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Transaction vs. Analytical Processing 

•  Problems 
•  ETL/ELT development cost up to 75% of analytics  
•  Analytical queries on obsolete data 

•  Leads to miss business opportunities, e.g., proximity 
marketing, real-time pricing, risk monitoring, etc. 

Data warehouse/lake 
Analytics 

ETL/ELT 

Operational DB 
Transactions 

OLTP OLAP 
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Case Study: Banking 

•  Data lakes to store historical data 
•  Data from mobile devices and the web coming with very high 

peaks 
•  Use of ML to build predictive models over the historic data 
•  Data copied from the data lake into GPU-based clusters to 

perform ML 

•  Problems 
•  During data loading, ML processes must be paused to avoid 

observing inconsistent data and thus hurting the ML models 
that are being built 

•  The ETL process may die without being noticed 
•  Yields wrong ML models and a lot of effort to trace back what was 

the problem 

•  Real-time analytics (e.g. real-time marketing) not possible 
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Case Study: IKEA 

•  Objective: proximity marketing 
•  Real-time analysis of customer behavior in stores in 

order to provide targeted offers 
•  Requirements  

•  Ingestion of real-time data on customer itineraries in 
store (through transactions) 

•  Use of beacons (sensors) to identify and locate frequent 
customers from their smartphone 

•  Analysis and segmentation of customers by similar 
behavior in other stores 

•  Problem 
•  OLTP and OLAP at a very large scale in real time 
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Case Study: Oil & Gas 

•  Context: drilling oil in a given location 
•  Objective: detect ASAP that the drilling prospection 

will fail 
•  Save millions of $ by preventing useless drilling 

•  Requirements  
•  Efficient ingestion of real-time data from drillers 

•  With transactions to guarantee data consistency 

•  Real time analytics of all the data produced by the 
drillers  

•  Problem 
•  Transactions and real-time analytics on driller data 



HTAP 
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HTAP*: blending OLTP & OLAP 

•  Advantages 
•  Cutting cost of business analytics by up to 75% 
•  Simpler architecture: no more ETLs/ELTs 
•  Real-time analytical queries on current data 

OLTP OLAP 

Analytical queries  
on operational data 

OLTP OLAP HTAP 

*Gartner, 2015 
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HTAP and Big Data 

•  Challenges 
•  Scaling out transactions 

•  Millions of transactions per second 

•  Mixed OLTP/OLAP workloads on big data 
•  Big data ingestion from remote data sources 
•  Polystore capabilities 

•  To access HDFS, NoSQL and SQL data sources 
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Related Work 

•  Parallel SQL DBMS 
•  Can mix OLTP/OLAP through snapshot isolation and 

data versioning, e.g., Oracle Exadata 
•  But hard to scale OLTP and expensive HW/SW 

•  In-memory SQL DBMS 
•  Can support HTAP (e.g., HANA, MonetDB) 
•  But hard to deal with big data 

•  NoSQL 
•  Scalable key-value storage, data partitioning, fault-

tolerance, … 
•  But no ACID transactions 



12 

HTAP Top Systems 

Vendor Product Comment 

LeanXcale Inc. LeanXcale Ultra-scalable transactions, based on proprietary 
KV store (KiVi) and proprietary OLAP leveraging  
the Calcite optimizer 

SAP HANA The HTAP pioneer. In-memory, column store 

Google Spanner NewSQL service with ACID transactions and 
synchronous replication across data centers 

MemSQL Inc. MemSQL In-memory, column and row store, MySQL 
compatible  

Esgyn Esgyn Apache Trafodion for OLTP, Hadoop for OLAP 

NuoDB NuoDB Cloud solution (Amazon) 

Splice Machine Splice Machine HBase as storage engine, Derby as OLTP query 
engine and SparkQL as OLAP query engine. 
Custom centralized transactional manager 

VoltDB Inc. VoltDB Open source and proprietary. In-memory 



Real-Time Big Data 
Full SQL Full ACID  DB 

OLAP over  
Operational Data 

Ultra-Scalable OLTP 

Non-disruptive data migration, 
continuous load balancing and  

Elastic & Ultra-Efficient 
Queries across SQL, HBase, Neo4J, 

MongoDB, & Hadoop data lakes 
Integration with Data Streaming 

Polyglot 

LeanXcale 
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•  SQL/JSON DBMS 
•  Access from a JDBC driver 

•  Key-value store (KiVi) 
•  Dual SQL/KV interface over relational data with efficiency, 

elasticity, high availability, indexing, … 
•  Fast, parallel data ingestion 
•  Polystore access: HDFS, NoSQL, … 

•  OLAP parallel processing 
•  Based on the Apache Calcite optimizer 
•  Extensive push down of operators to KiVi 

•  Ultra-scalable transaction processing 

LeanXcale 



15 

LeanXcale Distributed Architecture 
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KiVi – Efficiency 

•  Multi-Workload 
•  Efficient for both range queries and large data ingestion 

(updates/inserts) 
•  Combines benefits of B+ and LSM trees thanks to a novel 

proprietary data structure 
•  NUMA aware architecture 

•  Avoids cost of context switches, thread synchronization and 
remote NUMA accesses in multicore processors 

•  Vectorial 
•  Uses vectorial registers and SIMD instructions, yielding 

10-50x acceleration 
•  Columnar storage 

•  Yields 10-100x acceleration for tables with large number of 
columns 
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KiVi – Elasticity 

•  Dynamic data migration 
•  Able to move data partitions across servers without 

affecting the QoS of the applications updating those  

•  Dynamic load balancing 
•  Balances the load across servers based on the current 

load using dynamic data migration 
•  Takes into account all resource utilization: CPU, 

memory, IO, and network 

•  Fully elastic 
•  Adds and removes nodes as needed to minimize 

resource usage 
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KiVi - Online Aggregation 

•  Commutative concurrency control 
•  Enables to aggregate data (additions/subtractions) with high 

levels of concurrency without conflicts 
•  Online aggregation 

•  Have an aggregate table 
•  WebServer (server, size, nb_users, …) 

•  A transaction can insert records and compute aggregations 
(SUM, COUNT, ... but not AVG) without experiencing 
conflicts 

•  Aggregation analytical queries become costless single 
row queries 
•  Computing an aggregate simply requires reading the row 

from the aggregate table, thus removing the overhead of 
traditional aggregation analytical queries 
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KiVi – High Availability 

•  Contention free, active-active replication 
•  Takes advantage of transactional scalability 
•  Fail-over: when a storage server fails, the other replicas 

take over and are already up-to-date, yielding zero-
downtime 

•  Novel replication algorithm that avoids expensive 
synchronization (2PC, Paxos) during commit across 
replicas 
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Transactional Scalability 

•  Without data manager/logging to see how much 
TP throughput can be attained 

•  Based on a micro-benchmark to stress the TM 

2.35 Million TPS 
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Highly Scalable Transaction Processing* 

Time 

Processes & 
commits  
transactions 
in parallel 

Provides a 
consistent  
view 

Single-node bottleneck 

Time 

Traditional approach 

vs 

* R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable decentralized and low contention 
transactional processing. Priority date: 11th Nov. 2011. European Patent #EP2780832, US Patent #US9,760,597. 
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Traditional Approach 

Centralized Transaction Manager 

Single-node bottleneck 

Central 
TM 

Atomicity Isolation 

Durability Consistency 
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Traditional Approach 

Centralized Transaction Manager 

Single-node bottleneck 

Central 
TM 

Atomicity Isolation 
Writes 

Durability Isolation 
Reads 
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Scaling ACID Properties 

Atomicity 
Atomicity Atomicity 

Isolation 
Reads 

Durability 

Isolation 
Writes 
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Scaling ACID Properties 

Conflict managers 

Loggers 

Commit 
sequencer 

Snapshot 
server 

Local TMs 

Atomicity 

Isolation 
Reads 

Isolation 
Writes 

Durability 
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Transaction Management Principles 

•  Separation of commit from the visibility of 
committed data 

•  Proactive pre-assignment of commit timestamps to 
committing transactions 

•  Detection and resolution of conflicts before commit 
•  Transactions can commit in parallel because: 

•  They do not conflict 
•  They have their commit timestamp already assigned 

that will determine their serialization order 
•  Visibility is regulated separately to guarantee the 

reading of fully consistent states 
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Snapshot  
Server 

The local txn mng 
gets the “start TS” 
from the snapshot 
server. 

Get start TS 

Local Txn 
Manager 

Transactional Life Cycle: start 
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Local Txn 
Manager 

Get start TS 

Run on start 
TS snapshot 

Conflict 
Manager 

The transaction will read the state 
as of  “start TS”. 
Write-write conflicts are detected by 
conflict managers on the fly. 

Transactional Life Cycle: execution 
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Get start TS 

Run on start 
TS snapshot 

Commit 

The local transaction 
manager orchestrates 
the commit. 

Local Txn 
Manager 

Transaction Life Cycle: commit 
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Data Store 

Commit TS Writeset Writeset Commit TS 

Local Txn 
Manager 

Get 
Commit TS Log Public 

Updates 
Report 

Snaps Serv 

Commit 
Sequencer 

Snapshot  
Server Logger 

Transaction Life Cycle: commit 



31 

TIMESTAMP 11 
TIMESTAMP 15 

TIMESTAMP 12 
TIMESTAMP 14 

TIMESTAMP 13 

Time 

Sequence of commit timestamps received by the Snapshot Server 

Evolution of the current snapshot at the Snapshot Server (staring at 10) 

TIMESTAMP 11 
TIMESTAMP 12 

TIMESTAMP 12 

TIMESTAMP 15 

TIMESTAMP 11 

11 15 12 14 13 

11 11 12 12 15 

Transaction Life Cycle: commit 



    Parallel Polystore Query 
Processing with LeanXcale* 

*B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-Peris, P. Kranas. Parallel 
Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Big Data, 2018. 

Distributed Query Engine 
 

RDB 
Shard 

worker 

Mongo 
Shard 

RDB 
Shard 

Mongo 
Shard 

RDB 
Shard 

Mongo 
Shard 

JavaScript SQL 

worker worker worker 

Polyglot query 
(SQL + JavaScript) 
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Polyglot Query Example 

/* Integration */ 
SELECT T1.x, T2.z 
FROM T1 JOIN T2 
  ON T1.x = T2.x 
 
/* SQL sub-query */ 
T1(x int, y int)@DB1 = 
( SELECT x, y FROM A ) 
 
/* Native sub-query */ 
T2(x int, z string)@DB2 = {* 
  db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} ) 
*} 

N x,	z	

π x,	z	

A 

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

*B. Kolev, C. Bondiombouy, P.Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The CloudMdsQL Multistore System. 
SIGMOD 2016.  

•  A query in CloudMdsQL* that integrates data from 
•  DB1 – relational (RDB) 
•  DB2 – document (MongoDB) 
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Polyglot Query Example 

/* Integration */ 
SELECT T1.x, T2.z 
FROM T1 JOIN T2 
  ON T1.x = T2.x 
 
/* SQL sub-query */ 
T1(x int, y int)@DB1 = 
( SELECT x, y FROM A ) 
 
/* Native sub-query */ 
T2(x int, z string)@DB2 = {* 
  db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} ) 
*} 

N x,	z	

π x,	z	

A 

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

•  CloudMdSQL = SQL + subqueries 
•  Expressed as named tables on ad-hoc schema 
•  Compiled to query sub-plans 
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Parallel Polystore Query Processing 

•  Objectives 
•  Intra-operator parallelism 

•  Apply parallel algorithms 

•  Exploit data sharding in data stores 
•  Access data shards (partitions) in parallel 

•  Polyglot capabilities 
•  Optimization 

•  Select pushdown, bindjoin, etc. 

•  Solution 
•  The LeanXcale Distributed Query Engine (DQE) 

•  … with CloudMdsQL polyglot extensions 
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LeanXcale Polystore Architecture 

•  Workers access directly data shards through wrappers 
•  DataLake API: get list of shards; assign shard to worker 
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Query on LeanXcale and MongoDB 

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

Mongo 
Shard

KVDSMongo 
Shard

KVDSMongo 
Shard

Mongo 
Router

listShards()

db.lineitem.find(…)

LineItem( L_ORDERKEY int, … )@mongo = {* 
  return db.lineitem.findSharded( 
     {l_quantity: {$lt: 5}} );  
*} 
SELECT count(*) FROM LineItem L, Orders O 
WHERE L_ORDERKEY = O_ORDERKEY  
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Performance Evaluation 

•  Clicks: 1TB, 6 billion rows 
•  Orders_Items: 600GB, 3 billion items, 770 million docs 
•  3 selectivity factors on the Clicks table* 

0

100

200

300

400

500

600

SF=0.02% SF=0.2% SF=2% 

Q3 (1.6TB	data)

Spark	SQL LeanXcale	DQE
no	bind	join

LeanXcale	DQE
with	bind	join

* Experiments performed with the previous version of LeanXcale based on HBase 



Research Directions in HTAP 
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Many Research Opportunities 

•  Polyglot SQL 
•  SQL++ compatibility 
•  JSON indexing within columns 

•  Polystore 
•  Cost model, including histograms 
•  Materialized views 

•  Streaming and CEP 
•  Query language combining streaming and access to the database, e.g., 

through SQL or KiVi API 
•  Scientific applications 

•  HTAP + scientific workflows 
•  Analytics and ML 

•  Spark ML using updatable RDDs, instead of redoing RDDs periodically, 
•  Incremental ML algorithms based on online aggregation, scalable updates and 

OLAP queries (as supported by LeanXcale) 
•  Benchmarking 

•  Defining HTAP benchmarks and compare HTAP systems 
•  Profiling HTAP (e.g., LeanXcale and KiVi) to find new optimizations 
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