
Distributed and Parallel
Data Processing

Patrick Valduriez
INRIA, Montpellier

Outline

•  Parallel data processing
•  Parallel architectures
•  Parallel techniques
•  Case study: Google Search
•  Database machines
•  MapReduce
•  Google File System
•  Apache Hadoop

3

4

When Big Data goes bad – 1

•  Excerpts:
Peter Lawrence's The Making of a Fly, a classic book in
developmental biology, was listed on Amazon.com as having 17
copies for sale: 15 used from $35.54, and two new from
$23,698,655.93 (plus $3.99 shipping).

What had happened was that two automated programs, one run
by seller "bordeebook" and one by seller "profnath," were
engaged in an iterative and incremental bidding war. Once a day
profnath would raise their price to 0.9983 times bordeebook's
listed price. Several hours later, bordeebook would increase their
price to 1.270589 times profnath's latest amount.

5

When Big Data goes bad - 1

•  Excerpts:
Peter Lawrence's The Making of a Fly, a classic book in
developmental biology, was listed on Amazon.com as having 17
copies for sale: 15 used from $35.54, and two new from
$23,698,655.93 (plus $3.99 shipping).

What had happened was that two automated programs, one run
by seller "bordeebook" and one by seller "profnath," were
engaged in an iterative and incremental bidding war. Once a day
profnath would raise their price to 0.9983 times bordeebook's
listed price. Several hours later, bordeebook would increase their
price to 1.270589 times profnath's latest amount.

Problem: over simplified models,
but reality is complex!

6

When Big Data goes bad – 2

•  Excerpts:
One t-shirt seller on Amazon.co.uk put up a shirt for sale
emblazoned with the statement, "Keep Calm and Rape a Lot."

But Solid Gold Bomb, the company that made the shirt, wasn't
necessarily aware that it was even selling it. Solid Gold Bomb's
business isn't in artfully designing T-shirts. Instead, it writes code
that takes libraries of words that slot into popular phrases (such as
"Keep Calm and Carry On," which enjoyed a brief mimetic
popularity online) to make derivations that get dropped onto a
template of a T-shirt and automatically get posted as an Amazon
item for sale.

Their mistake was overlooking a single word in a list of 4,000 or so
others.

7

When Big Data goes bad – 2

•  Excerpts:
One t-shirt seller on Amazon.co.uk put up a shirt for sale
emblazoned with the statement, "Keep Calm and Rape a Lot."

But Solid Gold Bomb, the company that made the shirt, wasn't
necessarily aware that it was even selling it. Solid Gold Bomb's
business isn't in artfully designing T-shirts. Instead, it writes code
that takes libraries of words that slot into popular phrases (such as
"Keep Calm and Carry On," which enjoyed a brief mimetic
popularity online) to make derivations that get dropped onto a
template of a T-shirt and automatically get posted as an Amazon
item for sale.

Their mistake was overlooking a single word in a list of 4,000 or so
others.

Problem: context-independent model,
but context does matter!

!

8

The solution to big data processing!

• Exploit a massively parallel computer
• A computer that interconnects lots of CPUs, RAM and

disk units

•  To obtain
•  High performance through data-based parallelism

• High throughput for OLTP loads

•  Low response time for OLAP queries

•  High availability and reliability through data replication

•  Extensibility of the architecture

9

Extensibility

• Ideal: linear speed-up

•  Increase in performance
and proportional increase
of the system components
(CPU, memory, disk)

•  For a constant database
size and load

Perf.
ideal

Components

10

Speed-up limits

•  Hardware/software
•  As we add more resources, arbitration conflicts increase

• E.g. Access to the bus by processors

•  Application
•  Only part of a program can be parallelized
•  Recall: Amdahl's law that gives the maximum speed-up

• Seq = fraction of code that cannot be parallelized

1
Seq + 1 - Seq

NbProc

 Examples
•  Seq=0, NbProc=4 => speed-up= 4
•  Seq=30%, NbProc=4 => speed-up= 2,1
•  Seq=30%, NbProc=8 => speed-up= 2,5

11

Scalability

• Ideal: linear scale-up

• Sustained performance
for a linear increase of
database size and load,
and proportional increase
of components

ideal

Components & load

Perf.

12

Vertical vs Horizontal Scaleup

•  Typically in a computer cluster

P1

P2

Pn

P1

P2

Pn

Switch

P1

P2

Pn

P1

P2

Pn

Switch

Switch

Scale-out

Scale-up

13

Cluster Architecture

•  Collection of computers connected by a network
•  High-speed switch-based bus

•  Infiniband, Fibre Channel, etc.
•  Each computer has its own address space
•  Distributed programming through message-passing

P1

P2

Pn

P1

P2

Pn

Switch

P1

P2

Pn

P1

P2

Pn

Switch

Switch

14

The Progress of Packaging

The early days Nowdays

15

Data-based Parallelism

•  Inter-query
•  Different queries on the same

data
•  For concurrent queries

•  Inter-operation
•  Different operations of the

same query on different data
•  For complex queries

•  Intra-operation
•  The same operation on

different data
•  For large queries

Op3

Op1 Op2

Op

D1

Op

Dn

…

D1 D2

Q1 Qn

D

…

16

Parallel Architectures for Data Management

•  Three main alternatives, depending on how
processors, memory and disk are interconnected

•  Shared-memory computer

•  Shared-disk cluster

•  Shared-nothing cluster

17

Shared-memory Computer

P … P

M

P … P

Com.
through
memory

•  All memory and disk are
shared
•  Symmetric Multiprocessor

(SMP)
•  Non Uniform Memory

Architecture (NUMA)
•  Examples: IBM Numascale,

HP Proliant, Data General
NUMALiiNE, Bull Novascale

+ Simple pour apps
+ Load balancing
+ Fast com.
- Limited extensibility, cost

For write-intensive workloads (OLTP), expensive for
big data

18

Shared-disk (SD) Cluster

M

P … P

M

P … P

Msg passing

•  Disk is shared, memory is
private
•  High-speed bus to interconnect

memory and disk (bloc level)
•  Infiniband, Fibre Channel

§  Needs distributed lock manager
(DLM) for cache coherence

•  Exemples
•  Oracle RAC et Exadata
•  IBM PowerHA

+ Simple for apps, extensibility
- Complex DLM, cost

For write-intensive workloads or big data

19

Shared-nothing (SN) Cluster

M

P … P

M

P … P

Msg passing

No sharing of either memory or
disk across nodes

•  No need for DLM
•  But needs data partitioning
•  Examples

•  DB2 DPF, SQL Server Parallel DW,
Teradata, MySQLcluster

•  Google search, NoSQL

+ Extensibility, cost
- Complex tuning
- Updates, distributed transactions

Perfect match for OLAP and big data (read intensive)

20

SD versus SN

•  SD
•  Simple to manage

(adding disks)
•  Disk high-speed bus
•  Good scalability

• Some very good
•  ex. Exadata

database machine

•  Good for OLTP
(update-intensive)

•  SN
•  More complex

(partitioning, tuning)
•  Excellent performance/

cost ratio
•  High scalability (scale

out)
•  Good for OLAP and big

data (read-intensive)

21

When a Big Data Center Goes Bad

22

When a Big Data Center Goes Bad

•  The NSA's Hugely Expensive Utah Data Center Has Major
Electrical Problems And Basically Isn't Working. Forbes, 2013.

•  Extraits:
Well, this is good news for those with privacy concerns about the
NSA and terrible news for those concerned about government
spending. The National Security Agency’s new billion-dollar-plus
data center in Bluffdale, Utah was supposed to go
online in September, but the Wall Street Journal’s Siobhan Gorman
reports that it has major electrical problems and that the facility
known as “the country’s biggest spy center” is presently nearly
unusable.
…..
“The problem, and we all know it, is that they put the appliances
too close together,” a person familar with the database construction
told FORBES, describing the arcs as creating “kill zones.” “They
used wiring that’s not adequate to the task. We all talked about the
fact that it wasn’t going to work.”

23

•  Big datasets
•  Data partitioning and indexing

•  Problem with skewed data distributions
•  Disk is very slow (100K times slower than RAM)

•  Exploit RAM data structures and compression
•  Exploit SSD (read 10-100 times faster than disk)

•  Query parallelization and optimization
•  Automatic if the query language is declarative (e.g. SQL)
•  Parallel algorithms for algebraic operators

•  Select is easy, Join is difficult
•  Programmer-assisted otherwise (e.g. MapReduce)

•  Transaction support
•  Hard: need for distributed transactions (distributed locks and 2PC)

•  NoSQL systems don’t provide transactions
•  Fault-tolerance and availability

•  With many nodes (e.g. several thousand), node failure is the norm,
not the exception

•  Exploit replication and failover techniques

Parallel Techniques

24

Data Partitioning

Keys Values

•  Vertical partitioning
•  Base Basis for column stores

(e.g. MonetDB, Vertica):
efficient for OLAP queries

•  Easy to compress, e.g. using
Bloom filters

A table

•  Horizontal partitioning
(sharding)
•  Shards can be stored

(and replicated) at
different nodes

25

Sharding Schemes

Round-Robin
•  ith row to node (i mod n)
•  perfect balancing
•  but full scan only

•••	

 •••	

•••	

•••	

Hashing
•  (k,v) to node h(k)
•  exact-match queries
•  but problem with skew

•••	

Range
•  (k,v) to node that holds k’s interval
•  exact-match and range queries
•  deals with skew

•••

••• a-g h-m u-z

26

Indexing

•  Functions
•  Secondary index or

inverted file

•  Two levels
•  Global index

•  Index (attribute, listof
(shard#, keys)

•  Local index
•  Index (key, value)

27

Replication

Node 1 2 3 4

Table R1 R2 R3 R4

R1 r12 r13 r14

R2 r21 r23 r24

R3 r31 r32 r34

R4 r41 r42 r43

•  Mirror disk
•  Improves availability

and performance
•  Load balancing

problem in case of
node failure

Node 1 2 3 4
Table R1 R2 R3 R4

R1 R1 R1

R2 R2 R2

R3 R3 R3

R4 R4 R4

•  Chained partitioning
(Teradata)
•  Better load balancing
•  More complex

28

Replication and Failover

•  Replication
•  The basis for fault-

tolerance and
availability

•  Have several copies of
each shard

•  Failover
•  On a node failure,

another node detects
and recovers the node’s
tasks

Client

Node 1

connect1

Node 2 Ping

connect1

29

Parallel Query Processing

1.  Query parallelization
•  Produces an optimized

parallel execution plan, with
operators

•  Based on partitioning,
replication, indexing

2.  Parallel execution
•  Relies on parallel main

memory algorithms for
operators

•  Use of hashed-based join
algorithms

•  Adaptive degree of
partitioning to deal with skew

Select … from R,S
where …group by…

Parallelization

Sel.

R1 R2

Sel.

R3 R4

Sel. Sel.

Join Join Join Join

S1 S2 S3 S4

Grb Grb Grb Grb

Grb

30

Parallel hash join algorithm

R1

R2

S1

S2

Parallel join

Node A

Node B

Transfer Hash on join att.

∪ R S = Ri Si
i=1

n
Objective: compute with n nodes

31

Case Study: Google Search

•  Massive data distribution and replication in
multiple clusters
•  Massive parallelism
•  Documents index: <keyword, list of doc_ids>
•  Data-intensive application

•  Some numbers (estimation)
•  Billions of search queries per day
•  Tens of data centers in the world, each with

•  A SN cluster with a copy of the web
•  Several petabytes (billions of pages)

•  Total estimated to several millions server nodes

32

Partitioning Algorithm

Web crawl

Hash (doc_id)
eg. (doc_id mod 4) Partitioning

Replication

Search
get(doc_id=10) => hash (10)

33 33

Processing of a Google Query

Load balancer
(router)

A query q to
www.google.com

Redirection to one
cluster

Web
servers

Index Documents

1.  Assignment of q to a
web server

•  Controls the parallel
execution and formats
the result in HTML

2.  Access to index based
on q's keywords

•  Produces a list of doc_ids
sorted by relevance
(PageRank algorithm)

3.  Access to the
documents of the list
•  Produces a summary per

document

34

Parallel Database Machine

• A DBMS on a parallel computer
• Combination of hardware/software dedicated to data

management

• High-speed interconnexion network
•  Infiniband, Fibre channel

•  Large main memory (RAM) and in memory
techniques

•  Flash memory as cache
• Solid State Disk
• Multicore CPU/GPU

35

Main Systems
Vendor Product Archi. Remarks
EMC GreenPlum SN Hybrid SQL/MapReduce, based

on PostgreSQL

HP Vertica SN Column store

IBM DB2 Pure Scale
DB2 Database Partitioning Feature
PureData System for Analytics

SD
SN

Scalable POWERparallel (SP)
Cluster Linux
Acquisition of Netezza

Microsoft SQL Server
SQL Server PDW

SD
SN

Windows only

Oracle Real Application Cluster
Exadata Database machine
MySQL

SD
SD
SN

Portability

OSS on cluster Linux

ParAccel ParAccel Analytic Database SN Column store

SAP High-Performance Analytic
Appliance (HANA)

SN In memory, column store

Teradata Teradata Database
Aster

SN
SN

Unix and Windows
Hybrid SQL/MapReduce

36

MapReduce

•  A framework for big data analysis
•  Invented par Google

• Written in C++
• Proprietary (and protected by software patents)

•  For unstructured, schemaless data
•  SQL or Xquery too heavy

•  Implemented on GFS on very large clusters
•  Thousands of nodes
•  Automatic partitioning and parallelization
•  The basis for popular implementations

• Hadoop (Apache), Hadoop++, Amazon MapReduce,
etc.

37

Programming Model

•  Data structured as (key, value) pairs
•  E.g. (doc-id, content), (word, count), etc.

•  The programmer provides the code of two functions :
1.  Map (key, value) -> list(ikey, ivalue)

•  To perform the same work in parallel on partitioned data
2.  Reduce (ikey, list(ivalue)) –> list(ikey, fvalue)

•  To aggregate the data processed by Map

•  Parallel processing of Map and Reduce
•  Data partitioning
•  Fault-tolerance
•  Scheduling of disk accesses
•  Monitoring

38

MapReduce Typical Usages

•  Counting the numbers of some words in a set of
docs

•  Distributed grep: text pattern matching
•  Counting URL access frequencies in Web logs
•  Computing a reverse Web-link graph
•  Computing the term-vectors (summarizing the

most important words) in a set of documents
•  Computing an inverted index for a set of

documents
•  Distributed sorting

39

MapReduce Processing

Map	

…	

(k1,v)	

(k2,v)	

Group	

by	
 k	

Map	
 (k2,v)	

(k2,v)	

Map	
 (k1,v)	

Map	
 (k1,v)	

(k2,v)	

(k1,(v,v,v))	

	

	

(k2,(v,v,v,v))	

Reduce	

Reduce	

Group	

by	
 k	

In
pu

t	
 d
at
a	

se
t	

O
ut
pu

t	
 d
at
a	

se
t	

•  Simple programming model
•  Key-value data storage
•  Hash-based data partitioning

Reduce	
 phase	
 Shuffle	
 phase	
 Map	
 phase	

Split	
 0	

Split	
 1	

Split	
 2	

40

Ex1: word count in a text

Map (key, value):
// key: file name; value: content (of a part of) a file

 for each word w in value
 EmitIntermediate (w, 1)

Reduce (key, values):
// key: a word; values: a list of 1

 result = 0
 for each value v in values
 result += v;
 Emit (key, result)

41

Ex1: illustration

Split1: eat, watch, run

Split2: sleep, run, eat

eat 1
watch 1
run 1
sleep 1
run 1
eat 1

eat 2
watch 1
run 2
sleep 1

Map Reduce

Input:

42

Ex2: size of a web server

•  Let a big file containing metadata on the size of a
collection of web pages
•  Lines of the form (Server, Page URL, page size, …)

•  For each server, compute the total size of the
pages
•  I.e. the size of the pages of all URLs in the server

43

Ex2: pseudo-code

Map (key, value):
// key: file name; value: file lines

 for each line L(Server, Page url, Page size, …) in value
 EmitIntermediate (Server, page size);

Reduce (key, values):
// key: a server name; values: a list of page sizes

 result = 0;
 for each size s in values:
 result += s;
 Emit (key, result);

44

Ex3: reverse web links

•  Let a big set of web pages
•  For each page p in the set

•  Find the set of pages that refer to p

•  Ex. if in pages p1 and p2, there are links to page q,
then we have:
•  Sources(q) = {p1, p2, …}

45

Ex3. pseudo-code

map(key, value):
// key: a web page URL; value: content of the page

 for each link to a target URL t in value
 EmitIntermediate (t, {key});

reduce(key, values):
// key: a URL; values: a list of URLs referencing key

 src_set = {};
 for each value v in values
 if v ∉ src_set then

 src_set = src_set + v;
 Emit(key, src_set);

46

Ex.4: group by

EMP (ENAME, TITLE, CITY)
Query: for each city, return the number of employees whose

name is "Smith"

 SELECT CITY, COUNT(*)
 FROM EMP
 WHERE ENAME LIKE "\%Martin"
 GROUP BY CITY

Map (Input (TID,emp), Output: (CITY,1))
// TID: tuple identifier, emp: one row of EMP
 if emp.ENAME like "%Martin"
 EmitIntermediate (CITY,1)

Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))
 Emit (CITY,SUM(1*))

47

MapReduce Architecture

User

Worker

Worker

Master

Worker

Worker

Worker

Submit
Job

assign
map

assign
reduce

read
local
write

Sort,
Group by keys

Output
write Split 0

Split 1
Split 2

Input Data

48

Task Scheduling

•  Dynamic approach
•  State of a task: inactive, active, terminated
•  Inactive tasks are activated as worker nodes become

available
• They are assigned to the workers that are closest to

input data
•  Eg. Local disk or same rack, to reduce inter-node transfers

•  When a task ends, it sends to the master the addresses
and sizes of intermediate data

•  When all the Map tasks have terminated, the Reduce
tasks start

49

Fault-tolerance

•  Fault-tolerance is fine-grain and well suited for large
jobs

•  Input and output data are stored in GFS
•  Already provides high fault-tolerance

•  All intermediate data is written to disk
•  Helps checkpointing Map operations, and thus provides

tolerance from soft failures

•  If one Map node or Reduce node fails during
execution (hard failure)
•  The tasks are made eligible by the master for scheduling

onto other nodes
•  It may also be necessary to re-execute completed Map tasks,

since the input data on the failed node disk is inaccessible

50

Google File System (GFS)
•  Used by many Google applications

•  Search engine, Bigtable, Mapreduce, etc.
•  The basis for popular Open Source implementations

•  Hadoop HDFS (Apache & Yahoo)
•  Optimized for specific needs

•  Shared-nothing cluster of thousand nodes, built from
inexpensive harware => node failure is the norm!

•  Very large files, of typically several GB, containing many
objects such as web documents

•  Mostly read and append (random updates are rare)
•  Large reads of bulk data (e.g. 1 MB) and small random

reads (e.g. 1 KB)
•  Append operations are also large and there may be

many concurrent clients that append the same file
•  High throughput (for bulk data) more important than low

latency

51

Design Choices

•  Traditional file system interface (create, open, read,
write, close, and delete file)
•  Two additional operations: snapshot and record append.

•  Relaxed consistency, with atomic record append
•  No need for distributed lock management
•  Up to the application to use techniques such as

checkpointing and writing self-validating records

•  Single GFS master
•  Maintains file metadata such as namespace, access control

information, and data placement information
•  Simple, lightly loaded, fault-tolerant

•  Fast recovery and replication strategies

52

GFS Distributed Architecture

•  Files are divided in fixed-size partitions, called chunks, of
large size, i.e. 64 MB, each replicated at several nodes

Application

GFS client

Get chunk location

GFS chunk server

Linux file system

GFS
Master

GFS chunk server

Linux file system

Get chunk data

53

Apache Hadoop

•  OSS framework for storing and analyzing big data
on very large clusters
•  Written in Java
•  Initially created by Yahoo
•  The basis for an major ecosystem

•  Modules
•  Hadoop Common: library of codes and utilities
•  Hadoop YARN: resource management in a cluster
•  Hadoop Distributed File System (HDFS): a GFS clone
•  Hadoop MapReduce

•  Complementary tools
•  Apache Pig: workflow-style interface
•  Apache Hive: SQL-style interface

54

MapReduce Assessment

•  Advantages
•  Simple for the programmer
•  Parallelization, fault-tolerance, scalability
•  For unstructured data

•  A very large community of developpers
•  Adopted by all web giants

•  Google, Facebook, Amazon, etc.
•  And software vendors

•  Oracle, IBM, Microsoft, etc.
•  NB: Microsoft gave up on its Dryad competitor

•  Much room for improvement (see MapReduce workshops)
•  Map phase

•  Minimize I/0 cost using indices (Hadoop++)
•  Shuffle phase

•  Minimize data transfers by partitioning data on the same intermediate key
•  Current work in Zenith

•  Reduce phase
•  Exploit fine-grain parallelism of Reduce tasks
•  Current work in Zenith

55

MapReduce vs Parallel DBMS

•  [Pavlo et al. SIGMOD09]: Hadoop MapReduce vs two parallel
DBMS, one row-store DBMS and one column-store DBMS
•  Benchmark queries: a grep query, an aggregation query with a group

by clause on a Web log, and a complex join of two tables with
aggregation and filtering

•  Once the data has been loaded, the DBMS are significantly faster, but
loading is much time consuming for the DBMS

•  Suggest that MapReduce is less efficient than DBMS because it
performs repetitive format parsing and does not exploit pipelining and
indices

•  [Dean and Ghemawat, CACM10]
•  Make the difference between the MapReduce model and its

implementation which could be well improved, e.g. by exploiting
indices

•  [Stonebraker et al. CACM10]
•  Argues that MapReduce and parallel DBMS are complementary as

MapReduce could be used to extract-transform-load data in a DBMS
for more complex OLAP

56

Some MapReduce Solutions

Vendor Product Remarks

Google MapReduce Proprietary, C++, on GFS data
Python and Java API in AppEngine-MapReduce

Apache
Hadoop

MapReduce OSS, Java, on HDFS data
Interfaces: C++, Unix streams for any language

Apache Pig Interface for MapReduce jobs

Apache Hive SQL / MapReduce interface

Cloudera Dist. Hadoop Hadoop services and products

Amazon Amazon Elastic
MapReduce

MapReduce for Amazon cloud

IBM InfoSphere
BigInsights

Bigdata analysis platform including Hadoop

Microsoft HDInsight MapReduce platform for Azure cloud

Oracle Bigdata
Appliance

Bigdata analysis platform including Hadoop
(Cloudera)

57

MapReduce Best Practices

•  Big data is not Hadoop only
•  When to use MapReduce?

•  Unstructured data, without precise schema
• Repetitive structure, easy to partition

•  Batch-type processes and analyses
•  Need for low-cost big processing
•  Strong development expertise, not in databse

•  When not to use?
•  Data streams and continuous/incremental processing
•  Real-time analysis, with guaranteed response time
•  Access to shared data, with updates
•  What about structured data?

58

Exercise 1: Parallel Algorithm Design

•  Objective
•  Design an efficient version of the parallel hash-based join algorithm

•  Assumptions
•  A parallel shared-nothing cluster
•  Two tables R and S, partitioned on a number of nodes

•  R1, R2, …Rm and S1, S2, …, Sn
•  Two kinds of tasks that can run at any node

•  Master task: has global information (partitioning, nodes's load, etc) and controls all the
workers

•  Worker task: obeys the master
•  Interfaces

•  Master-Worker
•  Start a task, with one input buffer and one or more output buffers (for storing partitions)

•  Worker-master
•  Notify master of end of work

•  Data transfer between workers (like remote pipes)
•  Write to a distant buffer (at a different worker)
•  Read from a distant buffer
•  D-read and D-write are blocking operations

•  Work to do
•  Write pseudo code for Master and Worker's tasks
•  Illustrate with a figure

59

Exercise 1: Solution

R1

R2

S1

S2

Master 1. Start 4 hash tasks

2. End

L-write

3. Start 2 join
tasks

When input ready,
join D-read

D-read

D-read

4. End

60

Exercice 1: Solution discussion

•  How to improve performance?
•  Pipelining between workers

• Requires non blocking d-read/d-write

•  What can go wrong?
•  Worker failure

• Requires failure detection and failover

61

Exercise 2: Map Reduce Design

•  Objective
•  Compute the join of 2 tables R and S with MapReduce

•  Assumptions
•  R and S contained in a input file
•  Structured records

• The join key can be accessed

•  Work to do
•  Write pseudo code for Map and Reduce

62

Exercise 2: Solution

Map (K: null, V : a row of a split of R or S)
 join key = extract the join column from V
 tagged record = add a tag of either R or S
 EmitIntermediate (join key, tagged record)

Reduce (K: join key, V: rows of R and S having K as join key)

 create buffers BR and BS for R and S, respectively
 for each record t in V do
 append t to one of the buffers according to its tag
 for each pair of records (r, s) in BR × BS do
 Emit (null, new record(r, s))

