
CloudMdsQL: Querying Heterogeneous
Cloud Data Stores

Patrick Valduriez
Inria, Montpellier, France

Joint work with Boyan Kolev (Inria), Ricardo Jimenez-Peris (U.

Madrid), Norbert Martínez-Bazan (Sparcity), Jose Pereira (INESC)

2

Big Data Landscape

Easy to get lost
Many diverse solutions

No standard
Keeps changing

3

General Problem We Address

User
Application

NoSQL
DB1

NoSQL
DB2

Query
SQL
DB3 ?

Client
Application

(e.g. in Java)

•  Very complex, ad-hoc development
•  Querying different databases
•  Managing intermediate results
•  Delivering (e.g. sorting) the final results

•  Hard to extend
•  What if a new SQL DB appears?

4

Outline

•  The CoherentPaaS IP project
•  Related work and background
•  CloudMdsQL objectives
•  Design decisions
•  Data model
•  Query language
•  Query rewriting
•  Validation

5

CoherentPaaS
FP7 IP project
(2013-2016, 6 M€)

6

Related Work

•  Multidatabase systems (or federated
database systems)
•  A few databases (e.g. less than 10)

•  Corporate DBs

•  Powerful queries (with updates and
transactions)

•  Web data integration systems
•  Many data sources (e.g. 1000’s)

•  DBs or files behind a web server

•  Simple queries (read-only)

•  Mediator/wrapper architecture

7

Background: DB query processing

Query engine

Query

Query Processor

Compilation
& optimization

Query plan
(an operator tree)

Query (declarative):
-  What information do we want
-  What tables provide the data

Query plan:
-  How operations are performed
-  How data is accessed

Execution Engine

Operators execution

Access methods & indexes

Buffer & disk management

Result

8

CoherentPaaS Query Engine

Query engine

User
Application

JDBC
Client

Query
Mediator

Query
Processor

Execution
Engine

Wrapper
DB1

Wrapper
DB2

Table
Store

Connector

DB1

DB2

Table
Store

CloudMdsQL
Query

9

CloudMdsQL Objectives

•  Design an SQL-like query language to query
multiple databases (SQL, NoSQL) in a cloud
•  Autonomous databases

•  This is different from recent multistore systems (no autonomy)

•  Design a query engine for that language
•  Query processor

•  To produce an efficient execution plan

•  Execution engine
•  To run the query, by calling the data stores and integrating the

results

•  Validate with a prototype
•  With multiple data stores: MonetDB, Sparksee,

MongoDB, Derby, Hbase, etc.

10

Issues

•  No standard in NoSQL
•  Many different systems

•  Key-value store, big table store, document DBs, graph DBs

•  Designing a new language is hard and takes time
•  We should not reinvent the wheel
•  Start simple and useful

•  We need to set precise requirements
•  In increasing order of functionality

•  Start simple and useful (and efficient)

•  Guided by the CoherentPaaS project uses cases
•  E.g. bibliography search

11

Requirements for MDB Query Languages*

1.  Nested queries
•  Allow queries to be arbitrarily chained together in sequences,

so the result of one query (for one DB) may be used as the
input of another (for another DB)

2.  Data-metadata transformation
•  To deal with heterogeneous formats by transforming data into

metadata and conversely
•  e.g. data into attribute or relation names, attribute names into

relation names, relation names into data

3.  Schema independence
•  Allows the user to formulate queries that are robust in front of

schema evolution

* C. M. Wyss, E.L. Robertson. Relational Languages for Metadata Integration.
ACM TODS, 2005.

12

•  Not for web data integration!
•  A query is for a few DBs

•  And needs to have access rights to each DB

•  The DBs may have very different languages
•  No single language can capture all the others

•  E.g. SQL cannot express path traversal

•  NoSQL DBs can be schemaless
•  Makes it (almost) impossible to derive a global schema

•  We need to express powerful queries
•  To exploit the full power of the different DB languages

•  E.g. perform a path traversal in a graph DB

Design Considerations for CloudMdsQL

13

Our Design Choices

•  Data model: schemaless, table-based
•  With rich data types

•  To allow computing on typed values
•  No global schema and schema mappings to define

•  Query language: functional-style SQL*
•  SQL widely accepted
•  Can represent all query building blocks as functions

•  A function can be expressed in one of the DB languages
•  Function results can be used as input to subsequent functions

•  Supports requirement (1) of MDB languages
•  Functions can transform types and do data-metadata

conversion
•  Supports requirement (2) of MDB languages

*P. Valduriez, S. Danforth. Functional SQL, an SQL Upward Compatible
Database Programming Language. Information Sciences, 1992.
*C. Binnig et al. FunSQL: it is time to make SQL functional. EDBT/ICDT, 2012.

14

CloudMdsQL Data Model

•  A kind of nested relational model
•  With JSON flavor

•  Data types
•  Basic types: int, float, string, id, idref, timestamp, url,

xml, etc. with associated functions (+, concat, etc.)
•  Type constructors

•  Row (called object in JSON): an unordered collection of
(attribute : value) pairs, denoted by { }

•  Array: a sequence of values, denoted by []

•  Set-oriented
•  A table is a named collection of rows, denoted by

Table-name ()

15

Data Model – examples*

•  Key-value

•  Relational

•  Document

Scientists ({name:"Ricardo", affiliation:"UPM", country:"Spain"},
 {name:"Martin", affiliation:"CWI", country:"Netherlands"})

Pubs ({id:1, title:"Snapshot isolation", Author:"Ricardo", Year:2005})

Scientists ({key:"Ricardo", value:"UPM, Spain"},
 {key:"Martin", value:"CWI, Netherlands"})

Reviews ({PID: “1”, reviewer: “Martin”, date: “2012-11-18”,
 tags : ["implementation", "performance"],
 comments :
 [{ when : Date("2012-09-19"), comment : "I like it." },
 {when : Date("2012-09-20"), comment : "I agree with you." }] })

*Any resemblance to living persons is coincidental

16

Query Language Requirements

•  Define named table expressions
•  Invoke specific API methods to query NoSQL data

stores
•  Convert arbitrary datasets to tables in order to

comply with the common data model
•  Complement the query language with functional

capabilities
•  Perform data-metadata transformations
•  Perform type conversions

17

Python as the Functional Extension

•  Why Python?
•  Supports all data types from the common data model
•  Many DBMSs have Python APIs (including Sparksee,

MongoDB and MonetDB)
•  Simple, well-known and rich in standard libraries

•  Example of Python expression that produces a
table

T3(x int, a string) = {*
 for i in range(0,3):
 yield (i+1, 'a'*(i+1))
*}

SELECT x, a
FROM T3

x a

1 a
2 aa
3 aaa

18

Table Expressions

•  Named table expression
•  Expression that returns a table representing a nested

query [against a data store]
•  Name and Signature (names and types of attributes)
•  Query is executed in the context of an ad-hoc schema

•  3 kinds of table expressions
•  Native named tables

•  Using a data store’s native query mechanism

•  SQL named tables
•  Regular SELECT statements, for SQL-friendly data stores

•  Python named tables
•  Embedded blocks of Python statements that produce tables

19

CloudMdsQL Example

•  A query that integrates data from:
•  DB1 – relational (MonetDB)
•  DB2 – document (MongoDB)

/* Integration query */
SELECT T1.x, T2.z
FROM T1 JOIN T2
 ON T1.x = T2.x

/* SQL sub-query */
T1(x int, y int)@DB1 =
(SELECT x, y FROM A)

/* Native sub-query */
T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

N x,	
 z	

π x,	
 z	

A

π x,	
 y	

T1@DB1	

(MonetDB)	

T2@DB2	

(MongoDB)	

@CloudMdsQL	

20

Sub-query Rewriting: selection pushdown

T1(x int, y int)@DB1 = (SELECT x, y FROM A)

T2(x int, z string)@DB2 = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}

SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3

σ T1.y	
 <=	
 3	

N x,	
 z	

π x,	
 z	

A

π x,	
 y	

T1@DB1	

(DQE)	

T2@DB2	

(MongoDB)	

@CloudMdsQL	

σ y	
 <=	
 3	

N x,	
 z	

A

π x	

T1@DB1	

(DQE)	

T2@DB2	

(MongoDB)	

@CloudMdsQL	

SELECT x FROM A WHERE y <= 3

21

Optimization with Bindjoin

select ALL
from R, S
where R.J = S.J
and R.A=a
and S.B=b

select ALL
from R1, S1
where R.J = S.J

R1 =
select ALL
from R
where R.A=a

S1 =
select ALL
from S
where S.B=b

Select ALL
From R1, S1
Where R.J = S.J

R1 =
Select ALL
From R
Where R.A=a

S1 =
Select ALL
From S
Where S.B=b
and S.J in

 (select J in R2)

R2 = select J from R1

σ
R S

σ
@1 @2

@M

22

Sub-query Rewriting: bindjoin

T1(id int, x string)@DB1 = (SELECT id, x)

T2(id int, y int)@DB2 = (SELECT id, y FROM R2)

SELECT T1.x, T2.y
FROM T1 BIND JOIN T2 ON T1.id = T2.id

π x,	
 y	

@CloudMdsQL	

A

π id,	
 x	

T1@DB1	

(DQE)	
 B

π id,	
 y	

T2@DB2	

(MonetDB)	

SELECT id, x FROM A SELECT id, y FROM B WHERE id IN (1, 3)

id x

1 abc

3 xyz

id y

1 1

3 9

x y

abc 1

xyz 9

23

Validation

•  Set up
•  Compiler/optimizer implemented in C++ (using the

Boost.Spirit framework)
•  Operator engine (C++) based on the query operators of the

Sparksee query engine
•  Query processor (Java) interacts with the above two

components through the Java Native Interface (JNI)
•  The wrappers are Java classes implementing a common

interface used by the query processor to interact with them

•  3 data stores
•  Relational: MonetDB
•  Document: MongoDB
•  Graph: Sparksee

24

Example DBs

DB1: a relational DB

Table Scientists (Name char(20), Affiliation char(10), Country char(30)
Table Pubs (ID int, Title char(50), Author char(20), Date date)

Scientists Pubs

Name Affiliation Country
Ricardo UPM Spain

Martin CWI Netherlands

Patrick INRIA France
Boyan INRIA France

Larri UPC Spain
Rui INESC Portugal

ID Title Author Date

1 Snapshot
isolation in …

Ricardo 2012.11.10

5 Principles of
DDBS

Patrick 2011.02.18

9 Graph DBs Larri 2013.01.06

25

Example DBs (cont.)

DB2: a document DB (with SQL interface)

Reviews (PID string, reviewer string, date string, review string)

Reviews (
{PID: “1”, reviewer: “Martin”, date: “2012.11.18”, review: “… text …”},
{PID: “5”, reviewer: “Rui”, date: “2013.02.28”, review: “… text …”},
{PID: “5”, reviewer: “Ricardo”, date: “2013.02.24”, review: “… text …”},
{PID: “9”, reviewer: “Patrick”, date: “2013.01.19”, review: “… text …”})

26

Example DBs (cont.)

DB3: a graph DB

Person (name string, …) is_friend_of Person (name string, …)

27

CloudMdsQL Query: goal

Find conflicts of interest for papers from INRIA reviewed in 2013

Retrieve papers by scientists from INRIA
that are reviewed in 2013
where the reviewer is a friend or friend-of-friend of the author

Retrieve	
 one-­‐	
 or	
 two-­‐level	

friendships	
 by	
 invoking	

BreadthFirstSearch()	

Retrieve	
 publicaGons	

reviewed	
 in	
 2013	

	
 and	
 their	
 reviewers	

Retrieve	
 scienGsts	
 from	

INRIA	

@DB1	

(MonetDB)	

@DB2	

(MongoDB)	

@DB3	

(Sparksee)	

28

CloudMdsQL Query: expression

scientists(name string, aff string)@DB1 = (
 SELECT name, affiliation FROM scientists
)

pubs_revs(p_id, title, author, reviewer, review_date)@DB2 = (
 SELECT p.id, p.title, p.author, r.reviewer, r.date
 FROM publications p, reviews r
 WHERE p.id = r.pub_id
)

friendships(person1 string, person2 string, friendship string
 JOINED ON person1, person2)@DB3 =
{*
 for (p1, p2) in CloudMdsQL.Outer:
 sp = graph.FindShortestPathByName(p1, p2, max_hops=2)
 if sp.exists():
 yield (p1, p2, 'friend' + '-of-friend' * sp.get_cost())
*}

SELECT pr.id, pr.author, pr.reviewer, f.friendship
FROM scientists s
 BIND JOIN pubs_revs pr ON s.name = pr.author
 JOIN friendships f ON pr.author = f.person1 AND pr.reviewer = f.person2
WHERE pr.review_date BETWEEN '2013-01-01' AND '2013-12-31' AND s.aff = 'INRIA';

29

Initial Query Plan

scienGsts	

π name	

publicaGons	

π id,	
 Gtle,	
 author	

name	
 =	
 author	

reviews	

σ year(review_date)=2013	
 AND	

affiliaGon=‘INRIA’	

π pub_id,	
 reviewer	

id=pub_id	
 N

(author,	
 reviewer)=(person1,	
 person2)	

person1,	
 person2,	

friendship	

+bind	

id,	
 author,	
 reviewer,	
 friendship	

@DB1	

(MonetDB)	

@DB2	

(MongoDB)	

friendships@DB3	

(Sparksee)	

π

30

Rewritten Query Plan

scienGsts	

σ affiliaGon=‘INRIA’	

π name	

publicaGons	

π id,	
 Gtle,	
 author	

name	
 =	
 author	

reviews	

σ year(date)=2013	

π pub_id,	
 reviewer	

id=pub_id	

N

(author,	
 reviewer)=(person1,	
 person2)	

person1,	
 person2,	
 friendship	

+bind	

π id,	
 author,	
 reviewer,	
 friendship	

@DB1	

(MonetDB)	

@DB2	

	

friendships@DB3	

(Sparksee)	

@CloudMdsQL	

SELECT name FROM scientists
WHERE affiliation = ‘INRIA’

db.publications.find({author:
{$in:[‘Patrick’, ‘Boyan’]} }) db.reviews.find({date: … })

Id Author Reviewer Friendship
5 Patrick Ricardo friend-of-friend

Name
Patrick
Boyan

Author Reviewer
Patrick Rui
Patrick Ricardo

@DB2	

(MongoDB)	

31

CloudMdsQL Contributions

•  Advantage
•  Relieves users from building complex client/server

applications in order to access multiple data stores

•  Innovation
•  Adds value by allowing arbitrary code/native query to

be embedded
•  To preserve the expressivity of each data store’s query

mechanism

•  Provision for traditional query optimization with SQL and
NoSQL data stores

