
1

1

1

Patrick Valduriez

Parallel Techniques for Big Data

2

2

2

Outline of the Talk

Big data: problem and issues

Parallel data processing

Parallel architectures

Parallel techniques

Cloud data mgt

NoSQL DBMS

MapReduce

Conclusion

3

3

3

Big Data: problem and issues

4

4

4

Big Data: what is it?

A buzz word!
•  With different meanings depending on your perspective

–  E.g. 10 terabytes is big for a transaction processing system, but small for
a world-wide web search engine

A definition (Wikipedia)
•  Consists of data sets that grow so large that they become awkward to

work with using on-hand database management tools
–  Difficulties: capture, storage, search, sharing, analytics, visualizing

•  But size is only one dimension of the problem

How big is big?
•  Moving target: terabyte (1012 bytes), petabyte (1015 bytes), exabyte

(1018), zetabyte (1021)
•  Landmarks in DBMS products

•  1980: Teradata database machine
•  2010: Oracle Exadata database machine

5

5

5

Why Big Data Today?
Overwhelming amounts of data generated by all kinds of

devices, networks and programs
•  E.g. sensors, mobile devices, internet, social networks, computer

simulations, satellites, radiotelescopes, LHC, etc.

Increasing storage capacity
•  Storage capacity has doubled every 3 years since 1980 with prices

steadily going down
•  1 Gigabyte for: 1M$ in 1982, 1K$ in 1995, 0.12$ in 2011

•  1,8 zetabytes: an estimation for the data stored by humankind in
2011 (Digital Universe study of International Data Corporation)

Very useful in a digital world!
•  Massive data can produce high-value information and knowledge
•  Critical for data analysis, decision support, forecasting, business

intelligence, research, (data-intensive) science, etc.

6

6

6

Big Data Dimensions: the three V’s
Volume

•  Refers to massive amounts of data
•  Makes it hard to store and manage, but also to analyze (big

analytics)

Velocity
•  Continuous data streams are being captured (e.g. from sensors or

mobile devices) and produced
•  Makes it hard to perform online processing

Variety
•  Different data formats (sequences, graphs, arrays, …), different

semantics, uncertain data (because of data capture), multiscale
data (with lots of dimensions)

•  Makes it hard to integrate and analyze

7

7

7

Scientific Data – common features

●  Big data

●  Manipulated through complex, distributed workflows

●  Important metadata about experiments and their
provenance

●  Mostly append-only (with rare updates)

8

8

8

Parallel Data Processing

9

9

9

The solution to big data processing!

Exploit a massively parallel computer
•  A computer that interconnects lots of CPUs, RAM and disk

units

To obtain
•  High performance through data-based parallelism

–  High throughput for transaction-oriented (OLTP) loads

–  Low response time for decision-support (OLAP) queries

•  High availability and reliability through data replication

•  Extensibility with the ideal goals
–  Linear speed-up

–  Linear scale-up

10

10

10

Linear Speed-up

Linear increase in performance for a constant database
size and load, and proportional increase of the system
components (CPU, memory, disk)

Perf.
ideal

Components

11

11

11

Linear Scale-up

Sustained performance for a linear increase of database
size and load, and proportional increase of components

ideal

Components + (db & load)

Perf.

12

12

12

Data-based Parallelism

Inter-query
•  Different queries on the same

data
•  For concurrent queries

Inter-operation
•  Different operations of the same

query on different data
•  For complex queries

Intra-operation
•  The same operation on different

data
•  For large queries

Op3

Op1 Op2

Op

D1

Op

Dn

…

D1 D2

Q1 Qn

D

…

13

13

13

Parallel Architectures

14

14

14

Parallel Architectures for Data Management

Three main alternatives, depending on how processors,
memory and disk are interconnected

•  Shared-memory computer

•  Shared-disk cluster

•  Shared-nothing cluster

15

Shared-memory Computer
All memory and disk are shared

•  Symmetric Multiprocessor (SMP)

  Non Uniform Memory Architecture
(NUMA)

  Examples

  IBM Numascale, HP Proliant,
Data General NUMALiiNE,
Bull Novascale

+ Simple for apps, fast com., load
balancing

- Complex interconnect limits
extensibility, cost

P
… P

M

P
… P

For write-intensive workloads, expensive for big data

16

Shared-disk Cluster

Disk is shared, memory is private
  Storage Area Network (SAN) to

interconnect memory and disk (block
level)

  Needs distributed lock manager
(DLM) for cache coherence

  Examples

  Oracle RAC and Exadata

  IBM PowerHA

+ Simple for apps, extensibility

- Complex DLM, cost

For write-intensive workloads or big data

M

P
… P

M

P
… P

17

Shared-nothing (SN) Cluster

M

P
… P

M

P
… P

No sharing of either memory or disk
across nodes

  No need for DLM

  But needs data partitioning

  Examples

  DB2 DPF, SQL Server Parallel
DW, Teradata, MySQLcluster

  Google search engine, NoSQL
key-value stores (Bigtable, …)

+ highest extensibility, cost

-  updates, distributed trans.

-  Perfect for big data (read intensive)

18

18

18

Parallel Data Management
Techniques

19

19

19

A Simple Model for Parallel Data

Shared-nothing architecture
•  The most general and most scalable

Set-oriented
•  Each dataset D is represented by a table of rows

Key-value
•  Each row is represented by a <key, value> pair, where

–  Key uniquely identifies the value in D
–  Value is a list of (attribute name : attribute value) pairs

Can represent structured (relational) data or NoSQL data
•  But graph is another story (see Pregel or DEX)

Examples
•  <row-id5, (part-id:5, part-name:iphone5, supplier:Apple)>
•  <doc-id10, (content:<html> html text … </html>)>
•  <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>

20

20

20

Big datasets
•  Data partitioning and indexing

–  Problem with skewed data distributions
•  Parallel algorithms for algebraic operators

–  Select is easy, Join is difficult
•  Disk is very slow (10K times slower than RAM)

–  Exploit RAM data structures and compression
–  Exploit fash memory (read 10 times faster than disk)

Query parallelization and optimization
•  Automatic if the query language is declarative (e.g. SQL)
•  Programmer-assisted otherwise (e.g. MapReduce)

Transaction support
•  Hard: need for distributed transactions (distributed locks and 2PC)

–  NoSQL systems don’t provide transactions

Fault-tolerance and availability
•  With many nodes (e.g. several thousand), node failure is the norm,

not the exception
–  Exploit replication and failover techniques

Design Considerations

21

21

21

Data Partitioning

Key Values

Horizontal partitioning
(sharding)
•  Shards can be stored

(and replicated) at
different nodes

Vertical partitioning
•  Basis for column stores (e.g. MonetDB,

Vertica): efficient for OLAP queries
•  Easy to compress, e.g. using Bloom filters A table

22

22

22

Sharding Schemes

Round-Robin
•  ith row to node (i mod n)
•  perfect balancing
•  but full scan only

•••	
 •••	

•••	

•••	

Hashing
•  (k,v) to node h(k)
•  exact-match queries
•  but problem with skew

•••	

Range
•  (k,v) to node that holds k’s interval
•  exact-match and range queries
•  deals with skew

•••

••• a-g h-m u-z

23

23

23

Indexing

Can be supported by special tables with rows of the form:
<attribute, list of keys> pairs
•  Ex. <att-value, (doc-id:id1, doc-id:id2, doc-id:id10)>
•  Given an attribute value, returns all corresponding keys
•  These keys can in turn be used to access the corresponding

rows in shards

Complements sharding with secondary indices or inverted
files to speed up attribute-based queries

Can be partitioned

24

Replication and Failover

Replication
•  The basis for fault-tolerance

and availability
•  Have several copies of each

shard

Failover
•  On a node failure, another

node detects and recovers
the node’s tasks

Client

Node 1

connect1

Node 2 Ping

connect1

25

25

25

Parallel Query Processing

1. Query parallelization
•  Produces an optimized parallel

execution plan, with operators
•  Based on partitioning, replication,

indexing

2. Parallel execution
•  Relies on parallel main memory

algorithms for operators
•  Use of hashed-based join

algorithms
•  Adaptive degree of partitioning to

deal with skew

Select … from R,S
where …group by…

Parallelization

Sel.

R1 R2

Sel.

R3 R4

Sel. Sel.

Join Join Join Join

S1 S2 S3 S4

Grb Grb Grb Grb

Grb

26

26

26

Parallel Hash Join Algorithm

node node node node

node 1 node 2

R1: R2: S1: S2:

Both tables R and S are partitioned by hashing
on the join attribute

∪ R join S = Ri join Si
i=1

p

27

27

27

Parallel DBMS

Generic: with full support of SQL, with user defined functions
•  Structured data, XML, multimedia, etc.
•  Automatic optimization and parallelization

Transactional guarantees
•  Atomicity, Consistency, Isolation, Durability
•  Transactions make it easy to program complex updates

Performance through
•  Data partitioning, indexing, caching
•  Sophisticated parallel algorithms, load balancing

Two kinds
•  Row-based: Oracle, MySQL, MS SQLserver, IBM DB2
•  Column-based: MonetDB, HP Vertica

28

28

28

Cloud Data Management

29

29

29

Cloud Data: problem and solution
Cloud data

•  Can be very large (e.g. text-based or scientific applications),
unstructured or semi-structured, and typically append-only (with
rare updates)

 Cloud users and application developers
•  In very high numbers, with very diverse expertise but very little

DBMS expertise

Therefore, current cloud data management solutions trade
consistency for scalability, simplicity and flexibility
•  New file systems: GFS, HDFS, …
•  NOSQL: Amazon SimpleDB, Google Base, Google Bigtable,

Yahoo Pnuts, etc.
•  New parallel programming: Google MapReduce (and its many

variations)

30

30

30

Google File System (GFS)

Used by many Google applications
•  Search engine, Bigtable, Mapreduce, etc.

The basis for popular Open Source implementations:
Hadoop HDFS (Apache & Yahoo)

Optimized for specific needs
•  Shared-nothing cluster of thousand nodes, built from inexpensive

harware => node failure is the norm!
•  Very large files, of typically several GB, containing many objects

such as web documents
•  Mostly read and append (random updates are rare)

–  Large reads of bulk data (e.g. 1 MB) and small random reads (e.g. 1
KB)

–  Append operations are also large and there may be many
concurrent clients that append the same file

–  High throughput (for bulk data) more important than low latency

31

31

31

Design Choices

Traditional file system interface (create, open, read, write,
close, and delete file)
•  Two additional operations: snapshot and record append.

Relaxed consistency, with atomic record append
•  No need for distributed lock management
•  Up to the application to use techniques such as checkpointing and

writing self-validating records

Single GFS master
•  Maintains file metadata such as namespace, access control

information, and data placement information
•  Simple, lightly loaded, fault-tolerant

Fast recovery and replication strategies

32

32

32

GFS Distributed Architecture

Files are divided in fixed-size partitions, called chunks, of
large size, i.e. 64 MB, each replicated at several nodes

Application

GFS client

Get chunk location

Get chunk data
GFS chunk server

Linux file system

GFS
Master

GFS chunk server

Linux file system

33

33

33

NoSQL DBMS

34

34

34

NOSQL (Not Only SQL) Systems

Specific DBMS: for web-based data
•  Trade relational DBMS properties

–  Full SQL, transactions, data independence
•  For

–  Simplicity (flexible schema, basic API)
–  Scalability

Different kinds
•  Key-value, ex. Google Bigtable, Amazon SimpleDB
•  Structure-specific: document, graph, array, etc.

NB: SQL is just a language and has nothing to do with the
story

35

35

35

Google Bigtable
Database storage system for a shared-nothing cluster

•  Uses GFS to store structured data, with fault-tolerance and
availability

Used by popular Google applications
•  Google Earth, Google Analytics, Google+, etc.

The basis for popular Open Source implementations
•  Hadoop Hbase on top of HDFS (Apache & Yahoo)

Specific data model that combines aspects of row-store and
column-store DBMS
•  Rows with multi-valued, timestamped attributes

–  A Bigtable is defined as a multidimensional map, indexed by a row key,
a column key and a timestamp, each cell of the map being a single
value (a string)

Dynamic partitioning of tables for scalability

36

36

36

A Bigtable Row

Row key Contents: Anchor: Language:

"google.com"

"google.com"

"Google"

"<html> … <\html>"
"com.google.www" "english"

"<html> … <\html>"

inria.fr

t5

t1 t2

t3

t4

t1

uwaterloo.ca

Row unique id Column family Column key

Column family = a kind of multi-valued attribute
•  Set of columns (of the same type), each identified by a key

- Colum key = attribute value, but used as a name
•  Unit of access control and compression

37

37

37

Bigtable DDL and DML

Basic API for defining and manipulating tables, within a
programming language such as C++
•  Various operators to write and update values, and to iterate

over subsets of data, produced by a scan operator
•  Various ways to restrict the rows, columns and timestamps

produced by a scan, as in relational select, but no complex
operator such as join or union

•  Transactional atomicity for single row updates only

38

38

38

Dynamic Range Partitioning

Range partitioning of a table on the row key
•  Tablet = a partition (shard) corresponding to a row range
•  Partitioning is dynamic, starting with one tablet (the entire table

range) which is subsequently split into multiple tablets as the table
grows

•  Metadata table itself partitioned in metadata tablets, with a single
root tablet stored at a master server, similar to GFS’s master

Implementation techniques
•  Compression of column families
•  Grouping of column families with high locality of access
•  Aggressive caching of metadata information by clients

39

39

39

Yahoo! PNUTS

Parallel and distributed database system

Designed for serving Web applications
•  No need for complex queries
•  Need for good response time, scalability and high availability
•  Relaxed consistency guarantees for replicated data

Used internally at Yahoo!
•  User database, social networks, content metadata management

and shopping listings management apps

40

40

40

Design Choices
Basic relational data model

•  Tables of flat records, Blob attributes
•  Flexible schemas

–  New attributes can be added at any time even though the table is being
queried or updated

–  Records need not have values for all attributes

Simple query language
•  Selection and projection on a single relation
•  Updates and deletes must specify the primary key

Range partitioning or hashing of tables into tablets
•  Placement in a cluster (at a site)
•  Sites in different geographical regions maintain a complete copy of the

system and of each table

Publish/subscribe mechanism with guaranteed delivery, for both
reliability and replication
•  Used to replay lost updates, thus avoiding a traditional database log

41

41

41

Relaxed Consistency Model

Between strong consistency and eventual consistency
•  Motivated by the fact that Web applications typically manipulate

only one record at a time, but different records may be used
under different geographic locations

Per-record timeline consistency: guarantees that all replicas
of a given record apply all updates to the record in the
same order

Several API operations with different guarantees
•  Read-any: returns a possibly stale version of the record
•  Read-latest: returns the latest copy of the record
•  Write: performs a single atomic write operation

42

42

42

Amazon SimpleDB

•  A basic key-value store DBMS, without imposed schema
–  Flat files
– Basic operators (scan, filter, join, aggregate)
– Cache, replication
–  Transactions
– SQL frontend

•  But no
– Query optimizer
– Complex relational operators (union, etc)
–  Fault tolerance
–  Index definition (all fields automatically indexed)

43

SimpleDB Data Model

Client

Simple DB domain

Record 1

Put record
Get record
Query records

Key1 Attributes: A1,A2…

Record N
Key2 Attributes: A1,A2…

…

•  Flexible data model
•  Each attribute is indexed
•  Zero administration

44

44

44

SimpleDB Example

item description color material
123 Sweater Blue, Red
456 Dress shirt White, Blue
789 Shoes Black Leather

Inserts
Put (item, 123), (description, Sweater), (color, Blue), (color, Red)
Put (item, 456), (description, Dress shirt), (color, White), (color, Blue)
Put (item, 789), (description, Shoes), (color, Black), (material, Leather)

A simple query
Domain = MyStore [‘description’ = ‘Sweater’]

45

45

45

Other NOSQL Systems

Company Product Category Comment
Amazon Dynamo KV store

Apache Cassandra
Accumulo

KV store
KV store

Orig. Facebook
Orig. NSA

Google Pregel Graphs

Hadoop Hbase KV store Orig. Yahoo

LinkedIn Voldemort KV store

10gen MongoDB Documents

Neo4J.org Neo4J Graphs

Sparcity DEX Graphs Orig. UPC, Barcelone

Ubuntu CouchDB Documents

46

46

46

MapReduce

47

47

47

MapReduce

Parallel programming framework from Google
•  Proprietary (and protected by software patents)
•  But popular Open Source version by Hadoop (Apache & Yahoo)

For data analysis of very large data sets
•  Highly dynamic, irregular, schemaless, etc.
•  SQL or Xquery too heavy

New, simple parallel programming model
•  Data structured as (key, value) pairs

–  E.g. (doc-id, content), (word, count), etc.
•  Functional programming style with two functions to be given:

–  Map(key, value) -> ikey, ivalue
–  Reduce(ikey, list (ivalue)) –> list(fvalue)

Implemented on GFS on very large clusters
The basis for popular implementations

•  Hadoop, Hadoop++, Amazon MapReduce, etc.

48

48

48

MapReduce Typical Usages

Counting the numbers of some words in a set of docs

Distributed grep: text pattern matching

Counting URL access frequencies in Web logs

Computing a reverse Web-link graph

Computing the term-vectors (summarizing the most
important words) in a set of documents

Computing an inverted index for a set of documents

Distributed sorting

49

49

49

MapReduce Processing

Map	

…	

(k1,v)	
(k2,v)	

Group	
by	 k	

Map	
(k2,v)	
(k2,v)	

Map	 (k1,v)	

Map	
(k1,v)	
(k2,v)	

(k1,(v,v,v))	

(k2,(v,v,v,v))	

Reduce	

Reduce	

Group	
by	 k	

In
pu

t	 d
at
a	
se
t	

O
ut
pu

t	 d
at
a	
se
t	

Simple programming model
•  Key-value data storage
•  Hash-based data partitioning

Reduce	 phase	 Shuffle	 phase	 Map	 phase	

Split	 0	

Split	 1	

Split	 2	

50

50

50

MapReduce Example
EMP (ENAME, TITLE, CITY)
Query: for each city, return the number of employees whose name is "Smith"

 SELECT CITY, COUNT(*)
 FROM EMP
 WHERE ENAME LIKE "\%Smith"
 GROUP BY CITY

With MapReduce
 Map (Input (TID,emp), Output: (CITY,1))
 if emp.ENAME like "%Smith" return (CITY,1)
 Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))

 return (CITY,SUM(1*))

51

51

51

Fault-tolerance

Fault-tolerance is fine-grain and well suited for large jobs
Input and output data are stored in GFS

•  Already provides high fault-tolerance

All intermediate data is written to disk
•  Helps checkpointing Map operations, and thus provides tolerance

from soft failures

If one Map node or Reduce node fails during execution (hard
failure)
•  The tasks are made eligible by the master for scheduling onto

other nodes
•  It may also be necessary to re-execute completed Map tasks,

since the input data on the failed node disk is inaccessible

52

52

52

MapReduce vs Parallel DBMS
[Pavlo et al. SIGMOD09]: Hadoop MapReduce vs two parallel DBMS,

one row-store DBMS and one column-store DBMS
•  Benchmark queries: a grep query, an aggregation query with a group by

clause on a Web log, and a complex join of two tables with aggregation and
filtering

•  Once the data has been loaded, the DBMS are significantly faster, but loading
is much time consuming for the DBMS

•  Suggest that MapReduce is less efficient than DBMS because it performs
repetitive format parsing and does not exploit pipelining and indices

[Dean and Ghemawat, CACM10]
•  Make the difference between the MapReduce model and its implementation

which could be well improved, e.g. by exploiting indices

[Stonebraker et al. CACM10]
•  Argues that MapReduce and parallel DBMS are complementary as

MapReduce could be used to extract-transform-load data in a DBMS for more
complex OLAP.

53

53

53

MapReduce Performance

Much room for improvement (see MapReduce yearly
workshop)
•  Map phase

–  Minimize I/0 cost using indices (Hadoop++)
•  Shuffle phase

–  Minimize data transfers by partitioning data on the same IK
–  Current work in Zenith

•  Reduce phase
–  Exploit fine-grain parallelism of Reduce tasks
–  Current work in Zenith

54

54

54

Conclusion
Basic techniques are not new

•  Parallel database machines, shared-nothing cluster
•  Data partitioning, replication, indexing, parallel hash join, etc.
•  But need to scale up

NoSQL key-value stores
•  Trade consistency and transactional guarantees for scalability
•  Simple API with data-oriented operators available to the programmer
•  Less structure, but more parsing

Towards hybrid NoSQL/RDBMS?
•  Google F1: “combines the scalability, fault tolerance, transparent

sharding, and cost benefits so far available only in NoSQL systems
with the usability, familiarity, and transactional guarantees expected
from an RDBMS”

Much room for research and innovation
•  MapReduce extensions, dynamic workload-based partitioning, data-

oriented scientific workflows, uncertain data mining, content-based
IR, etc.

