
Patrick Valduriez

The Case for HTAP
Hybrid Transaction Analytical Processing

Outline

•  Motivations
•  HTAP
•  LeanXcale
•  Parallel polystore query processing
•  Research directions

Motivations

4

Transaction vs. Analytical Processing

•  Problems
•  ETL/ELT development cost up to 75% of analytics
•  Analytical queries on obsolete data

•  Leads to miss business opportunities, e.g., proximity
marketing, real-time pricing, risk monitoring, etc.

Data warehouse/lake
Analytics

ETL/ELT

Operational DB
Transactions

OLTP OLAP

5

Case Study: Banking

•  Data lakes to store historical data
•  Data from mobile devices and the web coming with very high

peaks
•  Use of ML to build predictive models over the historic data
•  Data copied from the data lake into GPU-based clusters to

perform ML

•  Problems
•  During data loading, ML processes must be paused to avoid

observing inconsistent data and thus hurting the ML models
that are being built

•  The ETL process may die without being noticed
•  Yields wrong ML models and a lot of effort to trace back what was

the problem

•  Real-time analytics (e.g. real-time marketing) not possible

6

Case Study: IKEA

•  Objective: proximity marketing
•  Real-time analysis of customer behavior in stores in

order to provide targeted offers
•  Requirements

•  Ingestion of real-time data on customer itineraries in
store (through transactions)

•  Use of beacons (sensors) to identify and locate frequent
customers from their smartphone

•  Analysis and segmentation of customers by similar
behavior in other stores

•  Problem
•  OLTP and OLAP at a very large scale in real time

7

Case Study: Oil & Gas

•  Context: drilling oil in a given location
•  Objective: detect ASAP that the drilling prospection

will fail
•  Save millions of $ by preventing useless drilling

•  Requirements
•  Efficient ingestion of real-time data from drillers

•  With transactions to guarantee data consistency

•  Real time analytics of all the data produced by the
drillers

•  Problem
•  Transactions and real-time analytics on driller data

HTAP

9

HTAP*: blending OLTP & OLAP

•  Advantages
•  Cutting cost of business analytics by up to 75%
•  Simpler architecture: no more ETLs/ELTs
•  Real-time analytical queries on current data

OLTP OLAP

Analytical queries
on operational data

OLTP OLAP HTAP

*Gartner, 2015

10

HTAP and Big Data

•  Challenges
•  Scaling out transactions

•  Millions of transactions per second

•  Mixed OLTP/OLAP workloads on big data
•  Big data ingestion from remote data sources
•  Polystore capabilities

•  To access HDFS, NoSQL and SQL data sources

11

Related Work

•  Parallel SQL DBMS
•  Can mix OLTP/OLAP through snapshot isolation and

data versioning, e.g., Oracle Exadata
•  But hard to scale OLTP and expensive HW/SW

•  In-memory SQL DBMS
•  Can support HTAP (e.g., HANA, MonetDB)
•  But hard to deal with big data

•  NoSQL
•  Scalable key-value storage, data partitioning, fault-

tolerance, …
•  But no ACID transactions

12

HTAP Top Systems

Vendor Product Comment

LeanXcale Inc. LeanXcale Ultra-scalable transactions, based on proprietary
KV store (KiVi) and proprietary OLAP leveraging
the Calcite optimizer

SAP HANA The HTAP pioneer. In-memory, column store

Google Spanner NewSQL service with ACID transactions and
synchronous replication across data centers

MemSQL Inc. MemSQL In-memory, column and row store, MySQL
compatible

Esgyn Esgyn Apache Trafodion for OLTP, Hadoop for OLAP

NuoDB NuoDB Cloud solution (Amazon)

Splice Machine Splice Machine HBase as storage engine, Derby as OLTP query
engine and SparkQL as OLAP query engine.
Custom centralized transactional manager

VoltDB Inc. VoltDB Open source and proprietary. In-memory

Real-Time Big Data
Full SQL Full ACID DB

OLAP over
Operational Data

Ultra-Scalable OLTP

Non-disruptive data migration,
continuous load balancing and

Elastic & Ultra-Efficient
Queries across SQL, HBase, Neo4J,

MongoDB, & Hadoop data lakes
Integration with Data Streaming

Polyglot

LeanXcale

14

•  SQL/JSON DBMS
•  Access from a JDBC driver

•  Key-value store (KiVi)
•  Dual SQL/KV interface over relational data with efficiency,

elasticity, high availability, indexing, …
•  Fast, parallel data ingestion
•  Polystore access: HDFS, NoSQL, …

•  OLAP parallel processing
•  Based on the Apache Calcite optimizer
•  Extensive push down of operators to KiVi

•  Ultra-scalable transaction processing

LeanXcale

15

LeanXcale Distributed Architecture
in

de
pe

nd
en

t s
ca

le
 o

ut

in
de

pe
nd

en
t s

ca
le

 o
ut

KV Store
(KiVi)

KV Master
Server

KV Data
Server

KV Data
Server

KV Data
Server

Query Engine

QE
KVClient

QE
KVClient

QE
KVClient

QE
KVClient

OLAP
Application

App

Elastic Drv

JDBC Drv

App

Elastic Drv

JDBC Drv

Txn Engine Txn Txn Txn

16

KiVi – Efficiency

•  Multi-Workload
•  Efficient for both range queries and large data ingestion

(updates/inserts)
•  Combines benefits of B+ and LSM trees thanks to a novel

proprietary data structure
•  NUMA aware architecture

•  Avoids cost of context switches, thread synchronization and
remote NUMA accesses in multicore processors

•  Vectorial
•  Uses vectorial registers and SIMD instructions, yielding

10-50x acceleration
•  Columnar storage

•  Yields 10-100x acceleration for tables with large number of
columns

17

KiVi – Elasticity

•  Dynamic data migration
•  Able to move data partitions across servers without

affecting the QoS of the applications updating those

•  Dynamic load balancing
•  Balances the load across servers based on the current

load using dynamic data migration
•  Takes into account all resource utilization: CPU,

memory, IO, and network

•  Fully elastic
•  Adds and removes nodes as needed to minimize

resource usage

18

KiVi - Online Aggregation

•  Commutative concurrency control
•  Enables to aggregate data (additions/subtractions) with high

levels of concurrency without conflicts
•  Online aggregation

•  Have an aggregate table
•  WebServer (server, size, nb_users, …)

•  A transaction can insert records and compute aggregations
(SUM, COUNT, ... but not AVG) without experiencing
conflicts

•  Aggregation analytical queries become costless single
row queries
•  Computing an aggregate simply requires reading the row

from the aggregate table, thus removing the overhead of
traditional aggregation analytical queries

19

KiVi – High Availability

•  Contention free, active-active replication
•  Takes advantage of transactional scalability
•  Fail-over: when a storage server fails, the other replicas

take over and are already up-to-date, yielding zero-
downtime

•  Novel replication algorithm that avoids expensive
synchronization (2PC, Paxos) during commit across
replicas

20

Transactional Scalability

•  Without data manager/logging to see how much
TP throughput can be attained

•  Based on a micro-benchmark to stress the TM

2.35 Million TPS

21

Highly Scalable Transaction Processing*

Time

Processes &
commits
transactions
in parallel

Provides a
consistent
view

Single-node bottleneck

Time

Traditional approach

vs

* R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable decentralized and low contention
transactional processing. Priority date: 11th Nov. 2011. European Patent #EP2780832, US Patent #US9,760,597.

22

Traditional Approach

Centralized Transaction Manager

Single-node bottleneck

Central
TM

Atomicity Isolation

Durability Consistency

23

Traditional Approach

Centralized Transaction Manager

Single-node bottleneck

Central
TM

Atomicity Isolation
Writes

Durability Isolation
Reads

24

Scaling ACID Properties

Atomicity
Atomicity Atomicity

Isolation
Reads

Durability

Isolation
Writes

25

Scaling ACID Properties

Conflict managers

Loggers

Commit
sequencer

Snapshot
server

Local TMs

Atomicity

Isolation
Reads

Isolation
Writes

Durability

26

Transaction Management Principles

•  Separation of commit from the visibility of
committed data

•  Proactive pre-assignment of commit timestamps to
committing transactions

•  Detection and resolution of conflicts before commit
•  Transactions can commit in parallel because:

•  They do not conflict
•  They have their commit timestamp already assigned

that will determine their serialization order
•  Visibility is regulated separately to guarantee the

reading of fully consistent states

27

Snapshot
Server

The local txn mng
gets the “start TS”
from the snapshot
server.

Get start TS

Local Txn
Manager

Transactional Life Cycle: start

28

Local Txn
Manager

Get start TS

Run on start
TS snapshot

Conflict
Manager

The transaction will read the state
as of “start TS”.
Write-write conflicts are detected by
conflict managers on the fly.

Transactional Life Cycle: execution

29

Get start TS

Run on start
TS snapshot

Commit

The local transaction
manager orchestrates
the commit.

Local Txn
Manager

Transaction Life Cycle: commit

30

Data Store

Commit TS Writeset Writeset Commit TS

Local Txn
Manager

Get
Commit TS Log Public

Updates
Report

Snaps Serv

Commit
Sequencer

Snapshot
Server Logger

Transaction Life Cycle: commit

31

TIMESTAMP 11
TIMESTAMP 15

TIMESTAMP 12
TIMESTAMP 14

TIMESTAMP 13

Time

Sequence of commit timestamps received by the Snapshot Server

Evolution of the current snapshot at the Snapshot Server (staring at 10)

TIMESTAMP 11
TIMESTAMP 12

TIMESTAMP 12

TIMESTAMP 15

TIMESTAMP 11

11 15 12 14 13

11 11 12 12 15

Transaction Life Cycle: commit

 Parallel Polystore Query
Processing with LeanXcale*

*B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-Peris, P. Kranas. Parallel
Polyglot Query Processing on Heterogeneous Cloud Data Stores with LeanXcale. IEEE Big Data, 2018.

Distributed Query Engine

RDB
Shard

worker

Mongo
Shard

RDB
Shard

Mongo
Shard

RDB
Shard

Mongo
Shard

JavaScript SQL

worker worker worker

Polyglot query
(SQL + JavaScript)

33

Polyglot Query Example

/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

N x,	z	

π x,	z	

A

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

*B. Kolev, C. Bondiombouy, P.Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The CloudMdsQL Multistore System.
SIGMOD 2016.

•  A query in CloudMdsQL* that integrates data from
•  DB1 – relational (RDB)
•  DB2 – document (MongoDB)

34

Polyglot Query Example

/* Integration */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

N x,	z	

π x,	z	

A

π x,	y	
T1@DB1	

(RDB)	

T2@DB2	
(MongoDB)	

@CloudMdsQL	

•  CloudMdSQL = SQL + subqueries
•  Expressed as named tables on ad-hoc schema
•  Compiled to query sub-plans

35

Parallel Polystore Query Processing

•  Objectives
•  Intra-operator parallelism

•  Apply parallel algorithms

•  Exploit data sharding in data stores
•  Access data shards (partitions) in parallel

•  Polyglot capabilities
•  Optimization

•  Select pushdown, bindjoin, etc.

•  Solution
•  The LeanXcale Distributed Query Engine (DQE)

•  … with CloudMdsQL polyglot extensions

36

LeanXcale Polystore Architecture

•  Workers access directly data shards through wrappers
•  DataLake API: get list of shards; assign shard to worker

in
de

pe
nd

en
t s

ca
le

 o
ut

in
de

pe
nd

en
t s

ca
le

 o
ut

External
Data
Store DS

Shard
DS

Shard
DS

Shard

Query Engine

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

QE

Wrapper

DSClient

OLAP
Application App

JDBC Drv

App
JDBC Drv

DataLake API

37

Query on LeanXcale and MongoDB

W1

App

W2

KVDS

Wn

Q1

WR1 WR2 WRn

Mongo
Shard

KVDSMongo
Shard

KVDSMongo
Shard

Mongo
Router

listShards()

db.lineitem.find(…)

LineItem(L_ORDERKEY int, …)@mongo = {*
 return db.lineitem.findSharded(
 {l_quantity: {$lt: 5}});
*}
SELECT count(*) FROM LineItem L, Orders O
WHERE L_ORDERKEY = O_ORDERKEY

38

Performance Evaluation

•  Clicks: 1TB, 6 billion rows
•  Orders_Items: 600GB, 3 billion items, 770 million docs
•  3 selectivity factors on the Clicks table*

0

100

200

300

400

500

600

SF=0.02% SF=0.2% SF=2%

Q3 (1.6TB	data)

Spark	SQL LeanXcale	DQE
no	bind	join

LeanXcale	DQE
with	bind	join

* Experiments performed with the previous version of LeanXcale based on HBase

Research Directions in HTAP

40

Many Research Opportunities

•  Polyglot SQL
•  SQL++ compatibility
•  JSON indexing within columns

•  Polystore
•  Cost model, including histograms
•  Materialized views

•  Streaming and CEP
•  Query language combining streaming and access to the database, e.g.,

through SQL or KiVi API
•  Scientific applications

•  HTAP + scientific workflows
•  Analytics and ML

•  Spark ML using updatable RDDs, instead of redoing RDDs periodically,
•  Incremental ML algorithms based on online aggregation, scalable updates and

OLAP queries (as supported by LeanXcale)
•  Benchmarking

•  Defining HTAP benchmarks and compare HTAP systems
•  Profiling HTAP (e.g., LeanXcale and KiVi) to find new optimizations

41

References

1.  B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Vilaça, R. Gonçalves, R. Jiménez-
Peris, P. Kranas. Parallel Polyglot Query Processing on Heterogeneous Cloud Data
Stores with LeanXcale. IEEE Big Data, 2018.

2.  B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J. Pereira.
CloudMdsQL: Querying Heterogeneous Cloud Data Stores with a Common Language.
Distributed and Parallel Databases, 34(4): 463-503, 2016.

3.  B. Kolev, C. Bondiombouy, O. Levchenko, P.Valduriez, R. Jiménez-Peris, R. Pau, J.
Pereira. Design and Implementation of the CloudMdsQL Multistore System. CLOSER
2016.

4.  B. Kolev, C. Bondiombouy, P.Valduriez, R. Jiménez-Peris, R. Pau, J. Pereira. The
CloudMdsQL Multistore System. ACM SIGMOD 2016.

5.  B. Kolev, R. Pau, O. Levchenko, P. Valduriez, R. Jiménez-Peris, J.
Pereira. Benchmarking polystores: The CloudMdsQL experience. Workshop on
Methods to Manage Heterogeneous Big Data and Polystore Databases, IEEE
BigData, 2016.

6.  R. Jimenez-Peris, M. Patiño-Martinez. System and method for highly scalable
decentralized and low contention transactional processing. Filed at USPTO: 2011.
European Patent #EP2780832, US Patent #US9,760,597.

