (GFS) 
•  Used by many Google applications 

•  Search engine, Bigtable, Mapreduce, etc. 
•  The basis for popular Open Source implementations 

•  Hadoop HDFS (Apache & Yahoo) 
•  Optimized for specific needs 

•  Shared-nothing cluster of thousand nodes, built from 
inexpensive harware => node failure is the norm! 

•  Very large files, of typically several GB, containing many 
objects such as web documents 

•  Mostly read and append (random updates are rare) 
•  Large reads of bulk data (e.g. 1 MB) and small random 

reads (e.g. 1 KB) 
•  Append operations are also large and there may be 

many concurrent clients that append the same file 
•  High throughput (for bulk data) more important than low 

latency 
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Design Choices 

•  Traditional file system interface (create, open, read, 
write, close, and delete file) 
•  Two additional operations: snapshot and record append.  

•  Relaxed consistency, with atomic record append 
•  No need for distributed lock management 
•  Up to the application to use techniques such as 

checkpointing and writing self-validating records 

•  Single GFS master 
•  Maintains file metadata such as namespace, access control 

information, and data placement information 
•  Simple, lightly loaded, fault-tolerant 

•  Fast recovery and replication strategies 
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GFS Distributed Architecture 

•  Files are divided in fixed-size partitions, called chunks, of 
large size, i.e. 64 MB, each replicated at several nodes 

Application 
 

GFS client 

Get chunk location 

GFS chunk server 
 

Linux file system 

GFS 
Master 

GFS chunk server 
 

Linux file system 

Get chunk data 
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Apache Hadoop 

•  OSS framework for storing and analyzing big data 
on very large clusters 
•  Written in Java 
•  Initially created by Yahoo 
•  The basis for an major ecosystem 

•  Modules 
•  Hadoop Common: library of codes and utilities 
•  Hadoop YARN: resource management in a cluster 
•  Hadoop Distributed File System (HDFS): a GFS clone 
•  Hadoop MapReduce 

•  Complementary tools 
•  Apache Pig: workflow-style interface 
•  Apache Hive: SQL-style interface 
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MapReduce Assessment 

•  Advantages 
•  Simple for the programmer 
•  Parallelization, fault-tolerance, scalability 
•  For unstructured data 

•  A very large community of developpers 
•  Adopted by all web giants 

•  Google, Facebook, Amazon, etc. 
•  And software vendors 

•  Oracle, IBM, Microsoft, etc. 
•  NB: Microsoft gave up on its Dryad competitor 

•  Much room for improvement (see MapReduce workshops) 
•  Map phase 

•  Minimize I/0 cost using indices (Hadoop++) 
•  Shuffle phase 

•  Minimize data transfers by partitioning data on the same intermediate key 
•  Current work in Zenith 

•  Reduce phase 
•  Exploit fine-grain parallelism of Reduce tasks 
•  Current work in Zenith 
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MapReduce vs Parallel DBMS 

•  [Pavlo et al. SIGMOD09]: Hadoop MapReduce vs two parallel 
DBMS, one row-store DBMS and one column-store DBMS 
•  Benchmark queries: a grep query, an aggregation query with a group 

by clause on a Web log, and a complex join of two tables with 
aggregation and filtering 

•  Once the data has been loaded, the DBMS are significantly faster, but 
loading is much time consuming for the DBMS 

•  Suggest that MapReduce is less efficient than DBMS because it 
performs repetitive format parsing and does not exploit pipelining and 
indices 

•  [Dean and Ghemawat, CACM10] 
•  Make the difference between the MapReduce model and its 

implementation which could be well improved, e.g. by exploiting 
indices 

•  [Stonebraker et al. CACM10] 
•  Argues that MapReduce and parallel DBMS are complementary as 

MapReduce could be used to extract-transform-load data in a DBMS 
for more complex OLAP 
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Some MapReduce Solutions 

Vendor Product Remarks 

Google MapReduce Proprietary, C++,  on GFS data 
Python and Java API in AppEngine-MapReduce 

Apache 
Hadoop 

MapReduce OSS, Java, on HDFS data 
Interfaces: C++, Unix streams for any language 

Apache Pig Interface for MapReduce jobs 

Apache Hive SQL / MapReduce interface  

Cloudera Dist. Hadoop Hadoop services and products 

Amazon Amazon Elastic 
MapReduce 

MapReduce for Amazon cloud 

IBM InfoSphere 
BigInsights 

Bigdata analysis platform including Hadoop 

Microsoft HDInsight MapReduce platform for Azure cloud 

Oracle Bigdata 
Appliance 

Bigdata analysis platform including Hadoop 
(Cloudera) 
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MapReduce Best Practices 

•  Big data is not Hadoop only 
•  When to use MapReduce? 

•  Unstructured data, without precise schema 
• Repetitive structure, easy to partition 

•  Batch-type processes and analyses 
•  Need for low-cost big processing 
•  Strong development expertise, not in databse 

•  When not to use? 
•  Data streams and continuous/incremental processing 
•  Real-time analysis, with guaranteed response time 
•  Access to shared data, with updates 
•  What about structured data? 
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Exercise 1: Parallel Algorithm Design 

•  Objective 
•  Design an efficient version of the parallel hash-based join algorithm 

•  Assumptions 
•  A parallel shared-nothing cluster 
•  Two tables R and S, partitioned on a number of nodes 

•  R1, R2, …Rm and S1, S2, …, Sn 
•  Two kinds of tasks that can run at any node 

•  Master task: has global information (partitioning, nodes's load, etc) and controls all the 
workers 

•  Worker task: obeys the master 
•  Interfaces 

•  Master-Worker 
•  Start a task, with one input buffer and one or more output buffers (for storing partitions) 

•  Worker-master 
•  Notify master of end of work 

•  Data transfer between workers (like remote pipes) 
•  Write to a distant buffer (at a different worker) 
•  Read from a distant buffer 
•  D-read and D-write are blocking operations 

•  Work to do 
•  Write pseudo code for Master and Worker's tasks 
•  Illustrate with a figure 
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Exercise 1: Solution 

R1 

R2 

S1 

S2 

Master 1. Start 4 hash tasks 

2. End 

L-write 

3. Start 2 join 
tasks 

When input ready, 
join D-read 

D-read 

D-read 

4. End 
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Exercice 1: Solution discussion 

•  How to improve performance? 
•  Pipelining between workers 

• Requires non blocking d-read/d-write 

•  What can go wrong? 
•  Worker failure 

• Requires failure detection and failover 
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Exercise 2: Map Reduce Design 

•  Objective 
•  Compute the join of 2 tables R and S with MapReduce 

•  Assumptions 
•  R and S contained in a input file 
•  Structured records 

• The join key can be accessed 

•  Work to do 
•  Write pseudo code for Map and Reduce 
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Exercise 2: Solution 

Map (K: null, V : a row of a split of R or S) 
 join key = extract the join column from V 
 tagged record = add a tag of either R or S 
 EmitIntermediate (join key, tagged record) 

 
Reduce (K: join key, V: rows of R and S having K as join key) 

 create buffers BR and BS for R and S, respectively 
 for each record t in V do 
  append t to one of the buffers according to its tag 
  for each pair of records (r, s) in BR × BS do 
   Emit (null, new record(r, s)) 

 

 
 
 


