
Distributed Data Management in
2020?

Patrick Valduriez

INRIA & LIRMM

1

1

1

Montpellier, France

DEXA, Toulouse, August 30, 2011

Basis for this Talk

T. Özsu and P. Valduriez. Principles of Distributed
Database Systems – Third Edition. Springer, 2011

T. Özsu, P. Valduriez, S. Abiteboul, B. Kemme, R. Jiménez-
Peris, and B. Chin Ooi. Distributed data management in
2020? ICDE Panel, April 2011

2

2

2

2020? ICDE Panel, April 2011

And some cool time at UCSB to get ready, summer 2011,
with A. El Abbadi and D. Agrawal’s group

Distributed Data Management: brief history

1980’s: client server and distributed relational database
technology
• all commercial DBMSs today are distributed.

1990’s: maturation of client-server technology and parallel
DBMS, introduction of object-orientation

3

3

3

DBMS, introduction of object-orientation

2000’s: data integration, database clusters, Web and XML
data management, P2P systems, stream data
management, and cloud data management

Principles of Distributed Database Systems

First edition, Prentice Hall, 1991, 560 pages
• Relational data distribution: principles and

techniques

Second edition, Pearson, 1999, 660 pages
• Client-server, parallel DB, object systems

4

4

4

• Client-server, parallel DB, object systems

Third edition, Springer, 2011, 850 pages
• Replication, data integration, MDB QP, DB

clusters, P2P, Web and XML, data streams,
cloud

Main Question

Now, the question is:

What is likely to happen in the next decade?

Or to put it differently, if there were to be a fourth edition of
our book in 2020, what would it be? what would be new?

5

5

5

Optional: how many pages for the fourth edition?

Observations wrt. the Last 20 Years

1. The fundamental principles of distributed data
management have hold, and distributed data
management can be still characterized on the three
dimensions of the earlier editions
• Distribution, heterogeneity, autonomy

6

6

6

2. What has changed much is the scale of the dimensions:
very large scale distribution (cluster, P2P, web and
cloud); very high heterogeneity (web); very high
autonomy (web and P2P)

3. New techniques and algorithms could be presented as
extensions of earlier material, using relational concepts

Acceleration of Changes

New data-intensive applications
• E.g. social networks, web data analytics, scientific apps, data

streams

With different kinds of data
• Very large, complex, unstructured, semi-structured,

heterogeneous, etc. and highly distributed

7

7

7

heterogeneous, etc. and highly distributed

New data management technologies
• New file systems: GFS, HDFS, …
• NOSQL DBMS and key-value stores: Amazon SimpleDB, Amazon

Dynamo, Google Base, Google Bigtable, Yahoo Pnuts, UCSB
ElasTraS, etc.

• New parallel programming frameworks: MapReduce, Pregel
• And new architectures, e.g. MapReduce/GFS

Key Questions

1. What are the fundamental principles behind the emerging
solutions?

2. Is there any generic architectural model to explain those
principles?

3. Do we need new foundations to look at data distribution?

8

8

8

3. Do we need new foundations to look at data distribution?

Outline of the Talk

Principles of distributed data management

New challenges for distributed data management
• Cloud computing
• e-Science

Emerging solutions

9

9

9

Emerging solutions

Conclusion

Note: some topics are subject to much POLEMICS

Principles of Distributed Data
Management

10

10

10

Fundamental Principle: Data Independence

Provision for high-level
services
• Schema

Application Application

Enables hiding implementation details

11

• Schema
• Queries (SQL, XQuery)
• Automatic optimization
• Transactions
• Consistency
• Access control
• …

Logical view

(schema)

Storage Storage

Distributed Database – System View

DBMS

Software

DBMS

Software

User
Query

User
Application

12

Network

DBMS

Software

User
ApplicationUser

Query
DBMS

Software

DBMS

Software

User
Query

Distributed Database – User View (1991)

13

Distributed Database – User View (2011)

14

Principles of Distributed Data Management

Set-oriented data (relational tables)
• Fragmentation: the basis for distributed and parallel processing

High-level languages (calculus, algebra)
• The basis for data independence
• Programmer productivity, automatic optimization and tuning

15

15

15

Data consistency
• ACID transactions: atomicity, integrity control, concurrency control,

reliability

Data semantics (schemas, integrity constraints, taxonomies,
folksonomies, ontologies, …)
• To improve information retrieval and automate data integration

Horizontal Fragmentation

PROJ1 : projects with budgets less
than $200,000

PROJ2 : projects with budgets greater
than or equal to $200,000

PROJ PROJ

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

16

PROJ1

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

P4 Maintenance 310000 Paris

P5 CAD/CAM 500000 Boston

PNO PNAME LOC

P1 Instrumentation 150000 Montreal

P2 Database Develop. 135000 New York

BUDGET

PROJ2

Basis for distributed database design, data integration
(LAV/GAV), data partitioning in parallel DBMS and
key-value stores, etc.

Vertical Fragmentation

PROJ1: information about
project budgets

PROJ2: information about
project names and
locations

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

17

locations

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000
P5 500000

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris
P5 CAD/CAM Boston

PROJ1 PROJ2

Basis for column-store DBMS

Distributed Database System

Provides distribution transparency
• Global schema

– Common data descriptions
– Data placement information

• Centralized admin. through global
catalog

Distributed

Database

Queries, Transactions

Site 1

18

catalog
• Distributed functions

– Schema mapping
– Query processing
– Transaction management
– Access control
– Etc.

Database

System

DBMS1 DBMS2

Site 3Site 2

DDBS Architectures

Distributed DBMS (DDBMS)
• Homogeneity: same DBMS, same middleware
• P2P components: each node has same functionality

– Issue query, execute transaction, etc.
• Full DBMS functionality

19

19

19

• Full DBMS functionality
• Used by Parallel DBMS and (modern) P2P DBMS
• C/S DBMS as a simpler alternative

Multidatabase System (MDBMS)
• Strong heterogeneity and autonomy of data sources

(files, databases, XML documents, ..)
• Limited DBMS functionality (queries)
• Used by data integration systems (Mediator/Wrapper)

Scaling up DDBS

Homogeneity of system components makes it
easier to scale up in numbers of nodes
• Thousands in PDBMS, Millions in P2P
• High-performance in local networks

Data source heterogeneity and autonomy makes it

20

20

20

Data source heterogeneity and autonomy makes it
hard
• But critical for Web data integration with thousands of

data sources
• Solution: restrict functionality (simple read-only

queries)

Shared-disk vs Shared-nothing in PDBMS

M

P ………… P

M

P ………… PM

P ………… P

M

P ………… P

21

21

21

• Requires complex data
partitioning

• Needs 2PC
• Can scale to VLDB
• Well adapted for OLAP

• Requires distributed cache
coherency

• Simple for admins
• Can scale well
• Well adapted for OLTP

Typical approach separates OLTP and OLAP
• Notable exception: Oracle, using multiversions

Dimensions of the Problem (1991)

Distribution

MDBMS

DDBMS and PDBMS

22

Heterogeneity

Autonomy

C/S DBMS

New Challenges for Distributed Data
Management

23

23

23

New Distributed Data-intensive Applications

Spurred by the pervasiveness of the web, as well as recent
advents in high-speed networks, fast commodity hardware
• Sensors, i-appliances, smartcards, multicores, flash memories,

etc.

Data is more and more distributed
•

24

24

24

• Cloud computing
• Scientific applications
• Personal dataspaces (social networks, webmail, blogs, etc.)
• Computer games, data streams, etc.
• Not to forget corporate apps

– Need to scale out
– Need data integration, search engines, etc.

Cloud Computing: a new paradigm?

The vision
• On demand, reliable services provided over the Internet (the

“cloud”) with easy access to virtually infinite computing, storage
and networking resources

Simple and effective!
• Through simple Web interfaces, users can outsource complex

tasks

25

25

25

• Through simple Web interfaces, users can outsource complex
tasks

– Data mgt, system administration, application deployment
• The complexity of managing the infrastructure gets shifted from

the users' organization to the cloud provider

Capitalizes on previous computing models
• Web services, utility computing, cluster computing, virtualization,

grid computing

Cloud Benefits

Reduced cost
• Customer side: the IT infrastructure needs not be owned and

managed, and billed only based on resource consumption
• Cloud provider side: by sharing costs for multiple customers,

reduces its cost of ownership and operation to the minimum

Ease of access and use
• Customers can have access to IT services anytime, from anywhere

26

26

26

• Customers can have access to IT services anytime, from anywhere
with an Internet connection

Quality of Service (QoS)
• The operation of the IT infrastructure by a specialized, experienced

provider (including with its own infrastructure) increases QoS

Elasticity
• Easy for customers to deal with sudden increases in loads by

simply creating more virtual machines (VMs)

Barrier to Entry: Security and Privacy

Current solutions
• Internal (or private) cloud as opposed to public cloud : the

use of cloud technologies but in a private network behind a
firewall

– Much tighter security
– But reduced cost advantage because the infrastructure is not

shared with other customers (as in public cloud)

27

27

27

– Compromise: hybrid cloud (internal cloud for OLTP + public cloud
for OLAP)

• Virtual private cloud: Virtual Private Network (VPN) within a
public cloud with security services

– Promise of a similar level of security as an internal cloud and tighter
integration with internal cloud security

– But such security integration is complex

Much room for innovation

OLAP vs OLTP in the Cloud

OLTP
• Operational databases of

average sizes (TB), write-
intensive

• ACID transactions, strong data
protection, response time

OLAP
• Historical databases of

very large sizes (PB),
read-intensive

• Relaxed ACID properties
• Shared-nothing clusters of

28

28

28

protection, response time
guarantees

• Shared-disk multiprocessors
preferred

– Notable exception: Tandem
NonStopSQL in the 1980s

• Corporate data gets stored at
untrusted host

• Shared-nothing clusters of
commodity servers cost-
effective

• Sensitive data can be
hidden (anonymized) in
the cloud

OLAP easier, but OLTP doable
• e.g. UCSB ElasTraS, MS SQL Azure, MIT Relational Cloud

Grid Architecture

User 1 User 2

reserve
deploy
run

store
clean

reserve
store

WS calls

• Access through Web
services to distributed,
heterogeneous resources

– supercomputers, clusters,
databases, etc.

• For Virtual Organizations
– which share the same

29

29

29

Cluster 1
Service Compute
nodes nodes

Cluster 2
Service Compute
nodes nodes

Cluster 3
Service Storage
nodes nodes

run
clean WS calls

MPI calls
WS calls

WS calls

resources, with common
rules and access rights

• Grid middleware
– security, database,

provisioning, job
scheduling, workflow
management, etc.

Cloud Architecture

User 1 User 2

Create VMs
start VMs
terminate

reserve
store
pay

• Like grid, access to
resources using Web
services

– But less distribution,
more homogeneity,
and bigger clusters

• For different

30

30

30

Cluster 1
Service Compute Storage
nodes nodes nodes

terminate
pay

WS calls

Cluster 2
Service Compute Storage
nodes nodes nodes

pay
• For different

customers
– Including individuals

• Replication across
sites for high
availability

• Scalability, SLA,
accounting and pricing
essential

Cloud Data Management Problem

Cloud data
• Very large (lots of dataspaces, very large collections, multimedia,

etc.)
• Complex, unstructured or semi-structured
• Heterogeneous
• Often schemaless but metadata (tags, …)

31

31

31

• Often schemaless but metadata (tags, …)
• Typically append-only (with rare updates)

Cloud users and application developers
• In very high numbers
• With very diverse expertise but very little DBMS expertise

Scientific Applications

Modern science such as agronomy, bio-informatics, physics
and environmental science must deal with overwhelming
amounts of experimental data produced through empirical
observation and simulation

Such data must be processed (cleaned, transformed,

32

32

32

Such data must be processed (cleaned, transformed,
analyzed) in all kinds of ways in order to draw new
conclusions, prove scientific theories and produce
knowledge

Scientific Data – hard problems
Massive scale

• Constant progress in scientific observational instruments (e.g.
satellites, sensors, large hadron collider) and simulation tools
creates a huge data overload.

• For example, climate modeling data are growing so fast that they
will lead to collections of hundreds of exabytes expected by 2020

Complexity
• Because of heterogeneous methods used for producing data and

33

33

33

• Because of heterogeneous methods used for producing data and
the inherently multi-scale nature of many sciences, resulting in data
with hundreds (or thousands) of attributes or dimensions, making
data analysis very hard

Heterogeneity
• Modern science research is a highly collaborative process, involving

scientists from different disciplines (e.g. biologists, soil scientists,
and geologists working on an environmental project) and
organizations

• Each discipline or organization tends to produce and manage its
own data, in specific formats, with its own processes, making data
integration very hard

Scientific Data – common features

● Massive scale, complexity and heterogeneity

● Manipulated through complex, distributed workflows

● Important metadata about experiments and their
provenance

34

34

34

● Heterogeneous schemas and ontologies

● Mostly append-only (with rare updates)

Scientific Data Management Problem

Current solutions
• Typically file-based, application-specific (ad hoc) and low-level
• Deployed in large-scale HPC environments

• Cluster, grid, cloud

Problem
• Labor-intensive (development, maintenance)

35

35

35

• Labor-intensive (development, maintenance)
• Cannot scale (hard to optimize disk access)
• Cannot keep pace (the data overload will just make it worse)

“Scientists are spending most of their time manipulating, organizing,
finding and moving data, instead of researching. And it’s going to
get worse” (DoE Office of Science Data Management Challenge)

Emerging Solutions

36

36

36

Data cloud

Dimensions of the problem (2011)
Distribution

MDBMS
Data integration

DDBMS

Data grid
P2P DBMS

37

Heterogeneity

Autonomy

Data integration
systemsC/S DBMS

Why not RDBMS?

RDBMS all have a distributed and parallel version
• With SQL support for all kinds of data (structured, XML, multimedia,

streams, etc.)
• Standard SQL a major argument for adoption by tool vendors (e.g.

analytics, business intelligence)

But the “one size fits all” approach has reached the limits
• Loss of performance, simplicity and flexibility for applications with

38

38

38

• Loss of performance, simplicity and flexibility for applications with
specific, tight requirements

• New specialized DBMS engines more efficient: column-oriented
DBMS for OLAP, DSMS for stream processing, SciDB for scientific
analytics, etc.

RDBMS provide both
• Too much: ACID transactions, complex query language, lots of tuning

knobs
• Too little: specific optimizations for OLAP, flexible programming

model, flexible schema, scalability

Generic vs Specific

RDBMS Specific

39

39

39

Emerging solutions trade data independence and
consistency for scalability, flexibility and performance

Generic vs Specific

How to provide application-specific optimizations in a
generic fashion?
• For instance, to perform scientific data analysis efficiently,

scientists typically resort to dedicated indexes, compression
techniques and specific in-memory algorithms

• Generic DB-like techniques should be able to cope with these

40

40

40

• Generic DB-like techniques should be able to cope with these
specific techniques

One way to do this is through user-defined functions
• MapReduce allows user-defined functions (map and reduce)
• Pig latin raises the level of abstraction with an algebraic query

language

Examples of Emerging Solutions

Bigtable

MapReduce

Algebraic approach for scientific workflows

41

41

41

Bigtable

Key-value storage system from Google for a shared-nothing
cluster
• Uses a distributed file system (GFS) for structured data, with

fault-tolerance and availability

Used by popular Google applications
• Google Earth, Google Analytics, Google+, etc.

42

42

42

• Google Earth, Google Analytics, Google+, etc.

The basis for popular Open Source implementations
• Hadoop Hbase on top of HDFS (Apache & Yahoo)

Specific data model that combines aspects of row-store and
column-store DBMS
• Rows with multi-valued, timestamped attributes

– A Bigtable is defined as a multidimensional map, indexed by a row
key, a column key and a timestamp, each cell of the map being a
single value (a string)

A Bigtable Row

Row key Contents: Anchor: Language:

"google.com"

"Google"

"<html> … <\html>""com.google.www" "english"

"<html> … <\html>"

inria.fr

t5

t1t2

t3

t1

Row unique id Column family Column key

43

43

43

"google.com"

"<html> … <\html>" t5

t4

uwaterloo.ca

Can be represented as a special kind of nested tuple

Bigtable’s Principles

Basic API for defining and manipulating tables, within a
programming language such as C++
• Simple algebraic operators
• And no “impedance mismatch” (like with OODB)

– A major incentive for developers

Transactional atomicity for single row updates only

44

44

44

Transactional atomicity for single row updates only

Key-value storage by range partitioning of a table (as tablets) on
the row key
• Partitioning is dynamic, starting with one tablet (the entire table range)

which is subsequently split into multiple tablets as the table grows
• Efficient implementation of tablets:

– Compression of column families, grouping of column families with high
locality of access, aggressive caching of metadata information by clients

MapReduce

Parallel programming framework from Google for data analysis of
very large data sets
• Highly dynamic, irregular, schemaless, etc.
• SQL or Xquery too heavy
• Typical usage: computing an inverted index for a set of documents,

counting URL access frequencies in Web logs, computing a reverse
Web-link graph, etc.

45

45

45

Web-link graph, etc.

Simple functional programming model
• Data structured as (key, value) pairs

– E.g. (doc-id, content), (word, count), etc.
• Only two functions to be given:

– Map(k1,v1) -> list(k2,v2)
– Reduce(k2, list (v2)) –> list(v3)

Implemented on GFS on very large clusters
• Provides high fault-tolerance

MapReduce Example

EMP (ENAME, TITLE, CITY)

Query: for each city, return the number of employees whose name is "Smith"

SELECT CITY, COUNT(*)

FROM EMP

WHERE ENAME LIKE "\%Smith"

GROUP BY CITY

46

46

46

GROUP BY CITY

With MapReduce

Map (Input (TID,emp), Output: (CITY,1))

if emp.ENAME like "%Smith" return (CITY,1)

Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))

return (CITY,SUM(1*))

MapReduce Processing

Map
(k1,v)

(k2,v)

Map
(k2,v)

(k2,v)

Map (k1,v)

(k1,(v,v,v)) Reduce
Group

by k

In
p

u
t

d
a

ta
 s

e
t

O
u

tp
u

t
d

a
ta

 s
e

t

47

47

47

…
Group

by k

Map
(k1,v)

(k2,v)

(k2,(v,v,v,v)) ReduceIn
p

u
t

d
a

ta
 s

e
t

O
u

tp
u

t
d

a
ta

 s
e

t

Principle: independent parallelism through hash
partitioning

MapReduce vs PDBMS

[Pavlo et al. SIGMOD09]: Hadoop MapReduce vs two parallel
DBMS (one row-store DBMS and one column-store DBMS)
• Benchmark queries: a grep query, an aggregation query with a group

by clause on a Web log, and a complex join of two tables with
aggregation and filtering

• Once the data has been loaded, the DBMS are significantly faster, but
loading is much time consuming for the DBMS

• Suggest that MapReduce is less efficient than DBMS because it

48

48

48

• Suggest that MapReduce is less efficient than DBMS because it
performs repetitive format parsing and does not exploit pipelining and
indices

[Dean and Ghemawat, CACM10]
• Make the difference between the MapReduce model and its

implementation which could be well improved, e.g. by exploiting
indices

[Stonebraker et al. CACM10]
• Argues that MapReduce and parallel DBMS are complementary as

MapReduce could be used to extract-transform-load data in a DBMS
for more complex OLAP

Algebraic Approach for Scientific Workflows
Data-centric scientific workflows

• Typically complex and manipulating many large datasets
• Computationally-intensive and data-intensive activities, thus requiring

execution in large-scale parallel computers

However, parallelization of scientific workflows remains low-level, ad-hoc
and labor-intensive, which makes it hard to exploit optimization
opportunities

App. Example in deepwater oil exploitation (joint work with UFRJ and

49

49

49

App. Example in deepwater oil exploitation (joint work with UFRJ and
Petrobras)
• Pumping oil from ultra-deepwater from thousand meters up to the surface

through risers
• Maintaining and repairing risers under deep water is difficult, costly and critical

for the environment (e.g. to prevent oil spill)
• Problem: risers fatigue analysis (RFA) requires a complex workflow of data-

intensive activities which may take a very long time to compute

Solution: an algebraic approach (inspired by relational algebra) and a
parallel execution model that enable automatic parallelization of
scientific workflows
• E. Ogasarawa, J. Dias, D. Oliveira, F. Porto, P. Valduriez, M. Mattoso. An

Algebraic Approach for Data-Centric Scientific Workflows. VLDB 2011

RFA Workflow Example

A typical RFA workflow
• Input: 1,000 files (about

600MB) containing riser
information, such as finite
element meshes, winds, waves
and sea currents, and case
studies

• Output: 6,000 files (about
37GB)

Some activities, e.g. dynamic

50

50

50

Some activities, e.g. dynamic
analysis, are repeated for
many different input files, and
depending on the mesh
refinements and other riser's
information, each single
execution may take hours to
complete

The sequential execution of the
workflow, on a SGI Altix ICE
8200 (64 CPUs Quad Core)
cluster, may take as long as
37 hours

Algebraic Approach

Activities consume and produce relations
• E.g. dynamic analysis consumes tuples, with input parameters

and references to input files and produces tuples, with
analysis results and references to output files

Operators that provide semantics to activities

51

51

51

Operators that provide semantics to activities
• Operators that invoke user programs (map, splitmap, reduce, filter)
• Relational expressions: SRQuery, Join Query

Algebraic transformation rules for optimization and parallelization

An execution model for this algebra based on self-contained
units of activity activation
• Inspired by tuple activations for hierarchical parallel

systems[Bouganim, Florescu & Valduriez, VLDB 1996]

Conclusion

52

52

52

What are the fundamental principles behind
the emerging solutions?

Variations of the relational model
• Key-value stores

As well as specific data models
• Arrays, graphs, sequences, etc.

Simple API or algebraic language for manipulating data from a
programming language

53

53

53

programming language
• No impedance mismatch
• Comeback of OODB or DBPL?

Relaxed consistency guarantees
• Stronger consistency doable, but at the expense of much more

complex code
– Isn’t ACID simpler for developers?

Hash and range partitioning for parallelism

Replication for fault-tolerance

Is there any generic architectural model to
explain those principles?

The three main dimensions (distribution, autonomy,
heterogeneity) remain
• Yet pushing the scales high up

But we need more dimensions to capture important
architectural aspects

54

54

54

architectural aspects
• Generic vs specific
• Dynamic distribution and partitioning for elasticity
• Others?

Do we need new foundations to look at data
distribution?

The hardest question, when put in context
• Data -> information -> knowledge

To deal with very distributed data (e.g. personal
dataspaces), data semantics and knowledge are
important

55

55

55

important
• Uniform treatment of data, metadata, ontologies, access

control, localization of information, trust, provenance, etc.

Is Datalog making a comeback?
• BOOM’s Overlog at UCB (Hellerstein et al.)
• WebDamLog at INRIA (Abiteboul et al.)

