
Adapting the Galaxy Bioinformatics Tool to Support
Semantic Web Service Composition

Rui Wang, Douglas Brewer, Shefali Shastri, Srikalyan Swayampakula, John A. Miller, Eileen T.
Kraemer and Jessica C. Kissinger

University of Georgia, Athens, GA, 30602

{wang@cs., brewer@cs., shastri@cs., srikal@cs., jam@cs., eileen@cs., jkissing@ }uga.edu

Abstract

As the availability of Web services for the biological
domain increases, the need emerges for a Web service
composition designer that is easy for biologists to use.
Our work focuses on providing biologists and
bioinformaticians with an online, semantic Web service
composition tool. We adapt a bioinformatics tool called
Galaxy, to support semantic Web service composition. A
semi-automatic approach for semantic Web service
composition is utilized. An easy to use online interface is
provided.

1. Introduction

Increasingly, Web services for applications in
biological domains are available from resources such as
the National Center for Biotechnology Information
(NCBI), the European Bioinformatics Institute (EMBL-
EBI), the DNA Data Bank of Japan (DDBJ) and the
Protein Data Bank of Japan (PDBJ). Sophisticated users
often wish to make use of several of these services in
conjunction. Web service composition enables the use of
multiple Web services in combination with one another.
For biologists and non-computer scientists, it can be very
challenging to create Web service compositions with the
currently available designers.

At present, Web service composition designers are
categorized either as mashup editors or as Business
Process Execution Language (BPEL) editors. A mashup
is a Web application that combines data from more than
one source into a single, integrated tool, and the use of the
term mashup typically implies easy, fast integration
through open APIs and data sources, to produce results
that are beyond the original goal of the data owners.
Mashup editors (e.g., Yahoo Pipes, Microsoft Popfly,
Google Mashup Editor) provide a visual interface through
which the user may drag and drop components into a
Web application.

BPEL editors (e.g., ActiveBPEL, NetBeans BPEL,
Oracle BPEL, and Eclipse BPEL) are used to design
traditional Simple Object Access Protocol (SOAP) based
Web services; while mashup editors are used for lighter

weight services typically Representation State Transfer
(REST) based Web services. All of these designers
provide intuitive graphical user interfaces. However, in
keeping with the theme of simplicity associated with
RESTful services, the mashup editors tend to be easier to
use. In addition, they also utilize Web 2.0 technologies to
make them available on the Web.

Although mashup editors are easier to use, they have
limited scope for control flow and automation compared
to BPEL editors. Our goal is to build a designer that
supports both SOAP and REST based services, which
includes the best features from both worlds. In other
words, we would like to keep the simplicity of the REST
based approach, while adding more options for data
mediation as well as greater opportunities for automating
the design of the process.

Our approach is to use semi-automatic composition.
Semantics are introduced to reduce the burdens of Web
service composition on the human designer by increasing
the automation level of the Web service composition
process.

In trying to find a suitable Web-based interface we
were fortunate to have a colleague in Genetics who was
familiar with Galaxy [1]. Galaxy is an integration tool in
the bioinformatics domain that provides a friendly Web
based interface similar to Yahoo Pipes.

1.1 Motivating Example

Since European Bioinformatics Institute (EBI) Web
services are popular in the biological domain, we picked
two of them for our evaluation, namely: WSDbfetch and
WSWUBlast. The second one has a more complex type in
the XML schema compared to the first one. The URLs of
their WSDLs are as below:
http://www.ebi.ac.uk/Tools/webservices/wsdl/WSDbfetch
.wsdl

http://www.ebi.ac.uk/Tools/webservices/wsdl/WSW
UBlast.wsdl

Bioinformatics has many domain specific data formats,
e.g., FASTA, GenBank, EMBL, BED, GFF, MAF, etc.
Unfortunately, this forces biologists and
bioinformaticians to do extra work to convert data

2009 Congress on Services - I

978-0-7695-3708-5/09 $25.00 © 2009 IEEE
DOI 10.1109/SERVICES-I.2009.114

283

formats to fit different software. Therefore, the
motivating sample workflow we choose is to convert the
FASTA format output of the Web service WSDbfetch to
the Galaxy tabular format. The fetchData operation of the
WSDbfetch Web service retrieves data from the database
specified in user inputs. The outputs of fetchData
operation are fed into the Galaxy tool called "Fasta-to-
Tabular" which can be found under the "Convert Format"
category on the left panel of the user interface. This tool
will convert the FASTA format data into tabular format
data.

FASTA is a text-based format for representing
DNA/Protein sequences. A sequence in FASTA format
begins with a single-line description, followed by lines of
sequence data. The description line is distinguished from
the sequence data by a greater-than (">") symbol at the
beginning.

The remainder of this paper is organized as follows:
Section 2 presents related work on Web service
composition as well as a quick review of Galaxy. Section
3 shows how we adapt Galaxy to support Web services.
Section 4 covers our extensions to Galaxy’s current
workflow features to support Web service composition.
Section 5 describes our approach for adding semantics to
Web service descriptions to facilitate process and data
mediation. This is followed in section 6 that gives an
overview of our implementation. Section 7 presents a
preliminary evaluation of our composition design tool.
Finally, section 8 discusses our conclusions as well as
directions for future work.

2. Background and related work

2.1. Use of the Galaxy integration tool

Galaxy [1] is an open source framework for
integrating data and tools in the biological domain.
Through Galaxy, biologists can access popular data
sources and a variety of useful data analysis tools. Figure
1 shows the interface hosted by the original Galaxy Web
site. The left panel contains hyperlinks to data sources
and tools. When a user clicks on a link, the associated
content is displayed in the middle panel. The right panel
displays the user's history.

WS-BioZard [2] was our previous attempt to develop a
semantic Web service composition framework for the
bioinformatics domain. It was built on earlier work in the
METEOR-S project [3 4], which focused on semantic
Web services. WS-BioZard supports semi-automatic Web
service composition for biologists. Though WS-BioZard
had many of the features desired, its user interface was
not Web-based and not as intuitive as our current
approach.

Galaxy lacks Web service capabilities as well as an
effective way to utilize semantics. Since Galaxy is a
larger and more mature project, we chose to add

functionality to Galaxy. By using Galaxy, we will also
benefit from the many data sources and types that are
already integrated, tested and exercised in its code base.

Galaxy has an extensible framework for adding tools.
However, adding new tools to Galaxy requires a local
Galaxy server. As Galaxy is an online application,
requiring the installation of a local Galaxy server is not
desirable. Thus, in addition to tools, Web services would
be a good solution for making Galaxy more extensible. A
user wishing to use a Web service need not install a
Galaxy server, but only provide the URL of the Web
Service Definition Language (WSDL) file.

Figure 1. Galaxy interface

2.2. Related work

Web service composition approaches can be
categorized into three categories [5]: manual, semi-
automatic and automatic approaches.

Most popular Web service composition designers,
including BPEL designers and the Taverna workflow
designer (http://taverna.sourceforge.net/), employ a
manual approach. That is, users manually select services
and compose them together into a workflow. Taverna is
the only designer targeted specifically for the biological
domain. It is based on the Simple Conceptual Unified
Flow Language (Scufl) rather than BPEL. However, since
manual approaches have a longer learning curve than is
desirable for many users, our approach, with the help of
semantics, provides greater assistance to users composing
Web services. Our goal is to substantially lower the
learning curve for users and to also decrease the time it
takes to develop a composition.

Automatic approaches, in which techniques from
Artificial Intelligence (AI) such as classical and decision-
theoretic planners that are used to automatically generate
a composition of Web services, have been studied in
academia for some time [6-9]. However, many
researchers, e.g., Charif-Djebbar et al. [10], Hull et al.
[11], Rao et al. [12] claim that these approaches are
currently not mature enough and have too many
limitations to be used in the real world, e.g., an expert is
needed to encode initial state and goal state formally for

284

each workflow as well as annotate Web services with
precise preconditions and effects. Analogous to our
approach, Thakkar et al. [7] developed a framework for
integration targeted at the biological domain. However,
compared to our approach, it does not support operations
on heterogeneous data, and so thus cannot deal with
complex XML structures, while the data mediator in our
system can handle complex XML structures.

For our purposes, a semi-automatic approach, which
introduces semantics during the Web service composition
process and also allows the user to interactively control
the generated workflow, is in our view more practical
than a manual or an automatic approach. Approaches
described by Xu et al. [13] and Michael et al. [14] also
fall under the semi-automatic service composition
category. Especially relevant is [14], since it targets the
biological domain. However, it focuses on applying
semantics only to process mediation. Specifically,
semantics are used to select a more suitable Web service
during the assembly process. It does not discuss handling
heterogeneous data mapping between Web services. This
can be handled by our designer. Also in our approach we
apply semantics to data mediation as well as process
mediation.

3. Adding Web services to Galaxy

Our first extension to Galaxy adds the capability to
invoke Web services. This is already completed and the
evaluation is shown in the evaluation section. We do this
by automatically generating a Web service client and then
wrapping it in a small program so that Galaxy can invoke
it as a tool. A Web service client is a program used to
communicate with a specific Web service. The Zolera
Soap Infrastructure (ZSI) (a Python package) is used here
to help generate the Web service client.

Figure 2 shows the structure of WS Adapter that
supports the integration of Web services. To add a Web
service, users only have to provide the WSDL file, which
describes the interface of the Web service. The
WSDL2PY module will parse the given WSDL file and
generate the client stubs. These stubs are a set of files
containing the code required to interact with the Web
service. Using the client stubs, the Python Introspection
module will identify all the operations, data types, etc.,
thus helping the WS Client Factory generate the client. A
Web service generally has multiple operations. When a
user wishes to invoke any operation of an added Web
service, the WS Invocation Handler module will create an
instance of the service interface. In the meantime, the
Input/Output XML Handler will parse the input data
types and provide them to the user interface. After the
user enters the input data, the WS Invocation Handler will
feed the input data to the service instance that was created
before and then invoke the operation of the Web service
through the Internet. The returned SOAP message will be

deserialized into Python objects which represent the data
structure of the response. The Input/Output XML Handler
will then parse these objects, so that they can be displayed
on the user interface.

Figure 2. Architecture of WS Adapter (automatically

add Web services to Galaxy)

4. Workflow capabilities of Galaxy

4.1. Current release
The latest release (Rev 1733:a4214de3752e) of Galaxy

provides an online workflow editor. Through this editor,
users can integrate tools preloaded in Galaxy into a
workflow that is saved in the history and can be invoked
as a normal tool in Galaxy. The input data stored inside
the Galaxy server is either uploaded by the user (in the
form of files) or retrieved from a database through Galaxy.
This online editor interface is one of the main reasons that
we chose to use Galaxy. Thus, we would like to keep this
feature and extend it to support semantic Web service
composition.

4.2. Adding Web Service Composition
With Web services integrated as tools in Galaxy, users

have the ability to create workflows based on these Web
services. Currently, we have already completed the
functionality to support composition using both Web
services and native tools of Galaxy. The test of this
function is shown in the evaluation section. As a tool in
Galaxy, a Web service can be manually composed with
other tools in Galaxy to form a workflow. The resulting
workflow can be saved to a user’s history in Galaxy. The
invocation of Web services and the execution of tools are
considered steps in the user’s history.

In addition, Web services with simple inputs/outputs
can be composed into a workflow in the same way as
Galaxy tools can be composed into a workflow. After a
Web service is invoked, the Input/Output XML Handler
will parse the returned SOAP message and deserialize it
into Python objects. The simple type output is one string

285

or integer, etc. rather than a complicated data structure.
Therefore, it is possible to feed this simple string into
another Web service that takes a simple string as an input.

However, many Web services have complex types for
their inputs and outputs. Thus, it is problematic to create a
workflow involving such Web services. Semantics can be
used for facilitating semi-automatic composition of the
workflows by suggesting or plugging in appropriate Web
services as well as handling data mediation for the user
(see section 5).

We extended the workflow module of Galaxy to
support XML. For this purpose we added a workflow
composer module. The workflow composer invokes our
extended workflow engine, which saves the workflow as
an XML file locally on his/her machine or into his/her
account. The workflow engine also executes this saved
workflow when requested by the user. We are creating a
Domain Specific Language (DSL) in Python called
BpelPy for a useful subset of BPEL. It allows one to write
executable process specifications as well as read and
write BPEL.

Two types of workflows exist. The first kind of
workflow is made up of only Web services. We save this
type of workflow in a subset of standard BPEL format
[15]. The resultant workflows from our Web service
composition tool can be shared with a variety of BPEL
engines or BPEL designers available today. The second
type of workflow contains both Web services and native
tools of Galaxy. In this case, we map the tool description
to a SAWSDL like specification and then use a special
invocation feature provided by BpelPy to execute native
Galaxy tools. Every such tool native to Galaxy has its
own XML description file. Figure 3 shows a sample of
such a description file. This tool description file contains
information about the input, the output, the command to
invoke the program of the tool, etc.

Figure 3. Sample XML description file of a native

Galaxy tool

The various parts of an XML tool description file can
be transformed to generate different parts of a WSDL file.
The <tool> tag provides the tool id, name and version
which can be included in the <definitions> tag of WSDL.
The XML tool file takes inputs and produces outputs in
Galaxy defined formats. We can express these Galaxy
defined formats using different constructs in the XML
Schema Definition (XSD) schema.

Once we define the input and output elements, we add
the <wsdl:message> tags, <wsdl:PortType>,
<wsdl:operation>, etc. and other WSDL tags to generate
the WSDL file. The WSDL file then is semantically
annotated using a Semantic Annotations for WSDL and
XML Schema (SAWSDL) annotation tool like Radiant
(http://lsdis.cs.uga.edu/projects/meteor-s/downloads/
index.php?page=1) to generate a SAWSDL file. These
SAWSDL files are then used in normal BPEL
compositions. For example, in Figure 3, the name of the
first input parameter is "input". In our workflow, as
shown below, it will be used in the <variable> tag to
define a variable and then in the <copy> statement to
copy values between two variables. To support this
workflow model, we must extend the current workflow
module as described earlier.

<variable name="inputVar" messageType=" inputs"/>
<variable name="fetchDataOutput" messageType="
fetchDataResponse"/>
……
<assign name="assign1">
 <copy>
 <from variable="fetchDataOutput"

part="fetchDataReturn" />
 <to variable="inputVar" part="input"/>
 </copy>
</assign>

5. Utilizing semantic Web services

5.1. Semantic Web service

SAWSDL [16] provides mechanisms to annotate
WSDL with semantic concepts, which can help
disambiguate the description of Web services during
automatic discovery or composition of Web services.

SAWSDL provides three types of semantic annotation:
Model References, Lifting Schema Mappings and
Lowering Schema Mappings. A Model Reference is used
to semantically annotate different parts of the WSDL,
such as the operation, fault, or the schema's
complexTypes and simpleTypes to relate them to the
ontology. Lifting and lowering schema mappings in
SAWSDL apply only to schema definition languages and
are used to facilitate automatic data mediation, so that two
Web services can communicate (i.e., the output of one
Web service can be transformed to the desired input

286

type/format of the second Web service). As long as the
output of one Web service is semantically related to the
input of another Web service, these schema mappings can
be used to facilitate communication via data mediator
[17].

5.2. Process mediation

Galaxy comes with many tools and users can also add
more Web services to our extended Galaxy, so the
number of services in Galaxy could grow quite high.
Therefore, it is difficult for users to select appropriate
services from the space and connect them in a suitable
order to compose a workflow. This problem can be
tackled by process mediation. Currently, this module is
still under development.

In the current version of Galaxy and in other popular
workflow designers (e.g., Taverna, NetBeans BPEL
Designer, ActiveBPEL designer, etc.), their approaches to
composition is essentially manual. We are following a
semi-automatic approach based on the use of process
mediators. Users can interact with the editor during
service composition and can also ask for services to be
suggested, at which time a set of ranked services will be
provided to the user.

Our algorithm can provide forward, backward or
bidirectional suggestions to users whilst they are using
our editor to compose services into a workflow. A
forward suggestion means that when a user picks the first
service, the output of it can be fed into the suggested
service. Conversely, a backward suggestion means that
the output of the suggested service can be fed into the
service already selected by the user. A bidirectional
suggestion tries to suggest a service which can be plugged
between two currently selected services.

In the case of a bidirectional suggestion, our ranking
algorithm considers several criteria. It first looks at the
compatibility of the inputs and outputs, i.e., the output of
the prior service must match to the input of the suggested
service, while the output of the suggested service must
match to the input of the subsequent service. Then the
algorithm will check the compatibility of preconditions
and post-conditions/effects if available, i.e., the post-
conditions from the prior service should imply the
preconditions of the suggested service. Finally, we are
investigating how the functionality specified for an
overall goal for the process could be used to influence the
choice of suggested services based on their functionality.
Goals, preconditions and effects may be specified using
the Web Ontology Language (OWL) and the Semantic
Web Rule Language (SWRL).

In our system, we use SAWSDL (although if
preconditions/effects are desired, WSDL-S [18]
extensions are utilized) as the description language for
Web services. A SAWSDL file may have semantic
annotations for inputs, outputs and functionality. For
inputs and outputs, the schema specification often forms a

tree structure with semantic concepts as its nodes and the
<message><part> as the root. The similarity of the trees
will be calculated using the matching algorithms provided
by Lumina (http://lsdis.cs.uga.edu/projects/meteor-
s/downloads/Lumina/) [19] that ranks candidate Web
services. Lumina semantically ranks the Web services
based on data semantics and functional semantics [20].

5.3. Data mediation

Data heterogeneity is one of the major problems
encountered during Web service composition. For
example, student (ID, name, birthday) and student (ID,
name) are different data. Even though they have the same
name, they have different properties. If the output of the
first Web service is student (ID, name, birthday) and the
input of the second Web service is student (ID, name)
then, when we compose these two Web services together
into a workflow, the problem of data heterogeneity
emerges. Data mediation aims at solving this problem.

Many researchers have studied the problem of data
mediation in general and in regard to Web services. So far,
there are mainly two algorithms using SAWSDL for data
mediation: top-down [17, 21] and bottom-up [2, 22].

For the top-down algorithm, the main idea is to
traverse the target XML schema tree in a top-down
manner, and try to fill in each node with the data in the
source XML schema. The target will be the XML schema
of the input message of the second Web service. The
source will be the XML schema of the output message of
the first Web service. The source message is first
transformed into a format identified by ontology concepts
through the lifting schema mapping in SAWSDL. This
format is then transformed into the target message format
through the lowering schema mapping in SAWSDL. The
details of this algorithm are in [17]. In our case, we are
challenged to include data formats provided by Galaxy.
To meet this challenge, we have implemented a data
mediator capable of mapping, for example, tabular
formats to a semantic definition along the lines of an
abbreviated SAWSDL specification.

The bottom-up algorithm mainly compares the
semantic annotations of the leaf-level nodes in the XML
schema tree between source message and target message.
From the leaf-level node, it will then traverse the schema
tree in a bottom-up manner to the top to compose an
XPath expression. The XPath expressions will be used in
the <copy> element of the BPEL file to map the source
message to the target message. Figure 4 shows the
structure of the data mediator.

Our implementation of bottom-up algorithm was
finished and already used in WS-BioZard [2, 22]. It can
run standalone or easily be plugged into another system,
so we can plug it in Galaxy and use it here for data
mediation during Web service composition. We are
currently implementing the top-down approach and plan
to compare it with the bottom-up approach.

287

Figure 4. Architecture of Data Mediator (handle

semantic date mediation)

6. Overview of implementation

Galaxy is implemented in Python using Pylons for its
Web application framework. Therefore, Python is the
basis of our implementation. Moreover, the ZSI Web
Service library is used for helping with the integration of
Web services into Galaxy.

6.1 System architecture
Our implementation adds two main modules to Galaxy,

WS Adapter and WS Composer (Figure 5).

Figure 5. System Architecture

WS Adapter will automatically generate a wrapper for
each Web service. It will also deal with the input/output
and invocation of the Web service. In Section 3, we
discussed in detail the functional modules of WS Adapter.

The WS Composer has three parts: the Workflow
Engine, Process Mediator and Data Mediator. The
Workflow Engine works to support our workflow model.
It will save the Web service workflow as a BpelPy BPEL
file and also have the capability to run the workflow. The
Process Mediator implements our service ranking

algorithm. It will suggest appropriate services to the user
and deal with the process mediation mentioned in Section
5.2. The Data Mediator (Figure 4) has the responsibility
of handling data mediation during Web service
composition. Since our process mediation algorithm and
data mediation algorithm are both based on the SAWSDL,
ontology, etc., their implementations share some code,
such as the code to parse ontology, parse SAWSDL, etc.

While we have modified/extended some of the internals
of Galaxy, we kept the main Web interface. We also
customized part of the user interface to support our
extensions. For instance, some Web pages were created to
support adding Web services by users. Some other Web
pages were added to interact with users during data
mediation and process mediation. All these Web pages
were implemented with Mako and JavaScript.

7. Preliminary Evaluation

To test our extensions, we setup a Galaxy server on our
own computer (demo site: http://128.192.251.200:8080)
with all tests performed using the Mozilla Firefox
browser. The evaluation tests were designed to show that
we successfully adapted Galaxy to support semantic Web
service composition. Specifically it includes tests of the
following functionalities:

Users can add Web services to our extended Galaxy.
Users can compose Web services and the tools of
Galaxy into a workflow with the help of semi-
automatic process mediation and data mediation.

Figure 6. The runWUBlast operation of EBI
WUBlast Web service

7.1 Test of adding Web services to Galaxy

To show that the user can add Web services to our
extended Galaxy, we tested with two EBI Web services
described in Section1.1.

After we typed the URLs in the user interface one at a
time, Galaxy refreshed the interface and displayed all the
newly added operations of the two Web services. We

288

invoked one operation: runWUBlast with the following
inputs as shown in Figure 6. The response of job ID is
returned. It showed that the Web service has been
successfully added. This job ID can be fed into another
operation, called poll, of the WUBlast Web service. The
poll operation can retrieve the detailed result according to
the given job ID.

7.2. Test of composing a workflow

This test is to compose a simple workflow (see the
motivating workflow presented in Section 1.1) as shown
in Figure 7. The inputs are shown on the right panel.
After composition, a user can save the workflow into a
BpelPy BPEL file or execute it.

As shown in Figure 9, the workflow actually converted
the FASTA formatted output (Figure 8) of the first Web
service into tabular format as the final result. Therefore,
this test reaches the conclusion that our extended Galaxy
based on our workflow model can support a workflow
composed of Web services and Galaxy tools. Users can
add Web services to Galaxy and compose a workflow
with the added Web services. At present, we are working
on semi-automatic data mediation and process mediation
to facilitate Web service composition.

Figure 7. Sample workflow

Figure 8. FASTA formatted output of the first Web
service of the sample workflow

Figure 9. Final result of the workflow (in tabular
format)

8. Conclusions and future work

We have added to Galaxy the ability to use Web
services as well as a BPEL based workflow model. We
are developing an online Web service composition tool
for the biological domain. Our contributions include
applying both top-down and bottom-up algorithms for
data mediation and a DSL for a useful subset of BPEL in
Python.

A unique aspect of our work is that we exploit
available semantics, rather than mandating full semantic
specifications, so our tool will work with whatever
semantic annotations available. The simplest annotations
are model references on an operation's inputs and outputs.
This is enough to support bottom-up data mediation. If
lifting and lowering schema mappings are also provided
then top-down data mediation may be carried out. If the
functionality of a Web service operation is semantically
annotated, many irrelevant services may be ignored.
Finally, although more difficult to provide, if annotations
of an operation's preconditions are effects are provided,
suggestions (or process mediation in general) can be
further refined by checking logical consistency as well as
compliance with goals.

These concepts of semantics, data mediation and
process mediation will enable Galaxy to support semantic
Web services composition and become a simple, easy to
use process designer. These extensions to Galaxy will
provide a much needed addition to Galaxy's biological
analysis capabilities which allow non-technical users to
create functional workflows.

Currently, we have completed the WS Adapter module.
We are working on implementations related to semantics,
specifically WS Composer including Data Mediator,
Process Mediator and semantic workflow engine. We are
also adapting our user interface to convey more semantic
meaning and to be more user-friendly.

Acknowledgements

This project is funded in part by NIH R01 AI058515
awarded to Jessica C. Kissinger. J.M, J.C.K, E.K., D.B
and R.W have been funded in whole or in part with
Federal funds from the National Institute of Allergy and
Infectious Diseases, National Institutes of Health,
Department of Health and Human Services, under
Contract No. HHSN266200400037C. We would like to

289

thank James Taylor for his valuable insights into the
Galaxy tool. We also express our gratitude to all our
project members and ApiDB/EuPathDB project members
for all their help, support, interest and valuable hints.

References

[1] Galaxy, http://galaxy.psu.edu/

[2] Z. Wang, J. A. Miller, J. C. Kissinger, R. Wang, D. Brewer
and C. Aurrecoechea, "WS-BioZard: A Wizard for Composing
Bioinformatics Web Services", Proceedings of SWF'08, in
conjunction with SCC'08, Honolulu, Hawaii , Jul 2008, pp.
437-444.

[3] K. Sivashanmugam, K. Verma, A Sheth, J.A. Miller,
"Adding Semantics to Web Services Standards", Proceedings of
the ICWS, Las Vegas, Nevada, Jun 2003, pp. 395-401.

[4] K Sivashanmugam, JA Miller, AP Sheth, K Verma,
"Framework for Semantic Web Process Composition",
International Journal of Electronic Commerce, M.E. Sharpe,
Winter 2004-05, Vol. 9(2), pp. 71-106.

[5] S. Dustdar, W. Schreiner, "A Survey on Web Service
Composition", International Journal of Web and Grid Services,
InderScience, 2005, Vol. 1(1), pp. 1-30.

[6] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau,
"Automating DAML-S Web Services Composition Using
SHOP2", 2nd International Semantic Web Conference
(ISWC2003), Springer, Sanibel Island, Florida, 2003, Vol.
2870/2003, pp. 195-210.

[7] S. Thakkar (B) · J. L. Ambite · C. A. Knoblock, "Composing,
Optimizing, and Executing Plans for Bioinformatics Web
Services", The VLDB Journal, Trondheim, Springer, Norway,
Sept 2005, Vol. 14(3), pp. 330–353.

[8] F. Casati, S. Ilnicki, and L. Jin, "Adaptive and Dynamic
Service Composition in eFlow", Proceedings of 12th
International Conference on Advanced Information Systems
Engineering (CAiSE), Springer Stockholm, Sweden, Jun 2000,
Vol. 1789/2000, pp.13-31.

[9] F. Casati, M. Sayal and M. Shan, "Developing E-Services
for Composing E-Services", Proceedings of 13th International
Conference on Advanced Information Systems Engineering
(CAiSE), Springer, Interlaken, Switzerland, Jun 2001, Vol.
2068/2001, pp. 171-186.

[10] Y. Charif-Djebbar and N. Sabouret, "Dynamic Web Service
Selection and Composition: An Approach Based on Agent
Dialogues", Proceedings of the 2006, IEEE/WIC/ACM,
Springer, Hong Kong, Dec 2006, Vol. 4294/2006, pp. 515-521.

[11] R. Hull, M. Benedikt, V. Christophides, J. Su, "E-Services:
A Look Behind the Curtain", Proceeding of the 22th PODS, San
Diego, USA, Jun 2003, Vol. 22, pp. 1-14.

[12] J. Rao and X. Su. "A Survey of Automated Web Service
Composition Methods", Proceedings of the First International
Workshop on Semantic Web Services and Web Process
Composition, SWSWPC 2004, San Diego, California, USA, Jul
2004, Vol. 3387/2005, pp. 43-54.

[13] M Xu, J Chen, Y Peng, X Mei, and C Liu, "A Dynamic
Semantic Association-Based Web Service Composition
Method", Proceedings of the 2006 IEEE/WIC/ACM, IEEE,
Hong Kong, Dec 2006, pp. 666-672.

[14] D Michael, P Rachel, W Mark, "Semi-automatic web
service composition for the life sciences using the BioMoby
semantic web framework", Journal of Biomedical Informatics,
Elsevier Science, San Diego, USA, Oct 2008, Vol. 41(5), pp.
837-847

[15] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F.
Ferguson (Editors), "Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More", Prentice Hall, USA, 2005.

[16] J. Farrell and H. Lausen, "Semantic Annotations for WSDL
and XML Schema", http://www.w3.org/2002/ws/sawsdl/spec
/2007, Aug 2007

[17] M. Nagarajan, K. Verma, A. P. Sheth and J. A. Miller,
"Ontology Driven Data Mediation in Web Services",
International Journal of Web Services Research (JWSR) , USA,
Dec 2007, Vol. 4(4), pp. 104-126.

[18] R. Akkiraju, J. Farell, J. A. Miller, M. Nagarajan, A. Sheth
and K. Verma, "Web Service Semantics - WSDL-S",
Proceedings of the W3C Workshop on Frameworks for
Semantics in Web Service (W3CW'05), Innsbruck, Austria, Jun
2005, pp. 1-5.

[19] K. Li, "Lumina: Using WSDL-S for Web Service
Discovery," Master Thesis (M.S. in CS Degree), University of
Georgia, December 2005

[20] S. Emani, "A Comparative Evaluation of Semantic Web
Service Discovery: Algorithms and Engines," Master thesis
(M.S. in CS Degree), LSDIS lab, University of Georgia, April,
2009

[21] Z. Wu, "Automatic Composition of Semantic Web Services
using Process and Data Mediation", Technical Report, LSDIS
lab, University of Georgia, Feb 2007

[22] Z. Wang, R. Wang, C. Aurrecoechea, D. Brewer, J. Miller,
J. Kissinger, "Semi-automatic Composition of Web Service for
Bioinformatics Domain", Technical Report, LSDIS lab,
University of Georgia, May, 2008

290

