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Data-intensive science 

•  Increasingly, scientific breakthroughs will be 
powered by advanced computing capabilities 
that help researchers manipulate and explore 
these massive datasets  

•  Modern science such as astronomy, 
biology and computational 
engineering must deal with 
overwhelming amounts of data 
•  Generated by sensors, scientific 

instruments or HPC simulation 

Jim Gray 
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From Data to Knowledge 
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The major challenge 
“Scientists are spending most of their time 
manipulating, organizing, finding and moving 
data, instead of researching. And it’s going to get 
worse” 

 
The Office Science Data Management Challenge 

USA DoE 2004 
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New Paradigms for Scientists 

Exponential data growth 
Distributed data sources 
Petabytes, Exabytes 

Data 
collection 

Analysis 
Discovery 

New analysis paradigm 
Data federations 
Move analysis to data 

New publishing paradigm 
Scientists are publishers 
and curators 

Publishing 

Source: Jim Gray (ACM Turing Award) 
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Science Data Sharing 

•  Scientific databases 
•  Astronomy (SkyServer), Biology (GenBank), etc. 

•  Web portals 
•  HAL, GoogleScholar, DBLP, data.gouv.fr, AgroPortal, … 

•  Data storage & computing platforms 
•  GENCI, LHC Computing Grid, Grid5000, PlanetLab, etc. 

•  Open science 
•  Data papers 
•  Overlay journals, e.g. episcience.org 
•  Crowdsourcing platforms, e.g. GalaxyZoo, Telabotanica 
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Impact on Scientific Practice 

•  Example in climate change 
•  97% of the papers in climate change research conclude 

that global warming is real 
•  But what about those 3% of papers that reach 

contrary conclusions? 
•  Answer 

•  Learning from Mistakes in Climate Research. R.E. 
Benestad, et al. Theoretical and Applied Climatology 
126: 699 (2016)  

•  By the team of Katharine Hayhoe, director of the 
Climate Science Center at Texas Tech University 
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The Story 

•  The team tried to replicate the results of those 3% of 
sceptic papers 
•  Looked at the 38 papers published in peer-reviewed journals 

in the last decade that denied global warming 
•  Findings 

•  Every single one had an error, in their assumptions, 
methodology, or analysis 

•  Many had cherry-picked the results that conveniently 
supported their conclusion, while ignoring other data 

•  Conclusion 
•  Using the papers' data and after corrections of the errors, the 

results not only contradict the original papers but do support 
that global warming is real 
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Some Scientific Applications 
Domain Data Examples Partners Contributions 
Audio 
heritage 

Audio & 
music 
recordings 

Abbey Road,  
Musée de 
l'Homme 

Music demixing 
Deep learning with time 
series 

Agronomy – 
plant biology 

Plant images, 
spatial data 

CIRAD, INRA Plant growth modeling and 
simulation with scientific 
workflows 

Aircraft 
mechanic 

Sensor data, 
continuous 
data 

Florent, Reza Safran Indexing and querying of 
time series 

Astronomy Spatial data, 
geometrical 
forms 

 
Einstein 
Galaxy 
core 

LNCC Analysis of  geometrical 
patterns with constellation 
queries 

Biodiversity 
- botany 

Plant images, 
descriptors, 
annotations 

CIRAD, INRA, 
IRD, 
Telabotanica 

Plant identification 
Crowd-sourced data 
production  

Geoscience 
– oil & gas 

Spatial data, 
measure-
ments 

 
3D 
Soil 
area 

 

LNCC, UFRJ, 
Petrobras, 
Repsol, Total 

Simulation data analysis 
PDF computation 



10 

Some Scientific Applications 
Domain Data Examples Partners Contributions 
Audio 
heritage 

Audio & 
music 
recordings 

Abbey Road,  
Musée de 
l'Homme 

Music demixing 
Deep learning with time 
series 

Agronomy – 
plant biology 

Plant images, 
spatial data 

CIRAD, INRA Plant growth modeling and 
simulation with scientific 
workflows 

Aircraft 
mechanic 

Sensor data, 
continuous 
data 

Florent, Reza Safran Indexing and querying of 
time series 

Astronomy Spatial data, 
geometrical 
forms 

 
Einstein 
Galaxy 
core 

LNCC Analysis of  geometrical 
patterns with constellation 
queries 

Biodiversity 
- botany 

Plant images, 
descriptors, 
annotations 

CIRAD, INRA, 
IRD, 
Telabotanica 

Plant identification 
Crowd-sourced data 
production  

Geoscience 
– oil & gas 

Spatial data, 
measure-
ments 

 
3D 
Soil 
area 

 

LNCC, UFRJ, 
Petrobras, 
Repsol, Total 

Simulation data analysis 
PDF computation 

Spotlight 
in a moment 
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Scientific Data – common features 

●  Big data 
●  Lots of data (both structured and unstructured) 
● Complex: multiscale, many dimensions, uncertainty 
● Heterogeneous: different formats, specific processes 

●  Processed through complex workflows 
●  Important metadata about experiments and their 

provenance 
●  Requires strong domain expertise 
● High-consequence interpretation errors 
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Approach 

•  Principles of distributed data management 
•  Declarative languages, optimization, caching, indexing 
•  Distributed and parallel data processing 

•  Highly distributed environments 
•  HPC, cluster and cloud for scalability and performance 

•  Data science 
•  Machine learning, statistics and data mining for high-

dimensional data processing and analytics 
•  Extensive validation 

•  By building high-quality software 
•  Using real or synthetic datasets from application partners 
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Zoom on  
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Context: seismic interpretation 
•  Goal 

•  Identify the different soil layers, e.g. oil reservoir, in an 
underground 3D area 

•  Observed data 
•  From soil instruments that send signals to the 

underground and get back signals 
•  Signals may have errors (noise) 

•  Solution 
•  Uncertainty Quantification of the observed data using 

multiple simulations, with different parameters 
•  Simulation data correspond to meshes that represent 3D 

soil areas 

 
Real world 

region 

Mesh 
(set of slices) 
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Simulation Data 

•  One point in the cube area may 
correspond to different values in 
the spatial data sets 
•  E.g. 3 values per point (see above) 

•  The set of values at a point may 
have four distribution types 

4 types of frequency per 
value distribution of a point 

Layer Vp (m/s) 
1 1612.92  
2 1614.08 
3 1934.35 
4 2219.71 
5 2115.55 
6 2230.95 
7 2141.95 
8 2253.41 
9 2512.06 

10 2542.22 
11 2641.03 
12 3199.31 
13 3152.35 
14 3742.28 
15 3669.22 
16 4010.00 

Simulation 
(Matlab) 

Layer Vp (m/s) 
1 1612.92  
2 1614.08 
3 1934.35 
4 2219.71 
5 2115.55 
6 2230.95 
7 2141.95 
8 2253.41 
9 2512.06 

10 2542.22 
11 2641.03 
12 3199.31 
13 3152.35 
14 3742.28 
15 3669.22 
16 4010.00 

Layer Vp (m/s) 
1 1612.92  
2 1614.08 
3 1934.35 
4 2219.71 
5 2115.55 
6 2230.95 
7 2141.95 
8 2253.41 
9 2512.06 

10 2542.22 
11 2641.03 
12 3199.31 
13 3152.35 
14 3742.28 
15 3669.22 
16 4010.00 

Parameter 
data sets 

Spatial 
data sets 
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Probability Density Function (PDF)  

•  To quantify the error between the simulated data 
and the observed values, we calculate a PDF  
•  A curve, with a distribution type and parameters 

•  Error = the difference between the PDF and the 
set of simulated values V 
•  Computed by comparing the probability of the values in 

different intervals in V and the probability computed 
according to the PDF 

•  We need to calculate the PDF of each point per 
slice of the cube 
•  Takes much time, e.g. days to process 2.4 TB data for 

an area of 10km (distance) * 10km (depth) * 5km 
(width) 
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Approach with Spark 

•  Load the simulation data from 
NFS to a Spark cluster 
•  Each point's values distributed 

at different nodes 

•  Parallel execution of different 
points 
•  External programs (Java and R) 

to generate PDF of each point 

•  Optimizations 
•  Aggregation of different points 

and reuse of results 
•  Machine learning (decision tree) 

to predict distribution 
•  Sampling and point aggregation 

to predict the distribution 

Simulation 
Data … 

@ RDD 

Pi,j = {µ, σ, v1, v2, …, vn} 

NFS 

 
 

Node 1 

 
 

Node 2 

 
 

Node n 
… 

Pi,j Pi,j Pi,j 
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Results 

•  Validation with big simulation data (2.35 Terabytes) 
•  Ji Liu, Noel Lemus, Esther Pacitti, Fabio Porto, Patrick Valduriez. Parallel 

Computation of PDFs on Big Spatial Data Using Spark, DAPD, 38 p, 2019. 

•  Experimental setting 
•  Data from HPC4e benchmark 
•  10K simulations, which generate 

10K values per point 
•  Grid5000 cluster with 60 16-core 

nodes 

•  Experimental results 
•  Linear scalability 
•  Major performance improvement  

•  Aggregation + ML up to 33 
•  From 4 hours (base line) down to 

15mn (best method) 

Data loading 

Number of nodes 

Ex
ec

ut
io

n 
tim

e 
(s

) 
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