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Why NoSQL/NewSQL? 

•  Trends 
•  Big data 

•  Unstructured data 

•  Data interconnection 
•  Hyperlinks, tags, blogs, etc. 

•  Very high scalability 
•  Data size, data rates, concurrent users, etc. 

•  Limits of SQL systems (in fact RDBMSs) 
•  Need for skilled DBA, tuning and well-defined schemas 
•  Full SQL complex 
•  Hard to make updates scalable 

•  Parallel RDBMS use a shared-disk for OLTP, which is hard to scale 
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Scalability 

• Ideal: linear scale-up  

• Sustained performance 
for a linear increase of 
database size and load 

• By proportional increase 
of components 

ideal 

Components & charge 

Perf. 
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Vertical vs Horizontal Scaleup 

•  Typically in a shared-nothing computer cluster 
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P2 
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Query Parallelism 

•  Inter-query 
•  Different queries on the same 

data 
•  For concurrent queries  

•  Inter-operation 
•  Different operations of the 

same query on different data 
•  For complex queries 

•  Intra-operation 
•  The same operation on 

different data 
•  For large queries 
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The CAP Theorem 

•  Polemical topic 
•  "A database can't provide consistency AND availability 

during a network partition" 
•  Argument used by NoSQL to justify their lack of ACID 

properties 
•  Nothing to do with scalability 

•  Two different points of view 
•  Relational databases 

•  Consistency is essential 
•  ACID transactions  

•  Distributed systems 
•  Service availability is essential 

•  Inconsistency tolerated by the user, e.g. web cache 
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What is the CAP Theorem? 

•  The desirable properties of a distributed system 
•  Consistency: all nodes see the same data values at the 

same time 
•  Availability: all requests get an answer 
•  Partition tolerance: the system keeps functioning in 

case of network failure 

•  History 
•  At the PODC 2000 conference, Brewer (UC Berkeley) 

conjectures that one can have only two properties at the 
same time 

•  In 2002, Gilbert and Lynch (MIT) prove the conjecture, 
which becomes a theorem 
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Strong vs Eventual Consistency  

•  Strong consistency (ACID) 
•  All nodes see the same data values at the same time 

•  Eventual consistency 
•  Some nodes may see different data values at the same 

time 
•  But if we stop injecting updates, the system reaches 

strong consistency 
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Illustration: Symmetric, Asynchronous 
Replication 

Client Client 

DB2 DB1 

AP ok 
C non ok 

But we have eventual consistency 
l  After reconnection (and resolution of update 

conflicts), consistency can be obtained 
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NoSQL (Not Only SQL) Definition 

•  Specific DBMS, typically for web-based data 
•  Specialized data model 

•  Key-value, table, document, graph 

•  Trade relational DBMS properties 
•  Full SQL, ACID transactions, data independence 

•  For  
•  Simplicity (schema, basic API) 
•  Scalability and performance 
•  Flexibility for the programmer (integration with programming 

language) 
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NoSQL Approaches  

•  Characterized by the data model, in increasing 
order of complexity: 

1.  Key-value: DynamoDB, RockDB, Redis 
2.  Tabular: Hbase, Bigtable, Cassandra 
3.  Document: MongoDB, Coubase, CouchDB, Expresso 
4.  Graph: Neo4J, AllegroGraph, MarkLogic, RedisGraph 
5.  Multimodel: OrientDB, ArangoDB 

•  What about object DBMS or XML DBMS? 
•  Were there much before NoSQL 
•  Sometimes presented as NoSQL 
•  But not really scalable 
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NewSQL 

•  Pros NoSQL 
•  Scalability 

•  Often by relaxing strong consistency 

•  Performance 
•  Practical APIs for programming 

•  Pros Relational 
•  Strong consistency 
•  Transactions 
•  Standard SQL 

•  Makes it easy for tool vendors (BI, analytics, …) 

•  NewSQL = NoSQL/relational hybrid 
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Transaction vs. Analytical Processing 

•  Problems 
•  ETL/ELT development cost up to 75% of analytics  
•  Analytical queries on obsolete data 

•  Leads to miss business opportunities, e.g., proximity 
marketing, real-time pricing, risk monitoring, etc. 

Data warehouse/lake 
Analytics 

ETL/ELT 

Operational DB 
Transactions 

OLTP OLAP 
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HTAP*: blending OLTP & OLAP 

•  Advantages 
•  Cutting cost of business analytics by up to 75% 
•  Simpler architecture: no more ETLs/ELTs 
•  Real-time analytical queries on current data 

OLTP OLAP 

Analytical queries  
on operational data 

OLTP OLAP HTAP 

*Gartner, 2015 
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HTAP and Big Data 

•  Challenges 
•  Scaling out transactions 

•  Millions of transactions per second 

•  Mixed OLTP/OLAP workloads on big data 
•  Big data ingestion from remote data sources 
•  Polystore capabilities 

•  To access HDFS, NoSQL and SQL data sources 
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Case Study: Google AdWords 
•  Application to produce sponsored links as results 

of search engine 
•  Revenue: $50 billion/year 

•  Use of an auction system 
•  Pure competition between suppliers to gain access to 

consumers, or consumer models (the probability of 
responding to the ad), and determine the right price 
offer (maximum cost-per-click (CPC) bid)  

•  The AdWords database with Google F1 
•  30 billion search queries per month 
•  1 billion historical search events 
•  Hundreds of Terabytes 
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Case Study: Banking 

•  Data lakes to store historical data 
•  Data from mobile devices and the web coming with very high 

peaks 
•  Use of ML to build predictive models over the historic data 
•  Data copied from the data lake into GPU-based clusters to 

perform ML 

•  Problems 
•  During data loading, ML processes must be paused to avoid 

observing inconsistent data and thus hurting the ML models 
that are being built 

•  The ETL process may die without being noticed 
•  Yields wrong ML models and a lot of effort to trace back what was 

the problem 

•  Real-time analytics (e.g. real-time marketing) not possible 
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Case Study: Ikea 

•  Objective: proximity marketing 
•  Real-time analysis of customer behavior in stores in 

order to provide targeted offers 
•  Requirements  

•  Ingestion of real-time data on customer itineraries in 
store (through transactions) 

•  Use of beacons (sensors) to identify and locate frequent 
customers from their smartphone 

•  Analysis and segmentation of customers by similar 
behavior in other stores 

•  Problem 
•  OLTP and OLAP at a very large scale in real time 
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Case Study: Oil & Gas 

•  Context: drilling oil in a given location 
•  Objective: detect ASAP that the drilling prospection 

will fail 
•  Save millions of $ by preventing useless drilling 

•  Requirements  
•  Efficient ingestion of real-time data from drillers 

•  With transactions to guarantee data consistency 

•  Real time analytics of all the data produced by the 
drillers  

•  Problem 
•  Transactions and real-time analytics on driller data 



Principles and Techniques of 
NewSQL 
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Principles of Distributed Database 
Systems 

•  Declarative languages 
•  Optimization, caching, indexing 

•  Transactions 
•  Strong consistency 

•  Shared-nothing cluster architecture 
•  Scale out 
•  Parallelism 

•  High availability in the cloud 
•  Replication 

•  Data streaming 
•  Online stream processing 
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Main Techniques 

•  From SQL 
•  Parallel, in-memory query processing 
•  Fault-tolerance, failover and synchronous replication  
•  Streaming 

•  From NoSQL 
•  Key-value storage and access 
•  JSON data support 
•  Horizontal and vertical data partitioning (sharding) 

•  New 
•  Scalable transaction management 
•  Polyglot language and polystore 

•  Access to SQL, NoSQL and HDFS data stores 
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Scalable Transaction Processing* 

Time 

Processes & 
commits  
transactions 
in parallel 

Provides a 
consistent  
view 

Single-node bottleneck 

Time 

Traditional approach 

vs 

* R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable decentralized and low contention 
transactional processing. Priority date: 11th Nov. 2011. European Patent #EP2780832, US Patent #US9,760,597. 
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Traditional Approach 

Centralized Transaction Manager 

Single-node bottleneck 

Central 
TM 

Atomicity Isolation 

Durability Consistency 
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Traditional Approach 

Centralized Transaction Manager 

Single-node bottleneck 

Central 
TM 

Atomicity Isolation 
Writes 

Durability Isolation 
Reads 
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Scaling ACID Properties 

Atomicity 
Atomicity Atomicity 

Isolation 
Reads 

Durability 

Isolation 
Writes 
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Scaling ACID Properties 

Conflict managers 

Loggers 

Commit 
sequencer 

Snapshot 
server 

Local TMs 

Atomicity 

Isolation 
Reads 

Isolation 
Writes 

Durability 
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Transaction Management Principles 

•  Separation of commit from the visibility of 
committed data 

•  Proactive pre-assignment of commit timestamps to 
committing transactions 

•  Detection and resolution of conflicts before commit 
•  Transactions can commit in parallel because: 

•  They do not conflict 
•  They have their commit timestamp already assigned 

that will determine their serialization order 
•  Visibility is regulated separately to guarantee the 

reading of fully consistent states 
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Snapshot  
Server 

The local txn mng 
gets the “start TS” 
from the snapshot 
server. 

Get start TS 

Local Txn 
Manager 

Transactional Life Cycle: start 
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Local Txn 
Manager 

Get start TS 

Run on start 
TS snapshot 

Conflict 
Manager 

The transaction will read the state 
as of  “start TS”. 
Write-write conflicts are detected by 
conflict managers on the fly. 

Transactional Life Cycle: execution 
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Get start TS 

Run on start 
TS snapshot 

Commit 

The local transaction 
manager orchestrates 
the commit. 

Local Txn 
Manager 

Transaction Life Cycle: commit 
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Data Store 

Commit TS Writeset Writeset Commit TS 

Local Txn 
Manager 

Get 
Commit TS Log Public 

Updates 
Report 

Snaps Serv 

Commit 
Sequencer 

Snapshot  
Server Logger 

Transaction Life Cycle: commit 
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TIMESTAMP 11 
TIMESTAMP 15 

TIMESTAMP 12 
TIMESTAMP 14 

TIMESTAMP 13 

Time 

Sequence of commit timestamps received by the Snapshot Server 

Evolution of the current snapshot at the Snapshot Server (starting at 10) 

TIMESTAMP 11 
TIMESTAMP 12 

TIMESTAMP 12 

TIMESTAMP 15 

TIMESTAMP 11 

11 15 12 14 13 

11 11 12 12 15 

Transaction Life Cycle: commit 

10 
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Transactional Scalability 

•  Without data manager/logging to see how much 
TP throughput can be attained 

•  Based on a micro-benchmark to stress the TM 

2.35 Million TPS 
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Polystore 

•  Goal 
•  Integrated access to 

heterogeneous data stores 
such as SQL, NoSQL, HDFS, 
and CEP 

•  Query engine 
•  Transforms queries into sub-

queries for wrappers 
•  Integrates (computes) the 

results of sub-queries 
•  Wrapper 

•  Transforms sub-queries into 
sources' languages 

•  Transforms the results in the 
QE format 

Query 
Engine 

Wrapper1 Wrapper2 

Q 

Q1 

Metadata 
Cache 

Q2 

NoSQL SQL 

Q1' Q2' 
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Polyglot Query Example 

/* Integration */ 
SELECT T1.x, T2.z 
FROM T1 JOIN T2 
  ON T1.x = T2.x 
 
/* SQL sub-query */ 
T1(x int, y int)@DB1 = 
( SELECT x, y FROM A ) 
 
/* Native sub-query */ 
T2(x int, z string)@DB2 = {* 
  db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} ) 
*} 

N x,	z	

π x,	z	

A 

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

*B. Kolev, C. Bondiombouy, P.Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The CloudMdsQL Multistore System. 
SIGMOD 2016.  

•  A query in CloudMdsQL* that integrates data from 
•  DB1 – relational (RDB) 
•  DB2 – document (MongoDB) 
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Polyglot Query Example 

/* Integration */ 
SELECT T1.x, T2.z 
FROM T1 JOIN T2 
  ON T1.x = T2.x 
 
/* SQL sub-query */ 
T1(x int, y int)@DB1 = 
( SELECT x, y FROM A ) 
 
/* Native sub-query */ 
T2(x int, z string)@DB2 = {* 
  db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} ) 
*} 

N x,	z	

π x,	z	

A 

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

•  CloudMdSQL = SQL + (native) subqueries 
•  Expressed as named tables on ad-hoc schema 
•  Compiled to query sub-plans 
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Parallel Polystore Query Processing 

•  Objectives 
•  Intra-operator parallelism 

•  Apply parallel algorithms 

•  Exploit data sharding in data stores 
•  Access data shards (partitions) in parallel 

•  Polyglot capabilities 
•  Optimization 

•  Select pushdown, bindjoin, etc. 

•  Solution 
•  The LeanXcale Distributed Query Engine (DQE) 

•  … with CloudMdsQL polyglot extensions 

•  *B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-Peris, P. Kranas. Parallel 
Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Big Data, 2018. 
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LeanXcale Polystore Architecture 

•  Workers access directly data shards through wrappers 
•  DataLake API: get list of shards; assign shard to worker 
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Query on LeanXcale and MongoDB 

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

Mongo 
Shard

KVDSMongo 
Shard

KVDSMongo 
Shard

Mongo 
Router

listShards()

db.lineitem.find(…)

LineItem( L_ORDERKEY int, … )@mongo = {* 
  return db.lineitem.findSharded( 
     {l_quantity: {$lt: 5}} );  
*} 
SELECT count(*) FROM LineItem L, Orders O 
WHERE L_ORDERKEY = O_ORDERKEY  
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Performance Evaluation 

•  Clicks: 1TB, 6 billion rows 
•  Orders_Items: 600GB, 3 billion items, 770 million docs 
•  3 selectivity factors on the Clicks table* 

0

100

200

300

400

500

600

SF=0.02% SF=0.2% SF=2% 

Q3 (1.6TB	data)

Spark	SQL LeanXcale	DQE
no	bind	join

LeanXcale	DQE
with	bind	join

* Experiments performed with the previous version of LeanXcale based on HBase 



Taxonomy of NewSQL Systems 
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SQL versus NoSQL versus NewSQL 

SQL NoSQL NewSQL 

Data model Relational Specialized: KV, 
document, graph 

Relational 

Query 
language 

SQL Key-value API 
New query language 

SQL 
Key-value API 

Scalability Only for high-end 
(Teradata, Exadata) 

By design (SN cluster) By design (SN cluster) 

Consistency Strong 
 

Limited Strong 

Big data 
ecosystem 

External tables 
(HDFS) 

Integration within 
Hadoop 

Integration within Hadoop 

Workload OLAP XOR OLTP OLTP OLAP, OLTP, HTAP 

Polystore SQL or HDFS data 
sources 

SQL or HDFS data 
sources 

SQL, NoSQL, HDFS data 
sources 
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Taxonomy Definition 

•  Why a taxonomy? 
•  Different flavors of NewSQL systems, for different 

workloads 

•  Main dimensions 
•  Transaction model 
•  Scalability 
•  Storage engine 
•  Query parallelism 
•  Polystore 
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Transaction Model 

•  Ad hoc 
•  ACID properties partially provided 
•  Isolation and atomicity not guaranteed 

•  A priori-knowledge 
•  Requires to know which rows will be read and written 

before executing the transaction 

•  ACID 
•  ACID properties fully provided 
•  Isolation levels well such as serializability or snapshot 

isolation 
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Scalability 

•  Bounded scalability 
•  Centralized transaction manager: can scale out as far 

as it does not get overloaded 

•  Logarithmic scalability 
•  ROWA replication: can scale out the read workload 
•  Cache consistency: requires synchronization of the 

updated blocks 
•  2PC: to deal with multi-node transactions 

•  Linear scalability 
•  Linear scale-out in shared-nothing cluster 
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Storage Engine 

•  Relational 
•  Support of algebraic operators, such as predicate 

filtering, aggregation, grouping and sorting 

•  Read/write, key-value 
•  Capability of reading and writing individual data items 
•  May support range queries 
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Query Parallelism 

•  Inter-query parallelism 
•  Multiple queries can be processed in parallel 

•  Intra-query parallelism 
•  Inter-operator parallelism: different operators in the 

query plan can be processed on different nodes, but a 
single operator runs on a single node. 

•  Intra-operator (SIMD) parallelism: the same operator 
can run across multiple nodes 
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Different Flavors of NewSQL Systems 

•  SQL+key-value 
•  Use a key-value data store to scale data 

management, e.g. Splicemachine, EsgynDB and 
LeanXcale. 

•  HTAP 
•  Systems that combine OLTP and OLAP, e.g. SAP 

Hana, EsgynDB and LeanXcale. 
•  In memory 

•  Optimized for processing the workload fully in main 
memory, e.g. SAP Hana and MemSQL  

•  New transaction managers 
•  New, scalable approach to transaction management,  

e.g. Spanner and LeanXcale 
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Some NewSQL Systems 

Vendor Product Objective Comment 

Google Spanner OLTP 
 

Google cloud distributed database service. 
Used by F1 for the AdWords app. 

LeanXcale LeanXcale HTAP HTAP DBMS with fast insertion, fast 
aggregation over real-time data and 
polystore capability 

SAP Hana HTAP The HTAP pioneer, based on in-memory, 
column store 

MemSQL Inc. MemSQL HTAP In-memory, column and row store, MySQL 
compatible  

Esgyn EsgynDB 
 

HTAP Apache Trafodion for OLTP, Hadoop for 
OLAP 

NuoDB NuoDB OLTP 
 

Distributed SQL DBMS with P2P architecture 

Splice Machine Splice Machine HTAP HBase as storage engine, Derby as OLTP 
query engine and SparkQL as OLAP query 
engine 
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Google Spanner 

•  Globally distributed database service in Google Cloud 
Synchronous replication between data centers with Paxos 
•  Load balancing between Spanner servers 

•  Favor the geographical zone of the client 

•  Different levels of consistency 
•  ACID transactions  
•  Snapshot (read only) transactions 

•  Based on data versioning 
•  Optimistic transactions (read without locking, then write) 

•  Validation phase to detect conflicts and abort conflicting 
transactions 

•  Two interfaces 
•  SQL 
•  NoSQL key-value interface 

•  Hierarchical relational storage 
•  Precomputed joins 
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LeanXcale 

•  SQL DBMS 
•  Access from a JDBC driver 
•  Polyglot language with JSON support (pending) 

•  Key-value store (KiVi) 
•  Fast, parallel data ingestion 
•  Multistore access: HDFS, MongoDB, Hbase, … 

•  OLAP parallel processing (Query Engine) 
•  Based on Apache Calcite 

•  Ultra-scalable transaction processing (patented) 
•  SQL isolation level: snapshot 
•  Timestamp-based ordering and conflict detection just before 

commit 
•  Parallel commits of transactions 
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Comparisons 

System Trans. 
model 

Scalability Storage Query 
parallelism 

Polystore 

Spanner ACID Linear Key-value Inter-query 

LeanXcale ACID Linear Relational 
key-value 

Intra-query 
Intra-operator 

SQL, NoSQL, 
HDFS 

Hana ACID 2PC Relational 
Columnar 

Intra-query 
Intra-operator 

HDFS 

MemSQL Ad hoc Log Relational Inter-query HDFS (Spark 
connector)  

EsgynDB ACID 2PC Key-value Intra-query 
Intra-operator 

HDFS 

NuoDB ACID Log Read/write Inter-query HDFS 

Splice 
Machine 

ACID Centralized 
TM 

Key-value Intra-query 
Intra-operator 

HBase, HDFS 
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Conclusion 

•  NewSQL is the hottest trend in database 
management: 

•  Scales out but without renouncing to SQL and 
ACID transactions. 

•  NewSQL has different roots leading to different 
flavours 

•  The taxonomy enables comparing NewSQL 
systems as well as SQL systems 



Current Trends 
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Business Perspectives 

•  NewSQL is the database kind growing faster in 
the market 
•  33% CAGR, according to 451 Research market analyst 

in their Total Data Report 
•  It will become soon an important player in the 

database landscape 

•  Early adopters of NewSQL will become leaders in 
database management 
•  Faster database development with lower costs in 

engineering and lower needs in talent 
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Many Research Opportunities 
•  Polyglot SQL 

•  SQL++ compatibility 
•  JSON indexing within columns 

•  Polystore 
•  Cost model, including histograms 
•  Materialized views 

•  Streaming and CEP 
•  Query language combining streaming and access to the database, e.g., 

through SQL or KiVi API 
•  Scientific applications 

•  NewSQL/HTAP + scientific workflows 
•  Analytics and ML 

•  Spark ML using updatable RDDs, instead of redoing RDDs periodically, 
•  Incremental ML algorithms based on online aggregation, scalable 

updates and OLAP queries 
•  Benchmarking 

•  Defining NewSQL/HTAP benchmarks and compare systems 
•  Profiling to find new optimizations 
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