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Big Data: problem and issues 
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Big Data: what is it? 

A buzz word! 
•  With different meanings depending on your perspective 

–  E.g. 10 terabytes is big for a transaction processing system, but small for 
a world-wide web search engine 

A definition (Wikipedia) 
•  Consists of data sets that grow so large that they become awkward to 

work with using on-hand database management tools 
–  Difficulties: capture, storage, search, sharing, analytics, visualizing 

•  But size is only one dimension of the problem 

How big is big? 
•  Moving target: terabyte (1012 bytes), petabyte (1015 bytes), exabyte 

(1018), zetabyte (1021) 
•  Landmarks in DBMS products 

•  1980: Teradata database machine 
•  2010: Oracle Exadata database machine 
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Why Big Data Today? 
Overwhelming amounts of data generated by all kinds of 

devices, networks and programs 
•  E.g. sensors, mobile devices, internet, social networks, computer 

simulations, satellites, radiotelescopes, LHC, etc. 

Increasing storage capacity 
•  Storage capacity has doubled every 3 years since 1980 with prices 

steadily going down 
•  1 Gigabyte for: 1M$ in 1982, 1K$ in 1995, 0.12$ in 2011 

•  1,8 zetabytes: an estimation for the data stored by humankind in 
2011 (Digital Universe study of International Data Corporation) 

Very useful in a digital world! 
•  Massive data can produce high-value information and knowledge 
•  Critical for data analysis, decision support, forecasting, business 

intelligence, research, (data-intensive) science, etc. 
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Big Data Dimensions: the three V’s 
Volume 

•  Refers to massive amounts of data 
•  Makes it hard to store and manage, but also to analyze (big 

analytics) 

Velocity 
•  Continuous data streams are being captured (e.g. from sensors or 

mobile devices) and produced 
•  Makes it hard to perform online processing 

Variety 
•  Different data formats (sequences, graphs, arrays, …), different 

semantics, uncertain data (because of data capture), multiscale 
data (with lots of dimensions) 

•  Makes it hard to integrate and analyze 
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Scientific Data – common features 

●  Big data 

●  Manipulated through complex, distributed workflows 

●  Important metadata about experiments and their 
provenance 

●  Mostly append-only (with rare updates) 
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Parallel Data Processing 
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The solution to big data processing! 

Exploit a massively parallel computer 
•  A computer that interconnects lots of CPUs, RAM and disk 

units 

To obtain 
•  High performance through data-based parallelism 

–  High throughput for transaction-oriented (OLTP)  loads 

–  Low response time for decision-support (OLAP) queries 

•  High availability and reliability through data replication 

•  Extensibility with the ideal goals 
–  Linear speed-up 

–  Linear scale-up 
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Linear Speed-up 

Linear increase in performance for a constant database 
size and load, and proportional increase of the system 
components (CPU, memory, disk) 

Perf. 
ideal 

Components 
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Linear Scale-up 

Sustained performance for a linear increase of database 
size and load,  and proportional increase of components 

ideal 

Components + (db & load) 

Perf. 
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Data-based Parallelism 

Inter-query 
•  Different queries on the same 

data 
•  For concurrent queries  

Inter-operation 
•  Different operations of the same 

query on different data 
•  For complex queries 

Intra-operation 
•  The same operation on different 

data 
•  For large queries 

Op3 

Op1 Op2 

Op 

D1 

Op 

Dn 

… 

D1 D2 

Q1 Qn 

D 

…
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Parallel Architectures 
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Parallel Architectures for Data Management 

Three main alternatives, depending on how processors, 
memory and disk are interconnected 

•  Shared-memory computer 

•  Shared-disk cluster 

•  Shared-nothing cluster 
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Shared-memory Computer 
All memory and disk are shared 

•  Symmetric Multiprocessor (SMP) 

  Non Uniform Memory Architecture 
(NUMA) 

  Examples 

  IBM Numascale, HP Proliant, 
Data General NUMALiiNE, 
Bull Novascale  

+  Simple for apps, fast com., load 
balancing 

-  Complex interconnect limits 
extensibility, cost 

P 
… P 

M 

P 
… P 

For write-intensive workloads, expensive for big data 
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Shared-disk Cluster 

Disk is shared, memory is private 
  Storage Area Network (SAN) to 

interconnect memory and disk (block 
level) 

  Needs distributed lock manager 
(DLM) for cache coherence 

  Examples 

  Oracle RAC and Exadata 

  IBM PowerHA 

+  Simple for apps, extensibility 

-  Complex DLM, cost 

For write-intensive workloads or big data 

M 

P 
… P 

M 

P 
… P 
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Shared-nothing (SN) Cluster 

M 

P 
… P 

M 

P 
… P 

No sharing of either memory or disk 
across nodes 

  No need for DLM 

  But needs data partitioning 

  Examples 

  DB2 DPF, SQL Server Parallel 
DW, Teradata, MySQLcluster 

  Google search engine, NoSQL 
key-value stores (Bigtable, …) 

+ highest extensibility, cost 

-  updates, distributed trans. 

-  Perfect for big data (read intensive) 
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Parallel Data Management 
Techniques 
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A Simple Model for Parallel Data 

Shared-nothing architecture 
•  The most general and most scalable 

Set-oriented 
•  Each dataset D is represented by a table of rows 

Key-value 
•  Each row is represented by a <key, value> pair, where 

–  Key uniquely identifies the value in D 
–  Value is a list of (attribute name : attribute value) pairs 

Can represent structured (relational) data or NoSQL data 
•  But graph is another story (see Pregel or DEX) 

Examples 
•  <row-id5, (part-id:5, part-name:iphone5, supplier:Apple)> 
•  <doc-id10, (content:<html> html text … </html>)> 
•  <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)> 
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Big datasets 
•  Data partitioning and indexing 

–  Problem with skewed data distributions 
•  Parallel algorithms for algebraic operators 

–  Select is easy, Join is difficult 
•  Disk is very slow (10K times slower than RAM) 

–  Exploit RAM data structures and compression 
–  Exploit fash memory (read 10 times faster than disk) 

Query parallelization and optimization 
•  Automatic if the query language is declarative (e.g. SQL) 
•  Programmer-assisted otherwise (e.g. MapReduce) 

Transaction support 
•  Hard: need for distributed transactions (distributed locks and 2PC) 

–  NoSQL systems don’t provide transactions 

Fault-tolerance and availability 
•  With many nodes (e.g. several thousand), node failure is the norm, 

not the exception 
–  Exploit replication and failover techniques 

Design Considerations 
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Data Partitioning 

Key Values 

Horizontal partitioning 
(sharding) 
•  Shards can be stored 

(and replicated) at 
different nodes 

Vertical partitioning 
•  Basis for column stores (e.g. MonetDB, 

Vertica): efficient for OLAP queries 
•  Easy to compress, e.g. using Bloom filters A table 
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Sharding Schemes 

Round-Robin 
•  ith row to node (i mod n) 
•  perfect balancing 
•  but full scan only 

•••	
 •••	


•••	


•••	


Hashing 
•  (k,v) to node h(k) 
•  exact-match queries 
•  but problem with skew 

•••	


Range 
•  (k,v) to node that holds k’s interval 
•  exact-match and range queries 
•  deals with skew 

••• 

••• a-g h-m u-z 
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Indexing 

Can be supported by special tables with rows of the form: 
<attribute, list of keys> pairs 
•  Ex. <att-value, (doc-id:id1, doc-id:id2, doc-id:id10)> 
•  Given an attribute value, returns all corresponding keys 
•  These keys can in turn be used to access the corresponding 

rows in shards 

Complements sharding with secondary indices or inverted 
files to speed up attribute-based queries 

Can be partitioned  
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Replication and Failover 

Replication 
•  The basis for fault-tolerance 

and availability 
•  Have several copies of each 

shard 

Failover 
•  On a node failure, another 

node detects and recovers 
the node’s tasks 

Client 

Node 1 

connect1 

Node 2 Ping 

connect1 
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Parallel Query Processing 

1. Query parallelization 
•  Produces an optimized parallel 

execution plan, with operators 
•  Based on partitioning, replication, 

indexing 

2. Parallel execution 
•  Relies on parallel main memory 

algorithms for operators 
•  Use of hashed-based join 

algorithms 
•  Adaptive degree of partitioning to 

deal with skew 

Select … from R,S 
where …group by… 

Parallelization 

Sel. 

R1 R2 

Sel. 

R3 R4 

Sel. Sel. 

Join Join Join Join 

S1 S2 S3 S4 

Grb Grb Grb Grb 

Grb 
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Parallel Hash Join Algorithm 

node node node node 

node 1 node 2 

R1: R2: S1: S2: 

Both tables R and S are partitioned by hashing 
on the join attribute 

∪ R join S =        Ri join Si 
i=1 

p 
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Parallel DBMS 

Generic: with full support of SQL, with user defined functions  
•  Structured data, XML, multimedia, etc. 
•  Automatic optimization and parallelization 

Transactional guarantees 
•  Atomicity, Consistency, Isolation, Durability 
•  Transactions make it easy to program complex updates 

Performance through 
•  Data partitioning, indexing, caching 
•  Sophisticated parallel algorithms, load balancing 

Two kinds 
•  Row-based: Oracle, MySQL, MS SQLserver, IBM DB2  
•  Column-based: MonetDB, HP Vertica 
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Cloud Data Management 
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Cloud Data: problem and solution 
Cloud data 

•  Can be very large (e.g. text-based or scientific applications), 
unstructured or semi-structured, and typically append-only (with 
rare updates) 

 Cloud users and application developers 
•  In very high numbers, with very diverse expertise but very little 

DBMS expertise 

Therefore, current cloud data management solutions trade 
consistency for scalability, simplicity and flexibility 
•  New file systems: GFS, HDFS, … 
•  NOSQL: Amazon SimpleDB, Google Base, Google Bigtable, 

Yahoo Pnuts, etc. 
•  New parallel programming: Google MapReduce (and its many 

variations) 
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Google File System (GFS) 

Used by many Google applications 
•  Search engine, Bigtable, Mapreduce, etc. 

The basis for popular Open Source implementations: 
Hadoop HDFS (Apache & Yahoo) 

Optimized for specific needs 
•  Shared-nothing cluster of thousand nodes, built from inexpensive 

harware => node failure is the norm! 
•  Very large files, of typically several GB, containing many objects 

such as web documents 
•  Mostly read and append (random updates are rare) 

–  Large reads of bulk data (e.g. 1 MB) and small random reads (e.g. 1 
KB) 

–  Append operations are also large and there may be many 
concurrent clients that append the same file 

–  High throughput (for bulk data) more important than low latency 



31 

31 

31 

Design Choices 

Traditional file system interface (create, open, read, write, 
close, and delete file) 
•  Two additional operations: snapshot and record append.  

Relaxed consistency, with atomic record append 
•  No need for distributed lock management 
•  Up to the application to use techniques such as checkpointing and 

writing self-validating records 

Single GFS master 
•  Maintains file metadata such as namespace, access control 

information, and data placement information 
•  Simple, lightly loaded, fault-tolerant 

Fast recovery and replication strategies 
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GFS Distributed Architecture 

Files are divided in fixed-size partitions, called chunks, of 
large size, i.e. 64 MB, each replicated at several nodes 

Application 

GFS client 

Get chunk location 

Get chunk data 
GFS chunk server 

Linux file system 

GFS 
Master 

GFS chunk server 

Linux file system 
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NoSQL DBMS 
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NOSQL (Not Only SQL) Systems 

Specific DBMS: for web-based data 
•  Trade relational DBMS properties 

–  Full SQL, transactions, data independence 
•  For  

–  Simplicity (flexible schema, basic API) 
–  Scalability 

Different kinds 
•  Key-value, ex. Google Bigtable, Amazon SimpleDB 
•  Structure-specific: document, graph, array, etc. 

NB: SQL is just a language and has nothing to do with the 
story 
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Google Bigtable 
Database storage system for a shared-nothing cluster 

•  Uses GFS to store structured data, with fault-tolerance and 
availability 

Used by popular Google applications 
•  Google Earth, Google Analytics, Google+, etc. 

The basis for popular Open Source implementations 
•  Hadoop Hbase on top of HDFS (Apache & Yahoo) 

Specific data model that combines aspects of row-store and 
column-store DBMS 
•  Rows with multi-valued, timestamped attributes 

–  A Bigtable is defined as a multidimensional map, indexed by a row key, 
a column key and a timestamp, each cell of the map being a single 
value (a string) 

Dynamic partitioning of tables for scalability 
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A Bigtable Row 

Row key                          Contents:                         Anchor:                 Language: 

"google.com" 

"google.com" 

"Google" 

"<html> …  <\html>" 
"com.google.www" "english" 

"<html> …  <\html>" 

inria.fr 

t5 

t1 t2 

t3 

t4 

t1 

uwaterloo.ca 

Row unique id Column family Column key 

Column family = a kind of multi-valued attribute 
•  Set of columns (of the same type), each identified by a key 

- Colum key = attribute value, but used as a name  
•  Unit of access control and compression 
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Bigtable DDL and DML 

Basic API for defining and manipulating tables, within a 
programming language such as C++ 
•  Various operators to write and update values, and to iterate 

over subsets of data, produced by a scan operator 
•  Various ways to restrict the rows, columns and timestamps 

produced by a scan, as in relational select, but no complex 
operator such as join or union 

•  Transactional atomicity  for single row updates only 
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Dynamic Range Partitioning 

Range partitioning of a table on the row key 
•  Tablet =  a partition (shard) corresponding to a row range 
•  Partitioning is dynamic, starting with one tablet (the entire table 

range) which is subsequently split into multiple tablets as the table 
grows 

•  Metadata table itself partitioned in metadata tablets, with a single 
root tablet stored at a master server, similar to GFS’s master 

Implementation techniques 
•  Compression of column families 
•  Grouping of column families with high locality of access 
•  Aggressive caching of metadata information by clients 



39 

39 

39 

Yahoo! PNUTS 

Parallel and distributed database system 

Designed for serving Web applications 
•  No need for complex queries 
•  Need for good response time, scalability and high availability 
•  Relaxed consistency guarantees for replicated data 

Used internally at Yahoo! 
•  User database, social networks, content metadata management 

and shopping listings management apps 
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Design Choices 
Basic relational data model 

•  Tables of flat records, Blob attributes 
•  Flexible schemas 

–  New attributes can be added at any time even though the table is being 
queried or updated 

–  Records need not have values for all attributes 

Simple query language 
•  Selection and projection on a single relation 
•  Updates and deletes must specify the primary key 

Range partitioning or hashing of tables into tablets 
•  Placement in a cluster (at a site) 
•  Sites in different geographical regions maintain a complete copy of the 

system and of each table 

Publish/subscribe mechanism with guaranteed delivery, for both 
reliability and replication 
•  Used to replay lost updates, thus avoiding a traditional database log 



41 

41 

41 

Relaxed Consistency Model 

Between strong consistency and eventual consistency 
•  Motivated by the fact that Web applications typically manipulate 

only one record at a time, but different records may be used 
under different geographic locations 

Per-record timeline consistency: guarantees that all replicas 
of a given record apply all updates to the record in the 
same order 

Several API operations with different guarantees 
•  Read-any: returns a possibly stale version of the record 
•  Read-latest: returns the latest copy of the record 
•  Write: performs a single atomic write operation 
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Amazon SimpleDB 

•  A basic key-value store DBMS, without imposed schema 
–  Flat files 
– Basic operators (scan, filter, join, aggregate) 
– Cache, replication 
–  Transactions 
– SQL frontend 

•  But no 
– Query optimizer 
– Complex relational operators (union, etc) 
–  Fault tolerance 
–  Index definition (all fields automatically indexed) 
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SimpleDB Data Model 

Client 

Simple DB domain 

Record 1 

Put record 
Get record 
Query records 

Key1 Attributes: A1,A2… 

Record N 
Key2 Attributes: A1,A2… 

… 

•  Flexible data model 
•  Each attribute is indexed 
•  Zero administration 
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SimpleDB Example 

item description color material 
123 Sweater Blue, Red 
456 Dress shirt White, Blue 
789 Shoes Black Leather 

Inserts 
Put (item, 123), (description, Sweater), (color, Blue), (color, Red) 
Put (item, 456), (description, Dress shirt), (color, White), (color, Blue) 
Put (item, 789), (description, Shoes), (color, Black), (material, Leather) 

A simple query 
Domain = MyStore [‘description’ = ‘Sweater’] 
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Other NOSQL Systems 

Company Product Category Comment 
Amazon Dynamo KV store 

Apache Cassandra 
Accumulo 

KV store 
KV store 

Orig. Facebook 
Orig. NSA 

Google Pregel Graphs 

Hadoop Hbase KV store Orig. Yahoo 

LinkedIn Voldemort KV store 

10gen MongoDB Documents 

Neo4J.org Neo4J Graphs 

Sparcity DEX Graphs Orig. UPC, Barcelone 

Ubuntu CouchDB Documents 
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MapReduce 
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MapReduce 

Parallel programming framework from Google 
•  Proprietary (and protected by software patents) 
•  But popular Open Source version by Hadoop (Apache & Yahoo) 

For data analysis of very large data sets 
•  Highly dynamic, irregular, schemaless, etc. 
•  SQL or Xquery too heavy 

New, simple parallel programming model 
•  Data structured as (key, value) pairs 

–  E.g. (doc-id, content), (word, count), etc. 
•  Functional programming style with two functions to be given: 

–  Map(key, value) -> ikey, ivalue 
–  Reduce(ikey, list (ivalue)) –> list(fvalue) 

Implemented on GFS on very large clusters 
The basis for popular implementations 

•  Hadoop, Hadoop++, Amazon MapReduce, etc. 
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MapReduce Typical Usages 

Counting the numbers of some words in a set of docs 

Distributed grep: text pattern matching 

Counting URL access frequencies in Web logs 

Computing a reverse Web-link graph 

Computing the term-vectors (summarizing the most 
important words) in a set of documents 

Computing an inverted index for a set of documents 

Distributed sorting 
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MapReduce Processing 

Map	  

…	  

(k1,v)	  
(k2,v)	  

Group	  
by	  k	  

Map	  
(k2,v)	  
(k2,v)	  

Map	   (k1,v)	  

Map	  
(k1,v)	  
(k2,v)	  

(k1,(v,v,v))	  

(k2,(v,v,v,v))	  

Reduce	  

Reduce	  

Group	  
by	  k	  

In
pu

t	  d
at
a	  
se
t	  

O
ut
pu

t	  d
at
a	  
se
t	  

Simple programming model 
•  Key-value data storage 
•  Hash-based data partitioning 

Reduce	  phase	  Shuffle	  phase	  Map	  phase	  

Split	  0	  

Split	  1	  

Split	  2	  
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MapReduce Example 
EMP (ENAME, TITLE, CITY) 
Query: for each city, return the number of employees whose name is "Smith" 

 SELECT CITY, COUNT(*) 
 FROM EMP 
 WHERE  ENAME LIKE "\%Smith" 
 GROUP BY CITY 

With MapReduce 
 Map (Input (TID,emp), Output: (CITY,1)) 
  if emp.ENAME like "%Smith" return (CITY,1) 
 Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))  

     return (CITY,SUM(1*)) 
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Fault-tolerance 

Fault-tolerance is fine-grain and well suited for large jobs 
Input and output data are stored in GFS 

•  Already provides high fault-tolerance 

All intermediate data is written to disk 
•  Helps checkpointing Map operations, and thus provides tolerance 

from soft failures 

If one Map node or Reduce node fails during execution (hard 
failure) 
•  The tasks are made eligible by the master for scheduling onto 

other nodes 
•  It may also be necessary to re-execute completed Map tasks, 

since the input data on the failed node disk is inaccessible 
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MapReduce vs Parallel DBMS 
[Pavlo et al. SIGMOD09]: Hadoop MapReduce vs two parallel DBMS, 

one row-store DBMS and one column-store DBMS 
•  Benchmark queries: a grep query, an aggregation query with a group by 

clause on a Web log, and a complex join of two tables with aggregation and 
filtering 

•  Once the data has been loaded, the DBMS are significantly faster, but loading 
is much time consuming for the DBMS 

•  Suggest that MapReduce is less efficient than DBMS because it performs 
repetitive format parsing and does not exploit pipelining and indices 

[Dean and Ghemawat, CACM10] 
•  Make the difference between the MapReduce model and its implementation 

which could be well improved, e.g. by exploiting indices 

[Stonebraker et al. CACM10] 
•  Argues that MapReduce and parallel DBMS are complementary as 

MapReduce could be used to extract-transform-load data in a DBMS for more 
complex OLAP. 
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MapReduce Performance 

Much room for improvement (see MapReduce yearly 
workshop) 
•  Map phase 

–  Minimize I/0 cost using indices (Hadoop++) 
•  Shuffle phase 

–  Minimize data transfers by partitioning data on the same IK 
–  Current work in Zenith 

•  Reduce phase 
–  Exploit fine-grain parallelism of Reduce tasks 
–  Current work in Zenith 
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Conclusion 
Basic techniques are not new 

•  Parallel database machines, shared-nothing cluster 
•  Data partitioning, replication, indexing, parallel hash join, etc. 
•  But need to scale up 

NoSQL key-value stores 
•  Trade consistency and transactional guarantees for scalability 
•  Simple API with data-oriented operators available to the programmer 
•  Less structure, but more parsing 

Towards hybrid NoSQL/RDBMS? 
•  Google F1: “combines the scalability, fault tolerance, transparent 

sharding, and cost benefits so far available only in NoSQL systems 
with the usability, familiarity, and transactional guarantees expected 
from an RDBMS” 

Much room for research and innovation 
•  MapReduce extensions, dynamic workload-based partitioning, data-

oriented scientific workflows, uncertain data mining, content-based 
IR, etc. 


