
Patrick Valduriez Ricardo Jimenez-Peris

NewSQL
Principles, Systems and

Current Trends

Outline

•  Motivations
•  Principles and techniques
•  Taxonomy of NewSQL systems
•  Current trends

Motivations

4 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Why NoSQL/NewSQL?

•  Trends
•  Big data

•  Unstructured data

•  Data interconnection
•  Hyperlinks, tags, blogs, etc.

•  Very high scalability
•  Data size, data rates, concurrent users, etc.

•  Limits of SQL systems (in fact RDBMSs)
•  Need for skilled DBA, tuning and well-defined schemas
•  Full SQL complex
•  Hard to make updates scalable

•  Parallel RDBMS use a shared-disk for OLTP, which is hard to scale

5 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Scalability

• Ideal: linear scale-up

• Sustained performance
for a linear increase of
database size and load

• By proportional increase
of components

ideal

Components & charge

Perf.

6 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Vertical vs Horizontal Scaleup

•  Typically in a shared-nothing computer cluster

P1

P2

Pn

P1

P2

Pn

Switch

P1

P2

Pn

P1

P2

Pn

Switch

Switch

Scale-out

Scale-up

7 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Query Parallelism

•  Inter-query
•  Different queries on the same

data
•  For concurrent queries

•  Inter-operation
•  Different operations of the

same query on different data
•  For complex queries

•  Intra-operation
•  The same operation on

different data
•  For large queries

Op3

Op1 Op2

Op

R1

Op

Rn

…

R S

Q1 Qn

R

…

8 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

The CAP Theorem

•  Polemical topic
•  "A database can't provide consistency AND availability

during a network partition"
•  Argument used by NoSQL to justify their lack of ACID

properties
•  Nothing to do with scalability

•  Two different points of view
•  Relational databases

•  Consistency is essential
•  ACID transactions

•  Distributed systems
•  Service availability is essential

•  Inconsistency tolerated by the user, e.g. web cache

9 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

What is the CAP Theorem?

•  The desirable properties of a distributed system
•  Consistency: all nodes see the same data values at the

same time
•  Availability: all requests get an answer
•  Partition tolerance: the system keeps functioning in

case of network failure

•  History
•  At the PODC 2000 conference, Brewer (UC Berkeley)

conjectures that one can have only two properties at the
same time

•  In 2002, Gilbert and Lynch (MIT) prove the conjecture,
which becomes a theorem

10 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Strong vs Eventual Consistency

•  Strong consistency (ACID)
•  All nodes see the same data values at the same time

•  Eventual consistency
•  Some nodes may see different data values at the same

time
•  But if we stop injecting updates, the system reaches

strong consistency

11 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Illustration: Symmetric, Asynchronous
Replication

Client Client

DB2 DB1

AP ok
C non ok

But we have eventual consistency
l  After reconnection (and resolution of update

conflicts), consistency can be obtained

12 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

NoSQL (Not Only SQL) Definition

•  Specific DBMS, typically for web-based data
•  Specialized data model

•  Key-value, table, document, graph

•  Trade relational DBMS properties
•  Full SQL, ACID transactions, data independence

•  For
•  Simplicity (schema, basic API)
•  Scalability and performance
•  Flexibility for the programmer (integration with programming

language)

13 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

NoSQL Approaches

•  Characterized by the data model, in increasing
order of complexity:

1.  Key-value: DynamoDB, RockDB, Redis
2.  Tabular: Hbase, Bigtable, Cassandra
3.  Document: MongoDB, Coubase, CouchDB, Expresso
4.  Graph: Neo4J, AllegroGraph, MarkLogic, RedisGraph
5.  Multimodel: OrientDB, ArangoDB

•  What about object DBMS or XML DBMS?
•  Were there much before NoSQL
•  Sometimes presented as NoSQL
•  But not really scalable

14 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

NewSQL

•  Pros NoSQL
•  Scalability

•  Often by relaxing strong consistency

•  Performance
•  Practical APIs for programming

•  Pros Relational
•  Strong consistency
•  Transactions
•  Standard SQL

•  Makes it easy for tool vendors (BI, analytics, …)

•  NewSQL = NoSQL/relational hybrid

15 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Transaction vs. Analytical Processing

•  Problems
•  ETL/ELT development cost up to 75% of analytics
•  Analytical queries on obsolete data

•  Leads to miss business opportunities, e.g., proximity
marketing, real-time pricing, risk monitoring, etc.

Data warehouse/lake
Analytics

ETL/ELT

Operational DB
Transactions

OLTP OLAP

16 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

HTAP*: blending OLTP & OLAP

•  Advantages
•  Cutting cost of business analytics by up to 75%
•  Simpler architecture: no more ETLs/ELTs
•  Real-time analytical queries on current data

OLTP OLAP

Analytical queries
on operational data

OLTP OLAP HTAP

*Gartner, 2015

17 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

HTAP and Big Data

•  Challenges
•  Scaling out transactions

•  Millions of transactions per second

•  Mixed OLTP/OLAP workloads on big data
•  Big data ingestion from remote data sources
•  Polystore capabilities

•  To access HDFS, NoSQL and SQL data sources

18 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Case Study: Google AdWords
•  Application to produce sponsored links as results

of search engine
•  Revenue: $50 billion/year

•  Use of an auction system
•  Pure competition between suppliers to gain access to

consumers, or consumer models (the probability of
responding to the ad), and determine the right price
offer (maximum cost-per-click (CPC) bid)

•  The AdWords database with Google F1
•  30 billion search queries per month
•  1 billion historical search events
•  Hundreds of Terabytes

19 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Case Study: Banking

•  Data lakes to store historical data
•  Data from mobile devices and the web coming with very high

peaks
•  Use of ML to build predictive models over the historic data
•  Data copied from the data lake into GPU-based clusters to

perform ML

•  Problems
•  During data loading, ML processes must be paused to avoid

observing inconsistent data and thus hurting the ML models
that are being built

•  The ETL process may die without being noticed
•  Yields wrong ML models and a lot of effort to trace back what was

the problem

•  Real-time analytics (e.g. real-time marketing) not possible

20 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Case Study: Ikea

•  Objective: proximity marketing
•  Real-time analysis of customer behavior in stores in

order to provide targeted offers
•  Requirements

•  Ingestion of real-time data on customer itineraries in
store (through transactions)

•  Use of beacons (sensors) to identify and locate frequent
customers from their smartphone

•  Analysis and segmentation of customers by similar
behavior in other stores

•  Problem
•  OLTP and OLAP at a very large scale in real time

21 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Case Study: Oil & Gas

•  Context: drilling oil in a given location
•  Objective: detect ASAP that the drilling prospection

will fail
•  Save millions of $ by preventing useless drilling

•  Requirements
•  Efficient ingestion of real-time data from drillers

•  With transactions to guarantee data consistency

•  Real time analytics of all the data produced by the
drillers

•  Problem
•  Transactions and real-time analytics on driller data

Principles and Techniques of
NewSQL

23 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Principles of Distributed Database
Systems

•  Declarative languages
•  Optimization, caching, indexing

•  Transactions
•  Strong consistency

•  Shared-nothing cluster architecture
•  Scale out
•  Parallelism

•  High availability in the cloud
•  Replication

•  Data streaming
•  Online stream processing

24 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Main Techniques

•  From SQL
•  Parallel, in-memory query processing
•  Fault-tolerance, failover and synchronous replication
•  Streaming

•  From NoSQL
•  Key-value storage and access
•  JSON data support
•  Horizontal and vertical data partitioning (sharding)

•  New
•  Scalable transaction management
•  Polyglot language and polystore

•  Access to SQL, NoSQL and HDFS data stores

25 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Distributed Architecture
in

de
pe

nd
en

t s
ca

le
 o

ut

in
de

pe
nd

en
t s

ca
le

 o
ut

KV Store
(KiVi)

KV Master
Server

KV Data
Server

KV Data
Server

KV Data
Server

Query Engine

QE
KVClient

QE
KVClient

QE
KVClient

QE
KVClient

OLAP
Application

App

Elastic Drv

JDBC Drv

App

Elastic Drv

JDBC Drv

Txn Engine Txn Txn Txn

26 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Scalable Transaction Processing*

Time

Processes &
commits
transactions
in parallel

Provides a
consistent
view

Single-node bottleneck

Time

Traditional approach

vs

* R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable decentralized and low contention
transactional processing. Priority date: 11th Nov. 2011. European Patent #EP2780832, US Patent #US9,760,597.

27 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Traditional Approach

Centralized Transaction Manager

Single-node bottleneck

Central
TM

Atomicity Isolation

Durability Consistency

28 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Traditional Approach

Centralized Transaction Manager

Single-node bottleneck

Central
TM

Atomicity Isolation
Writes

Durability Isolation
Reads

29 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Scaling ACID Properties

Atomicity
Atomicity Atomicity

Isolation
Reads

Durability

Isolation
Writes

30 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Scaling ACID Properties

Conflict managers

Loggers

Commit
sequencer

Snapshot
server

Local TMs

Atomicity

Isolation
Reads

Isolation
Writes

Durability

31 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Transaction Management Principles

•  Separation of commit from the visibility of
committed data

•  Proactive pre-assignment of commit timestamps to
committing transactions

•  Detection and resolution of conflicts before commit
•  Transactions can commit in parallel because:

•  They do not conflict
•  They have their commit timestamp already assigned

that will determine their serialization order
•  Visibility is regulated separately to guarantee the

reading of fully consistent states

32 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Snapshot
Server

The local txn mng
gets the “start TS”
from the snapshot
server.

Get start TS

Local Txn
Manager

Transactional Life Cycle: start

33 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Local Txn
Manager

Get start TS

Run on start
TS snapshot

Conflict
Manager

The transaction will read the state
as of “start TS”.
Write-write conflicts are detected by
conflict managers on the fly.

Transactional Life Cycle: execution

34 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Get start TS

Run on start
TS snapshot

Commit

The local transaction
manager orchestrates
the commit.

Local Txn
Manager

Transaction Life Cycle: commit

35 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Data Store

Commit TS Writeset Writeset Commit TS

Local Txn
Manager

Get
Commit TS Log Public

Updates
Report

Snaps Serv

Commit
Sequencer

Snapshot
Server Logger

Transaction Life Cycle: commit

36 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

TIMESTAMP 11
TIMESTAMP 15

TIMESTAMP 12
TIMESTAMP 14

TIMESTAMP 13

Time

Sequence of commit timestamps received by the Snapshot Server

Evolution of the current snapshot at the Snapshot Server (starting at 10)

TIMESTAMP 11
TIMESTAMP 12

TIMESTAMP 12

TIMESTAMP 15

TIMESTAMP 11

11 15 12 14 13

11 11 12 12 15

Transaction Life Cycle: commit

10

37 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Transactional Scalability

•  Without data manager/logging to see how much
TP throughput can be attained

•  Based on a micro-benchmark to stress the TM

2.35 Million TPS

38 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Polystore

•  Goal
•  Integrated access to

heterogeneous data stores
such as SQL, NoSQL, HDFS,
and CEP

•  Query engine
•  Transforms queries into sub-

queries for wrappers
•  Integrates (computes) the

results of sub-queries
•  Wrapper

•  Transforms sub-queries into
sources' languages

•  Transforms the results in the
QE format

Query
Engine

Wrapper1 Wrapper2

Q

Q1

Metadata
Cache

Q2

NoSQL SQL

Q1' Q2'

39 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Polyglot Query Example

/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

N x,	z	

π x,	z	

A

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

*B. Kolev, C. Bondiombouy, P.Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The CloudMdsQL Multistore System.
SIGMOD 2016.

•  A query in CloudMdsQL* that integrates data from
•  DB1 – relational (RDB)
•  DB2 – document (MongoDB)

40 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Polyglot Query Example

/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

N x,	z	

π x,	z	

A

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

•  CloudMdSQL = SQL + (native) subqueries
•  Expressed as named tables on ad-hoc schema
•  Compiled to query sub-plans

41 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Parallel Polystore Query Processing

•  Objectives
•  Intra-operator parallelism

•  Apply parallel algorithms

•  Exploit data sharding in data stores
•  Access data shards (partitions) in parallel

•  Polyglot capabilities
•  Optimization

•  Select pushdown, bindjoin, etc.

•  Solution
•  The LeanXcale Distributed Query Engine (DQE)

•  … with CloudMdsQL polyglot extensions

•  *B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-Peris, P. Kranas. Parallel
Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Big Data, 2018.

42 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

LeanXcale Polystore Architecture

•  Workers access directly data shards through wrappers
•  DataLake API: get list of shards; assign shard to worker

in
de

pe
nd

en
t s

ca
le

 o
ut

in
de

pe
nd

en
t s

ca
le

 o
ut

External
Data
Store DS

Shard
DS

Shard
DS

Shard

Query Engine

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

OLAP
Application App

JDBC Drv

App
JDBC Drv

DataLake API

43 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Query on LeanXcale and MongoDB

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

Mongo
Shard

KVDSMongo
Shard

KVDSMongo
Shard

Mongo
Router

listShards()

db.lineitem.find(…)

LineItem(L_ORDERKEY int, …)@mongo = {*
 return db.lineitem.findSharded(
 {l_quantity: {$lt: 5}});
*}
SELECT count(*) FROM LineItem L, Orders O
WHERE L_ORDERKEY = O_ORDERKEY

44 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Performance Evaluation

•  Clicks: 1TB, 6 billion rows
•  Orders_Items: 600GB, 3 billion items, 770 million docs
•  3 selectivity factors on the Clicks table*

0

100

200

300

400

500

600

SF=0.02% SF=0.2% SF=2%

Q3 (1.6TB	data)

Spark	SQL LeanXcale	DQE
no	bind	join

LeanXcale	DQE
with	bind	join

* Experiments performed with the previous version of LeanXcale based on HBase

Taxonomy of NewSQL Systems

46 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

SQL versus NoSQL versus NewSQL

SQL NoSQL NewSQL

Data model Relational Specialized: KV,
document, graph

Relational

Query
language

SQL Key-value API
New query language

SQL
Key-value API

Scalability Only for high-end
(Teradata, Exadata)

By design (SN cluster) By design (SN cluster)

Consistency Strong

Limited Strong

Big data
ecosystem

External tables
(HDFS)

Integration within
Hadoop

Integration within Hadoop

Workload OLAP XOR OLTP OLTP OLAP, OLTP, HTAP

Polystore SQL or HDFS data
sources

SQL or HDFS data
sources

SQL, NoSQL, HDFS data
sources

47 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Taxonomy Definition

•  Why a taxonomy?
•  Different flavors of NewSQL systems, for different

workloads

•  Main dimensions
•  Transaction model
•  Scalability
•  Storage engine
•  Query parallelism
•  Polystore

48 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Transaction Model

•  Ad hoc
•  ACID properties partially provided
•  Isolation and atomicity not guaranteed

•  A priori-knowledge
•  Requires to know which rows will be read and written

before executing the transaction

•  ACID
•  ACID properties fully provided
•  Isolation levels well such as serializability or snapshot

isolation

49 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Scalability

•  Bounded scalability
•  Centralized transaction manager: can scale out as far

as it does not get overloaded

•  Logarithmic scalability
•  ROWA replication: can scale out the read workload
•  Cache consistency: requires synchronization of the

updated blocks
•  2PC: to deal with multi-node transactions

•  Linear scalability
•  Linear scale-out in shared-nothing cluster

50 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Storage Engine

•  Relational
•  Support of algebraic operators, such as predicate

filtering, aggregation, grouping and sorting

•  Read/write, key-value
•  Capability of reading and writing individual data items
•  May support range queries

51 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Query Parallelism

•  Inter-query parallelism
•  Multiple queries can be processed in parallel

•  Intra-query parallelism
•  Inter-operator parallelism: different operators in the

query plan can be processed on different nodes, but a
single operator runs on a single node.

•  Intra-operator (SIMD) parallelism: the same operator
can run across multiple nodes

52 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Different Flavors of NewSQL Systems

•  SQL+key-value
•  Use a key-value data store to scale data

management, e.g. Splicemachine, EsgynDB and
LeanXcale.

•  HTAP
•  Systems that combine OLTP and OLAP, e.g. SAP

Hana, EsgynDB and LeanXcale.
•  In memory

•  Optimized for processing the workload fully in main
memory, e.g. SAP Hana and MemSQL

•  New transaction managers
•  New, scalable approach to transaction management,

e.g. Spanner and LeanXcale

53 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Some NewSQL Systems

Vendor Product Objective Comment

Google Spanner OLTP

Google cloud distributed database service.
Used by F1 for the AdWords app.

LeanXcale LeanXcale HTAP HTAP DBMS with fast insertion, fast
aggregation over real-time data and
polystore capability

SAP Hana HTAP The HTAP pioneer, based on in-memory,
column store

MemSQL Inc. MemSQL HTAP In-memory, column and row store, MySQL
compatible

Esgyn EsgynDB

HTAP Apache Trafodion for OLTP, Hadoop for
OLAP

NuoDB NuoDB OLTP

Distributed SQL DBMS with P2P architecture

Splice Machine Splice Machine HTAP HBase as storage engine, Derby as OLTP
query engine and SparkQL as OLAP query
engine

54 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Google Spanner

•  Globally distributed database service in Google Cloud
Synchronous replication between data centers with Paxos
•  Load balancing between Spanner servers

•  Favor the geographical zone of the client

•  Different levels of consistency
•  ACID transactions
•  Snapshot (read only) transactions

•  Based on data versioning
•  Optimistic transactions (read without locking, then write)

•  Validation phase to detect conflicts and abort conflicting
transactions

•  Two interfaces
•  SQL
•  NoSQL key-value interface

•  Hierarchical relational storage
•  Precomputed joins

55 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

LeanXcale

•  SQL DBMS
•  Access from a JDBC driver
•  Polyglot language with JSON support (pending)

•  Key-value store (KiVi)
•  Fast, parallel data ingestion
•  Multistore access: HDFS, MongoDB, Hbase, …

•  OLAP parallel processing (Query Engine)
•  Based on Apache Calcite

•  Ultra-scalable transaction processing (patented)
•  SQL isolation level: snapshot
•  Timestamp-based ordering and conflict detection just before

commit
•  Parallel commits of transactions

56 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Comparisons

System Trans.
model

Scalability Storage Query
parallelism

Polystore

Spanner ACID Linear Key-value Inter-query

LeanXcale ACID Linear Relational
key-value

Intra-query
Intra-operator

SQL, NoSQL,
HDFS

Hana ACID 2PC Relational
Columnar

Intra-query
Intra-operator

HDFS

MemSQL Ad hoc Log Relational Inter-query HDFS (Spark
connector)

EsgynDB ACID 2PC Key-value Intra-query
Intra-operator

HDFS

NuoDB ACID Log Read/write Inter-query HDFS

Splice
Machine

ACID Centralized
TM

Key-value Intra-query
Intra-operator

HBase, HDFS

57 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Conclusion

•  NewSQL is the hottest trend in database
management:

•  Scales out but without renouncing to SQL and
ACID transactions.

•  NewSQL has different roots leading to different
flavours

•  The taxonomy enables comparing NewSQL
systems as well as SQL systems

Current Trends

59 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Business Perspectives

•  NewSQL is the database kind growing faster in
the market
•  33% CAGR, according to 451 Research market analyst

in their Total Data Report
•  It will become soon an important player in the

database landscape

•  Early adopters of NewSQL will become leaders in
database management
•  Faster database development with lower costs in

engineering and lower needs in talent

60 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

Many Research Opportunities
•  Polyglot SQL

•  SQL++ compatibility
•  JSON indexing within columns

•  Polystore
•  Cost model, including histograms
•  Materialized views

•  Streaming and CEP
•  Query language combining streaming and access to the database, e.g.,

through SQL or KiVi API
•  Scientific applications

•  NewSQL/HTAP + scientific workflows
•  Analytics and ML

•  Spark ML using updatable RDDs, instead of redoing RDDs periodically,
•  Incremental ML algorithms based on online aggregation, scalable

updates and OLAP queries
•  Benchmarking

•  Defining NewSQL/HTAP benchmarks and compare systems
•  Profiling to find new optimizations

61 BigData 2019 © P. Valduriez and R. Jimenez-Peris, 2019

References

1.  T. Özsu, P. Valduriez. Principles of Distributed Database Systems. Fourth Edition.
Springer, 2019.

2.  R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable
decentralized and low contention transactional processing. Filed at USPTO:
2011. European Patent #EP2780832, US Patent #US9,760,597.

3.  B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R.
Jiménez-Peris, P. Kranas. Parallel Polyglot Query Processing on Heterogeneous
Cloud Data Stores with LeanXcale. IEEE BigData, 2018.

4.  B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J. Pereira.
CloudMdsQL: Querying Heterogeneous Cloud Data Stores with a Common
Language. Distributed and Parallel Databases, 34(4): 463-503, 2016.

5.  B. Kolev, C. Bondiombouy, P.Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The
CloudMdsQL Multistore System. ACM SIGMOD, 2016.

