
Data Management in the Cloud -
current issues and research directionscurrent issues and research directions

Patrick ValduriezPatrick Valduriez
Esther Pacitti

DNAC Congress, Paris, nov. 2010
http://www.med-hoc-net-2010.org

SOPHIA ANTIPOLIS - MÉDITERRANÉE

Is Research Needed in the Cloud?Is Research Needed in the Cloud?
Grand Challenge

• Cost-effective support of the very large scale of the infrastructure
to manage lots of users and resources with high QoS

Current solutions are ad-hoc and proprietaryCurrent solutions are ad hoc and proprietary
• Developed by Web industry giants such as Amazon, Google,

Microsoft, Yahoo
– E g Google File System (GFS)E.g. Google File System (GFS)

• Specific, simple applications with low consistency needs

But the research community is catching up
• Many new conferences and journals on Cloud Computing

– Distributed systems, OS, data management communities
• Open Source alternatives, e.g. Hadoop HDFSp g p
• As the complexity of applications increases, the implication of the

research community is needed

2/28

OutlineOutline
OLTP vs OLAP apps in the cloud

Grid vs cloud architecture

Cloud data management solutionsCloud data management solutions
• Distributed file management with GFS
• Distributed database management with Bigtable and Pnutsg g
• Parallel data processing with MapReduce

IssuesIssues

Research directions

3/28

Cloud BenefitsCloud Benefits

Reduced costReduced cost
• Customer side: the IT infrastructure needs not be owned and

managed, and billed only based on resource consumption
• Cloud provider side: by sharing costs for multiple customers, p y g p ,

reduces its cost of ownership and operation to the minimum

Ease of access and use
• Customers can have access to IT services anytime from anywhere• Customers can have access to IT services anytime, from anywhere

with an Internet connection

Quality of Service (QoS)
Th ti f th IT i f t t b i li d i d• The operation of the IT infrastructure by a specialized, experienced
provider (including with its own infrastructure) increases QoS

Elasticityy
• Easy for customers to deal with sudden increases in loads by

simply creating more virtual machines (VMs)

4/28

OLTP vs OLAP in the CloudOLTP vs OLAP in the Cloud

OLTP OLAPOLTP
• Operational databases of

average sizes (TB), write-
intensive

OLAP
• Historical databases of

very large sizes (PB), intensive
• ACID transactional

properties, strong data
t ti ti

y g ()
read-intensive, can
accept relaxed ACID
propertiesprotection, response time

guarantees

Not very suitable for cloud

properties

Suitable for cloud
• Shared-nothing clusters Not very suitable for cloud

• Requires shared-disk
multiprocessors
C t d t t

g
of commodity servers
are cost-effective

• Sensitive data can be• Corporate data gets
stored at untrusted host

• Sensitive data can be
hidden (anonymized) in
the cloud

5/28

Grid Architecture

• Access through Web
services to distributed

User 1 User 2

services to distributed,
heterogeneous resources

– supercomputers, clusters,
databases etc

reserve
deploy
run

store
clean

reserve
store

databases, etc.
• For Virtual Organizations

– which share the same
clean WS calls

MPI calls
WS calls

resources, with common
rules and access rights

• Grid middleware
Cluster 1

Service Compute
nodes nodes

Cluster 2
Service Compute
nodes nodes

Cluster 3
Service Storage
nodes nodes

– security, database,
provisioning, job
scheduling, workflow

WS calls

scheduling, workflow
management, etc.

6/28

Cloud Architecture

• Like grid, access to

User 1 User 2

resources using Web
services

– But less distribution,

Create VMs
start VMs
terminate

reserve
store

more homogeneity,
and bigger clusters

• For different
terminate
pay

WS calls

paycustomers
– Including individuals

• Replication across
Cluster 1

Service Compute Storage
nodes nodes nodes

Cluster 2
Service Compute Storage
nodes nodes nodes

p
sites for high
availability

• Scalability, SLA, y, ,
accounting and pricing
essential

7/28

Cloud Data Management: why not RDBMS?Cloud Data Management: why not RDBMS?

RDBMS all have a distributed and parallel versionRDBMS all have a distributed and parallel version
• With SQL support for all kinds of data (structured, XML, multimedia,

streams, etc.)

But the “one size fits all” approach has reached the limits
• Loss of performance, simplicity and flexibility for applications with

specific, tight requirementsp , g q
• New specialized DBMS engines better: column-oriented DBMS for

OLAP, DSMS for stream processing, etc.

For the cloud RDBMS provide bothFor the cloud, RDBMS provide both
• Too much: ACID transactions, complex query language, lots of tuning

knobs
• Too little: specific optimizations for OLAP, flexible programming

model, flexible schema, scalability

8/28

Cloud Data Management SolutionsCloud Data Management Solutions
Cloud data

C b l (t t b d i tifi li ti)• Can be very large (e.g. text-based or scientific applications),
unstructured or semi-structured, and typically append-only (with rare
updates)

Cloud users and application developers
• In very high numbers, with very diverse expertise but very little DBMS

expertisep

Therefore, current cloud data management solutions trade
consistency for scalability, simplicity and flexibility
• New file systems: GFS, HDFS, …
• New DBMS: Amazon SimpleDB, Google Base, Google Bigtable,

Yahoo Pnuts, etc.
• New parallel programming: Google MapReduce (and its many

variations)

9/28

Google File System (GFS)g y ()
Used by many Google applications

• Search engine, Bigtable, Mapreduce, etc.g g p

The basis for popular Open Source implementations
• Hadoop HDFS (Apache & Yahoo)

Optimized for specific needs
• Shared-nothing cluster of thousand nodes, built from inexpensive

h d f il i th !harware => node failure is the norm!
• Very large files, of typically several GB, containing many objects

such as web documents
• Mostly read and append (random updates are rare)

– Large reads of bulk data (e.g. 1 MB) and small random reads (e.g. 1
KB))

– Append operations are also large and there may be many
concurrent clients that append the same file

– High throughput (for bulk data) more important than low latency

10/28

g g p () p y

Design ChoicesDesign Choices
Traditional file system interface (create, open, read, write,

close and delete file)close, and delete file)
• Two additional operations: snapshot and record append.

Relaxed consistency with atomic record appendRelaxed consistency, with atomic record append
• No need for distributed lock management
• Up to the application to use techniques such as checkpointing and p pp q p g

writing self-validating records

Single GFS master
• Maintains file metadata such as namespace, access control

information, and data placement information
• Simple, lightly loaded, fault-tolerantp g y

Fast recovery and replication strategies

11/28

GFS Distributed ArchitectureGFS Distributed Architecture
Files are divided in fixed-size partitions, called chunks, of

large size, i.e. 64 MB, each replicated at several nodes

Application

GFS client

Get chunk location
GFS

Master

Get chunk dataGet chunk data
GFS chunk server

Linux file system

GFS chunk server

Linux file system

12/28

Google BigtableGoogle Bigtable
Database storage system for a shared-nothing cluster

• Uses GFS to store structured data, with fault-tolerance and
availability

Used by popular Google applicationsUsed by popular Google applications
• Google Earth, Google Analytics, Orkut, etc.

The basis for popular Open Source implementationsp p p p
• Hadoop Hbase on top of HDFS (Apache & Yahoo)

Specific data model that combines aspects of row-store and
l t DBMScolumn-store DBMS

• Rows with multi-valued, timestamped attributes
– A Bigtable is defined as a multidimensional map, indexed by a row key,

a column key and a timestamp, each cell of the map being a single
value (a string)

Dynamic partitioning of tables for scalability
13/28

y p g y

A Bigtable Row

Row unique id Column family Column key

Row key Contents: Anchor: Language:

inria.fr
"google.com"

"Google"

"<html> … <\html>""com.google.www" "english"

"<html> <\html>" t5

t1t2
t3

t1

"google.com"

<html> … <\html> t5

t4

uwaterloo.ca

Column family = a kind of multi-valued attribute
• Set of columns (of the same type), each identified by a keySet of columns (of the same type), each identified by a key

- Colum key = attribute value, but used as a name
• Unit of access control and compression

14/28

Bigtable DDL and DMLBigtable DDL and DML
Basic API for defining and manipulating tables, within a

programming language such as C++
• Various operators to write and update values, and to iterate over

subsets of data produced by a scan operatorsubsets of data, produced by a scan operator
• Various ways to restrict the rows, columns and timestamps

produced by a scan, as in relational select, but no complex
operator such as join or union

• Transactional atomicity for single row updates only

15/28

Dynamic Range PartitioningDynamic Range Partitioning

Range partitioning of a table on the row keyRange partitioning of a table on the row key
• Tablet = a partition corresponding to a row range.
• Partitioning is dynamic, starting with one tablet (the entire tablePartitioning is dynamic, starting with one tablet (the entire table

range) which is subsequently split into multiple tablets as the table
grows

• Metadata table itself partitioned in metadata tablets with a single• Metadata table itself partitioned in metadata tablets, with a single
root tablet stored at a master server, similar to GFS’s master

Implementation techniquesImplementation techniques
• Compression of column families
• Grouping of column families with high locality of accessp g g y
• Aggressive caching of metadata information by clients

16/28

Yahoo! PNUTSYahoo! PNUTS

Parallel and distributed database systemParallel and distributed database system

Designed for serving Web applications
N d f l i• No need for complex queries

• Need for good response time, scalability and high availability
• Relaxed consistency guarantees for replicated dataRelaxed consistency guarantees for replicated data

Used internally at Yahoo!
• User database social networks content metadata management• User database, social networks, content metadata management

and shopping listings management apps

17/28

Design ChoicesDesign Choices
Basic relational data model

• Tables of flat records Blob attributes• Tables of flat records, Blob attributes
• Flexible schemas

– New attributes can be added at any time even though the table is being queried or
updated

– Records need not have values for all attributes

Simple query language
• Selection and projection on a single relation
• Updates and deletes must specify the primary key

Range partitioning or hashing of tables into tablets
• Placement in a cluster (at a site)()
• Sites in different geographical regions maintain a complete copy of the system

and of each table

Publish/subscribe mechanism with guaranteed delivery, for both reliability g y y
and replication
• Used to replay lost updates, thus avoiding a traditional database log

18/28

Relaxed Consistency ModelRelaxed Consistency Model
Between strong consistency and eventual consistencyg y y

• Motivated by the fact that Web applications typically manipulate
only one record at a time, but different records may be used
under different geographic locationsunder different geographic locations

Per-record timeline consistency: guarantees that all replicas
of a given record apply all updates to the record in theof a given record apply all updates to the record in the
same order

Several API operations with different guaranteesSeveral API operations with different guarantees
• Read-any: returns a possibly stale version of the record
• Read-latest: returns the latest copy of the recordRead latest: returns the latest copy of the record
• Write: performs a single atomic write operation

19/28

MapReduceMapReduce

For data analysis of very large data setsFor data analysis of very large data sets
• Highly dynamic, irregular, schemaless, etc.
• SQL or Xquery too heavySQL or Xquery too heavy

New, simple parallel programming model
• Data structured as (key value) pairsData structured as (key, value) pairs

– E.g. (doc-id, content), (word, count), etc.
• Functional programming style with two functions to be given:

– Map(k1,v1) -> list(k2,v2)
– Reduce(k2, list (v2)) –> list(v3)

I l t d GFS l l tImplemented on GFS on very large clusters

20/28

MapReduce Typical UsagesMapReduce Typical Usages

Counting the numbers of some words in a set of docsCounting the numbers of some words in a set of docs

Distributed grep: text pattern matching

Counting URL access frequencies in Web logs

Computing a reverse Web-link graphComputing a reverse Web link graph

Computing the term-vectors (summarizing the most
important words) in a set of documentsimportant words) in a set of documents

Computing an inverted index for a set of documents

Distributed sorting

21/28

MapReduce Processingp g

(k v)
Map

(k1,v)
(k2,v)

Map
(k2,v)
(k v) G

se
t

t

G

(k2,v)

Map (k1,v)
(k1,(v,v,v)) Reduce

Group
by k

np
ut
 d
at
a

ut
 d
at
a
se
t

…
Group
by k

(k v)

(k2,(v,v,v,v)) ReduceIn

O
ut
pu

Map
(k1,v)
(k2,v)

22/28

MapReduce ExampleMapReduce Example

EMP (ENAME, TITLE, CITY)EMP (ENAME, TITLE, CITY)
Query: for each city, return the number of employees whose name is "Smith"

SELECT CITY, COUNT(*)
FROM EMP
WHERE ENAME LIKE "\%Smith"
GROUP BY CITYGROUP BY CITY

With MapReducep
Map (Input (TID,emp), Output: (CITY,1))

if emp.ENAME like "%Smith" return (CITY,1)
Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))

return (CITY,SUM(1*))

23/28

Fault toleranceFault-tolerance

Fault-tolerance is fine-grain and well suited for large jobsFault-tolerance is fine-grain and well suited for large jobs
Input and output data are stored in GFS

• Already provides high fault-tolerance• Already provides high fault-tolerance

All intermediate data is written to disk
• Helps checkpointing Map operations and thus provides toleranceHelps checkpointing Map operations, and thus provides tolerance

from soft failures

If one Map node or Reduce node fails during execution (hard p g (
failure)
• The tasks are made eligible by the master for scheduling onto

other nodesother nodes
• It may also be necessary to re-execute completed Map tasks,

since the input data on the failed node disk is inaccessible

24/28

MapReduce vs Parallel DBMSMapReduce vs Parallel DBMS

[Pavlo et al SIGMOD09]: Hadoop MapReduce vs two parallel DBMS[Pavlo et al. SIGMOD09]: Hadoop MapReduce vs two parallel DBMS,
one row-store DBMS and one column-store DBMS
• Benchmark queries: a grep query, an aggregation query with a group by

clause on a Web log, and a complex join of two tables with aggregation and g, p j gg g
filtering

• Once the data has been loaded, the DBMS are significantly faster, but loading
is much time consuming for the DBMS

• Suggest that MapReduce is less efficient than DBMS because it performs
repetitive format parsing and does not exploit pipelining and indices

[Dean and Ghemawat, CACM10]
• Make the difference between the MapReduce model and its implementation

which could be well improved, e.g. by exploiting indices

[Stonebraker et al. CACM10][Stonebraker et al. CACM10]
• Argues that MapReduce and parallel DBMS are complementary as

MapReduce could be used to extract-transform-load data in a DBMS for more
complex OLAP.

25/28

Issues in Cloud Data ManagementIssues in Cloud Data Management

Main challenge: provide ease of programming consistencyMain challenge: provide ease of programming, consistency,
scalability and elasticity at the same time, over cloud data

Current solutionsCurrent solutions
• Quite successful for specific, relatively simple applications
• Have sacrificed consistency and ease of programming for the sake

of scalability
• Force applications to access data partitions individually, with a loss

of consistency guarantees across data partitionsy g p

For more complex apps. with tighter consistency requirements
• Developers are faced with a very difficult problem: providing p y p p g

isolation and atomicity across data partitions through careful
engineering

26/28

Research Directions in Data ManagementResearch Directions in Data Management

Declarative programming languages for the cloudDeclarative programming languages for the cloud
• E.g. BOOM project (UC Berkeley] using Overlog

Parallel OLAP query processing with consistency guarantees wrt
t d tconcurrent updates

• E.g. using snapshot isolation

Scientific workflow managementScientific workflow management
• E.g. with P2P worker nodes

Data privacy preserving query processing
E i t d d t• E.g. queries on encrypted data

Autonomic data management
• E.g. automatic management of replication to deal with load changesE.g. automatic management of replication to deal with load changes

Green data management
• E.g. optimizing for energy efficiency

27/28

Cloud research @ MontpellierCloud research @ Montpellier

Data
integration

Data quality

Cloud data & information
services

P2P online
communities

services

Agronomy, environment,
h l hhealth, your app. …

28/28

