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Abstract. We propose a rule-based language, Netlog, to express dis-
tributed applications such as communication protocols or P2P appli-
cations in a declarative manner. The language extends Datalog with
communication primitives, as well as aggregation and non-deterministic
constructs, standard in network applications. Our contribution is twofold.
First we define a sound distributed fixpoint semantics, which takes ex-
plicitly into account the in-node behavior as well as the communication
between nodes, and solves semantic problems raised in declarative net-
working. Second, we show that syntactic restrictions over the programs
can ensure polynomial bounds on the complexity (time and message) of
the distributed execution. The language has been implemented and runs
over a virtual machine, Netquest, which relies on a DBMS. Netlog pro-
grams are partly compiled into SQL queries, which makes them portable
over heterogeneous architecture.

1 Introduction

The trend towards ubiquitous environment is accelerated with wireless tech-
nologies interconnecting an increasing number of heterogeneous devices. Their
intermittent availability, the dynamicity of the networks, as well as the data
intensive applications envisioned raise considerable challenges. One of the fun-
damental barriers today to their development is the lack of programming
abstraction [15].

The declarative networking approach, initially proposed in [12] has been shown
to offer a nice paradigm to express in a declarative manner network applications.
Nevertheless, as shown in particular in [16], its semantics has not been formally
defined and suffers from severe ambiguities. In this paper, we propose a new
rule-based language that (i) integrates a collection of rich primitives required
in networking applications, (ii) admits a well-defined distributed fixpoint se-
mantics, (iii) has been implemented on the Netquest system, and tested over
simulated networks, and finally (iv) supports optimization and allows to bound
the complexity of the distributed execution.

Smart devices are usually dedicated systems based on ad hoc models, which
are not generic enough to support the needs of future applications (flexibility,

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 88–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Netlog, a Rule-Based Language for Distributed Programming 89

scalability, ease to produce and maintain, etc.). The deployment of a sensor net-
work for instance is a tedious task which requires an expertise in the underlying
OS and hardware.

The separation of a logical level, accessible to users and applications, from
the physical layers constitutes the basic principle of Database Management
Systems. It is at the origin of their technological and commercial success [17].
This fundamental contribution of Codd in the design of the relational model of
data, has lead to the development of universal high level query languages, that
all vendors recognize, as well as to query processing techniques that optimize
the declarative queries into (close to) optimal execution plans.

Declarative query languages have already been used in the context of net-
works. Several systems for sensor networks, such as TinyDB [14] or Cougar [7]
offer the possibility to write queries in SQL. These systems provide solutions to
perform energy-efficient data dissemination and query processing. A distributed
query execution plan is computed in a centralized manner with a full knowl-
edge of the network topology and the capacity of the constraint nodes, which
optimizes the placement of subqueries in the network [19]. Declarative methods
have been used also for unreliable data cleaning based on spatial and temporal
characteristics of sensor data [9] for instance.

Another application of the declarative approach has been pursued at the net-
work layer. The use of recursive query languages has been initially proposed to ex-
press communication network algorithms such as routing protocols [13] and
declarative overlays [12]. This approach, known as declarative networking is
extremely promising. It has been further pursued in [11], where execution tech-
niques for Datalog are proposed. Distributed query languages thus provide new
means to express complex network problems such as node discovery [3], route find-
ing, path maintenance with quality of service [6], topology discovery, including
physical topology [5], secure networking [1], or adaptive MANET routing [10].

The problems of semantics raised by declarative networking, motivated us to
introduce a new language. As NDlog [11] for instance, it relies on the deductive
languages [18] developed in the 80’s in the field of databases, but with important
differences that facilitate both execution and semantics. One of the fundamental
characteristics of the proposed language is that Netlog programs are local.
One node cannot access the memory of another node neither for write nor for
read instructions. This simplifies greatly the semantics of negation. It also facil-
itates the design of secure protocols. Netlog also extends classical recursive rule
languages with arithmetic, aggregate functions, as well as a non-deterministic
choice, which are required for many distributed problems, such as those involved
in networking protocols.

Fixpoint logics and rule-based languages have been widely studied in the clas-
sical centralized setting [2]. The main originality of the distributed fixpoint
semantics proposed in this paper is to take explicitly into account the com-
munication between nodes, and in particular the routing issue. Programs can
generate messages to arbitrary destinations, which have to be routed to some
neighbor following a routing strategy.
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The distributed fixpoint semantics is defined for asynchronous systems. On
each node, a local round consists of a computation phase followed by a com-
munication phase. During the computation phase, the program updates the lo-
cal data and produces messages to send. During the communication phase, the
router transmits the incoming messages to the program, and routes the outgo-
ing messages. In the present setting, a message can be routed if a route is found
in the data on the node, otherwise it is discarded. Other choices can of course
equally be made.

It has been widely shown now that rule-based languages allow to obtain code
about two orders of magnitude more concise than standard imperative program-
ing languages. But at this stage, this code is not necessarily simple to write. The
main challenge for declarative networking is to develop techniques for rewriting
programs which are simple to write into equivalent programs, which admits ef-
ficient execution. This means optimizing the programs, making them adapt to
their context, with different execution schemes.

In this paper, we concentrate on the complexity, and show that syntactic
restriction on the rules can enforce complexity bounds on their execution. We
consider three complexity measures, the distributed time and the message com-
plexity, which are classical in distributed computing, and the in-node complexity,
which is interesting for restricted terminals. We show that a restricted class of
programs, namely the well-behaved programs, admit polynomial complex-
ity bounds for these three measures.

We have developed a virtual machine, Netquest, which runs Netlog programs
according to the distributed fixpoint semantics. It relies on an embedded DBMS,
which stores the data as well as the programs on the nodes of the network.
The Netlog programs are essentially compiled into SQL queries, which are then
executed by the DBMS. The Engine manages the iteration of the queries. This
choice of implementation was motivated by the fact that an increasing number
of devices now support embedded DBMS’s. It simplifies the development, makes
the Netquest system easily portable over heterogeneous devices and networks,
and supports data intensive applications.

We have used Netlog to program a large set of problems from classical dis-
tributed algorithms to networking, from sensor networks to P2P games. They
confirmed the conciseness of the code, validated our semantics, as well as the
expected behavior derived from the syntactic form of the rules.

The paper is organized as follows. In the next section, we present the compu-
tation model. The Netlog language is presented through examples in Section 3.
Section 4 is devoted to the distributed fixpoint semantics. In Section 5, we study
the complexity of Netlog programs. A brief presentation of the implementation
is done in Section 6.

2 The Computation Model

We next introduce the computational model on which the Netlog rules are
executed. We consider a message passing model for distributed computation
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[4], based on a communication network whose topology is given by a graph
G = (VG , Link), where VG is the set of nodes, and Link denotes the set of bidirec-
tional communication links between nodes. The nodes have a unique identifier,
Id, taken from 1, 2, · · · , n, where n is the number of nodes. Each node has dis-
tinct local ports for distinct links incident to it. The control is fully distributed
in the network, and there is no shared memory.

The communication between nodes rely on messages which have the following
format: message :=< content, destination >. We thus distinguish between two
parts in each message: (i) the content of the message, and (ii) its destination.
The content is restricted to facts derived by the Netlog rules. The destination
is either a node Id; or nil (the message is sent to neighbor nodes); or all (the
message is broadcasted to all nodes).

We distinguish between computation events, performed in a node, and commu-
nication events, performed by nodes which cast their messages to their neighbors.
On one node, a computation phase followed by a communication phase is called
a local round of the distributed computation.

All the nodes have the same architecture and the same behavior. We make
in general no particular assumption on the distributed system, which might be
asynchronous, have failure, and rely on moving nodes. The architecture of
each node is composed of three main components, (i) a router, handling the
communication with the network; (ii) an engine, executing the Netlog programs;
and (iii) a local data store to maintain the information (data and programs)
local to the node.

The modules of the system on a node α at local round � behave as follows:

- Router. During the computation phase, the router queues the incoming mes-
sages on the reception queue, Rα(�), and the messages to push produced by
the Engine on the emission queue, Pα(�).

Fig. 1. The node architecture
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When the communication phase starts, the messages on the reception queue,
Rα(�), are sorted according to their destination. (i) If their destination is α
(the node Id), nil, or all, their content, grouped in Lα(�), is transfered to
the Engine. (ii) If their destination is another node Id, or all, the messages,
grouped in Fα(�), are put on the emission queue, Pα(�). The reception queue
is then emptied.

Then, each message on the emission queue, Pα(�), is handled. Either its
destination is nil or all, and the message is sent to all neighbors. Otherwise,
a route to the desired destination is queried in the Route relation in the data
store. The message is sent to the next hop on that route if it is found, and
otherwise discarded1.

- Deductive Engine. It processes the programs during the computation phase.
First, the programs, that can be activated by the new facts in Lα(�), are
loaded. The rules are then run till no rules can be executed to derive new
facts, new derived facts (in Iα(� + 1)) are stored in the data store, and
messages produced are pushed to the emission module, Pα(�), of the router.
The behavior of the Engine follows the semantics of the language presented
in the sequel.

- Local Datastore. It handles two sorts of information: all the data of the
node, whether related to networking issues (e.g. network topology, routes,
bandwidth, etc.) or applications, as well as the rules of the protocols.

The Datastore contains all data, which are all modeled as relations. Some pre-
defined relations are used by the system. It is the case of the two relations Link
of arity 2 and Route of arity 3:

Link = (Source, Destination) : N × N

Route = (Source, Nexthop, Destination) : N × N × N

The relation Link is read-only. It is maintained by the underlying network mon-
itoring. Each node has the fragment of the relation Link with its neighbors.
The relation Route on the other hand is computed by programs, and is used by
the Emission module of the Router. It therefore plays a particular role in the
semantics of Netlog programs. If no routes are available, the communication is
restricted to neighbors. Note that in some examples, we use relations of larger
arity for links and routes with their costs for instance. The two built-in relations
Link and Route, are then defined as views over more complex links and routes.

A Netlog program starts with declarations which include the data formats
(relations) used, as well as some initial facts to store in the local store. They are
installed on the data stores when programs are loaded.

3 The Netlog Language

We introduce the language and its primitives through the fundamental example
of route computation. Netlog relies on recursive rules, of the form head : − body,
1 Other strategies can be implemented, such as search for a route, forward to other

nodes, or failure messages.
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which informally mean that if the body is true then the head can be derived.
Let us recall the recursive rules which define the transitive closure of Link in a
centralized environment:

TC(x, y) : − Link(x, y). (1)
TC(x, z) : − Link(x, y); TC(y, z). (2)

The rules are applied in parallel, and the order of the literals in the body is
irrelevant. The transitive closure is computed by iterating the rules over an
instance of Link, that represents a given graph. For each tuple (α, β) such that
Link(α, β) holds, the first rule allows to derive TC(α, β), and similarly for the
second rule. The rules are recursively applied till a least fixpoint is obtained, in
this case in a number of steps proportional to the diameter of the graph.

The time complexity can be optimized, by replacing rule (2) by the following
rule, which converges in a logarithmic number of steps.

TC(x, z) : − TC(x, y); TC(y, z). (3)

In this paper, we are interested in networks, where the nodes have initially only
the knowledge of their neighbors. The Link relation is thus distributed over the
network such that each node has only a fragment of it.

The Netlog programs are installed on each node, where they run concurrently.
The computation is distributed and the nodes exchange information. The facts
deduced from rules can be stored on the node, on which the rules run, or sent
to other nodes. The following rules specify TC distributively:

� TC(x, y) : − Link(x, y). (4)
� TC(x, z) : − TC(x, y); TC(y, z). (5)

The affectation operator in front of rules determines where the results are
affected. The effect of ”↓” is to store the results of the rule on the node where
it runs; ”↑”, to push them to its neighbors; and ”�”, to both store and push
them.

The previous program computes the transitive closure in a distributed fashion
as follows. The results of the rules are both (�) stored locally and pushed to
neighbors. When it converges (after a number of rounds proportional to the
diameter in a synchronous system), the transitive closure is distributed over the
network, each node deriving in particular the nodes reachable from itself.

Let us consider more closely the semantics of the affectation operators. Assume
in the sequel that rule (4) is installed on each node, and let’s focus on the
recursive rule. In rule (5), it is important that results are both stored and pushed
(�). The following store rule would compute paths in the direct neighborhood
of each node, without communication.

↓ TC(x, z) : − TC(x, y); TC(y, z). (6)

The next push rule, on the contrary, would lead to an infinite loop of commu-
nication, with no result stored.

↑ TC(x, z) : − TC(x, y); TC(y, z). (7)
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Indeed, ↓ is the only ”write” instruction in the language. Facts that are received
by a node are only used to trigger rules.

Let us now consider the locations on which the rules run, and where the results
are sent. Consider again rule (2). The following rule stores and pushes its result.

� TC(x, z) : − Link(x, y); TC(y, z). (8)

Given that nodes store only their neighbors in Link, rule (8) instantiates either
x or y by the node Id, say α, on which it is executed. Suppose first that α
instantiates x. Then, the node α will store (and push) facts TC(α, γ) for any
γ, reachable from α. Suppose instead that α instantiates y. Then α stores and
pushes facts TC(β, γ) for β, neighbor of α, and γ reachable from (β through) α.

Such facts although irrelevant for α, can be useful for β, to which they can
be sent by the following rule, which unicast the facts, using the destination
instruction ”@”, on a variable of the head, instead of pushing them to all
neighbors.

� TC(@x, z) : − Link(x, y); TC(y, z). (9)

The destination instruction can apply to a node Id, all or nil. If the deduced
fact contains @β, @all or @nil, then its destination is respectively node β, each
node in the network, or each neighbor. If its destination is not a neighbor, we will
see in the sequel to which neighbor the message containing the fact is pushed,
according to the knowledge the node has of the Route relation.

To avoid computing irrelevant facts, it is as well possible to force the computa-
tion to take place on the node instantiating x. This is expressed in the following
rules, using the location instruction ”@” in front of a unique variable in the
body of the rule, so that this variable is instantiated by the node’s Id where the
rule runs.

� TC(x, y) : − Link(@x, y). (10)
� TC(x, z) : − Link(@x, y); TC(y, z). (11)

Rules (10) and (11) essentially partition the results of TC on relevant nodes.
Let us now consider routes, which for each destination give the next hop on the

path to that destination. The relation Route(Src, Hop, Dst) extends TC, with
an attribute for the next hop. Routes are stored in the routing table, Route, and
are used by the Router for passing messages to their destination. Rules (10) and
(11) can be adapted easily to define routes as follows.

� Route(x, y, y) : − Link(@x, y). (12)
� Route(x, y, z) : − Link(@x, y); Route(y, u, z). (13)

As above, assume now that rule (12) is stored on each node. Note that rule (13)
is very naive and results in all possible routes. The following rule avoids recom-
puting routes, when a route is already known.

� Route(x, y, z) : − Link(@x, y); Route(y, u, z);¬Route(x, , z). (14)
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It makes use of a universal literal, ”¬Route(x, , z)”, which is interpreted by a
universal quantification: there is no route from x to destination z, for any value
of the next hop. The first route discovered is then stored and pushed.

Netlog also contains standard arithmetic and aggregation functions, as illus-
trated below. Routes can be compared according to their length for instance.
The following program computes such weighted routes.

� WRoute(x, y, y, 1) : − Link(@x, y). (15)
� WRoute(x, y, z, n) : − Link(@x, y); WRoute(y, u, z, n′);

¬WRoute(x, , z, ); n := n′ + 1. (16)

Rule (16) stores the first route discovered and sends it to its neighbors. It uses
an assignment literal (:=) together with arithmetic operations. Alternatively,
the nodes can send the minimal routes, which can be defined using aggregation
as follows.

↓ WRoute(x, y, y, 1) : − Link(@x, y). (17)
� SLength(x, z, Min(n)) : − WRoute(@x, y, z, n). (18)

↓ WRoute(x, y, z, n) : − Link(@x, y); SLength(y, z, n′); n := n′ + 1. (19)

Rule (18) groups the weighted routes by (Src, Dst), and selects the one with
the minimal length. As a side effect, it deletes the facts SLength(x, z, n′) with
a value n′ > Min(n) from the local data store.

We next introduce a construct, the consumption operator, !, whose effect
is to delete the facts that are used in the body of the rules from the local data
store. The effect of the following rule is to delete the oversized WRoute facts.

� SLength(x, z, Min(n)) : − WRoute(@x, y, z, n);
!WRoute(@x, y′, z, n′); n′ > n (20)

The consumption operator is the only explicit deletion available in the language,
and it applies only to the local store, since the language is local. The above
program (rules (17)-(20)) produces the minimal length route between each pair
of source and destination. In case of plurality, one route can be chosen non-
deterministicaly using the choice operator, �.

↓ CRoute(x, �y, z, n) : − SLength(x, z, n); WRoute(@x, y, z, n). (21)

Rule (21) groups the routes with minimal length for each pair of source (the
node’s Id) and destination, and selects one route (next hop) randomly.

Note that the aggregation and the choice operator can be used together in the
head of a rule. The following rule chooses a neighbor associated with its degree.

Neighbor(@x, �y, #z) : − Link(x, y); Link(y, z). (22)

The variable y is interpreted by a value such that Link(x, y) holds, and the
expression #z is interpreted by the count over all values z such that Link(y, z),
for the previously chosen y value.
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4 Distributed Fixpoint Semantics

Netlog programs are running on the nodes of the network. They produce facts
to store as well as facts to sent to other nodes. Their semantics on one node is
defined by fixpoint in a way which is classical for rule-based languages such as
Datalog. We extend the fixpoint operators to take all the constructs (arithmetic,
aggregation, non-deterministic choice) into account.

We distinguish between two sorts, an uninterpreted sort (N,≤), and an arith-
metic sort (R,≤, +,×). Assume we are given a set of relations S, called a rela-
tional schema, which contains relation Link. Given a finite set V of variables,
a valuation over V is a mapping from V to N ∪ R. Let V ar(r) be the set of
variables of some rule r over schema S. Let V(V ar(r)) be the set of valuations
σ over V ar(r) which respect the sorts.

Let I be an instance over schema S. The satisfaction of the literals in the
body of rule r by instance I and valuation σ is defined in a classical way, but for
the universal literal, where: (I, σ) |= ¬R(t1, . . . ,−, . . . , tn) iff for any constant
C, R(σ(t1), . . . , C, . . . , σ(tn)) /∈ I. Assume the body of r, bodyr, is L1, . . . , L�.
We have (I, σ) |= bodyr iff (I, σ) |= Li, for each i ∈ [1, �].

Now we define the valuation of the head, headr, of rule r. In Netlog, ag-
gregate functions and �-operators can only occur in the head of rules. Let
V ar��Agg��(headr) be the simple variables in the head, which are neither arguments
of aggregate functions nor of �-operators, and V ar��Agg(headr) be the variables
in the head which are not arguments of aggregate functions.

Let τ ∈ V(V ar��Agg��(headr)). We extend τ to V(V ar(r)) with respect to inter-
pretation I, as:

[τ ]I,r ={σ|σ ∈ V(V ar(r)), σ(x) = τ(x), for all x∈dom(τ), and (I, σ) |= bodyr}.

In the sequel, we assume that [τ ]I,r 	= ∅. We define τ(headr) as follows:

– If headr contains only simple variables and is of the form R(x1, . . . , xn),
τ(headr) = R(τ(x1), . . . , τ(xn)).

– If headr is of the form R(x1, . . . , xn, Aggr(y1), . . . , Aggr(ym)), without �-
terms, then τ(headr) =

R(τ(x1), . . . , τ(xn), Aggr{{σ(y1)|σ ∈ [τ ]I,r}}, . . . , Aggr{{σ(ym)|σ ∈ [τ ]I,r}}).

where {{ }} denotes multi-set and Aggr, an aggregate function on multi-sets.

If the head contains �-terms, let τ� ∈ V(V ar��Agg(headr)) be a valuation. Simi-
larly, we have [τ�]I,r defined as above, and we assume [τ�]I,r 	= ∅.

– If headr is of the form R(x1, . . . , xn, Aggr(y1), . . . , Aggr(ym), �(z1), . . . ,
�(zl)), with �-terms, then τ(headr) is an element α of the set:

{R(τ(x1), ..., τ(xn), Aggr{{σ′(y1)|σ′ ∈ [τ�]I,r}}, ..., Aggr{{σ′(ym)|σ′ ∈ [τ�]I,r}},
τ�(z1), ..., τ�(zl)) | i ∈ [1, n], τ�(xi) = τ(xi)}.
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For simplicity, we write: τ(headr) � α, where � denotes a non-deterministic
mapping.

We can now define the set of positive consequences of a program P over an
instance I, Δ+

P (I), as well as the set of consumed facts, Δ−
P (I). First, the set of

the possible derived facts of a program P over an instance I is defined by:

FactsP (I) = {τ(headr)|r ∈ P, τ ∈ V(V ar��Agg��(headr)), [τ ]I,r 	= ∅}.

We are interested in subsets of FactsP (I) which satisfy a functional dependency
x1, . . . , xn → z1, . . . , z�, that is those subsets of facts where a single choice was
made for all variables of diamond operators. Let PP (I) be the set of such subsets
of FactsP (I). Then,

Δ+
P (I) � J , where J ∈ PP (I);

Δ−
P (I) = {R(σ(t1), . . . , σ(tn))|r ∈ P, (I, σ) |= bodyr, !R(t1, . . . , tn) in bodyr}

∪{R(α1, . . . , αn, β1, . . . , βm, γ1, . . . , γl)|r ∈ P, headr =
R(x1, . . . , xn, Aggr(y1), . . . , Aggr(ym), �(z1), . . . , �(zl)),

R(α1, . . . , αn, β′
1, . . . , β

′
m, γ1, . . . , γl) ∈ Δ+

P (I),
R(α1, . . . , αn, β1, . . . , βm, γ1, . . . , γl) ∈ I}.

It is not hard to see that Δ−
P (I) ⊆ I.

We can now introduce the semantics of Netlog programs in a distributed
setting. We assume that a program P has been installed on each node of the
network. We denote by P↓ the subset of store rules, and P↑ of push rules in P .
Note that store-and-push rules belong to both sets.

We monitor the activity, computation and communication, on one node, say
α. At each local round, on each node, the program takes as input the local data
and the data pushed by other nodes, and produces updated local data, and
data to be pushed. The node also forwards messages, that are not used in the
local computation. Its interaction with the rest of the network is defined by the
communication function: Rα(�), which maps � to the set of incoming messages
on node α at local round �.

Note that at each local round, the router sorts the incoming messages into
two sets Lα(�), of received facts, and Fα(�), of messages to forward to other
nodes depending upon their destination: Lα(�) contains the facts extracted from
messages received from other nodes, with destination α, ”all”, or ”nil”. Fα(�)
contains the messages received from other nodes, with a destination different
from α or destination ”all”, which will be forwarded further to other nodes.

Fα(�) =
{
(fact, dest)| (fact, dest) ∈ Rα(�); dest /∈ {α, nil}.};

Lα(�) =
{
fact

∣
∣ (fact, dest) ∈ Rα(�); dest ∈ {α, nil, all}. }, for � ≥ 0.

The computation relies on two operators, associated to program P , (i) for the
data to store locally, Ψ↓

P , and (ii) for the data to push to other nodes, Ψ↑
P . They

take as input the local instance I, and the received facts L.

– Ψ↓
P (I, L) � Δ+

P↓(I∪L)∪(I\Δ−
P (I∪L)) defines the store operator, producing

facts to store.
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– Ψ↑
P defines the push operator, producing messages to push:

Ψ↑
P (I∪L) �

⎧
⎨

⎩
(fact, dest)

∣
∣
∣
∣∣
∣

fact ∈ Δ+
P↑(I ∪ L); and

if fact contains an address term @β or @all,
then resp. dest = β or all; otherwise dest = nil.

⎫
⎬

⎭

We use the notation ”�” instead of equality to denote the non-determinism of
the result. During one local round, the following computation takes place on
each node.

Definition 1. Given a Netlog program P , an instance I on node α, a set of
incoming facts L, a one-round execution of P on α wrt I and L, is given by
a sequence (Iα

i ,Pα
i )i≥0 such that:

– Iα
0 � Ψ↓

P (I, L),
– Iα

i+1 � Ψ↓
P (Iα

i , ∅), for i ≥ 0;
– Pα

0 � Ψ↑
P (I ∪ L),

– Pα
i+1 � Ψ↑

P (Iα
i ) ∪ Pα

i , for i ≥ 0.

Note that the facts received L are used in the computation, but not stored on
the node, while the facts to be sent are accumulated in the Pα

i ’s without being
used in the computation on α.

The one-round computation of a program on a node consists of any possible
one-round execution.

Definition 2. Given a program P , an instance I on node α, a set of incoming
facts L, a one-round computation of P on α wrt I and L terminates if
all its non-deterministic one-round executions converge to a fixpoint, i.e., every
sequence (Iα

i ,Pα
i ) has a limit (Iα, Pα) for i → ∞. Such a limit is called a one-

round fixpoint of the program P on node α wrt I and L.

When a local round � starts, the node α has a local instance Iα(�), and has
received facts Lα(�), and messages to forward Fα(�). It then starts its compu-
tation, and produces a new local instance Iα(� + 1) � limi→∞Iα

i and a set of
messages to push Pα(�) � limi→∞Pα

i ∪ Fα(�) if the limits exist.
Let us now consider the communication between nodes. The messages to push

are accumulated in Pα(�). Their routes will be computed according to the knowl-
edge node α has of the Link and Route relations (see the Router description in
Section 2).

In the case of synchronous systems without failure, there is an explicit corre-
spondence between the incoming and outgoing sets of messages.

Proposition 1. For synchronous systems without failure, we have for l ≥ 0:
Rα(0) = ∅,
Rα(� + 1) =

{
(fact, dest)

∣
∣
∣
∣
∃β s.t. Link(β, α) ∈ Iβ(�); (fact, dest) ∈ Pβ(�);and

if dest /∈ {α, nil, all}, then Route(β,α, dest) ∈ Iβ(�)

}
.

The proof is straightforward.
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In the case of asynchronous systems, the function Rα depends upon the dis-
tributed system, and in general might differ between two executions. The seman-
tics is thus defined up to the system of communication function Rα for each node
α. We next define the termination of programs which relies on the convergence
of the sequence of fixpoints.

Definition 3. Given a program P , running on a network G with an instance I
distributed on each node, and a system of communication function (Rα)α∈VG , a
computation of P on G wrt I and the Rα’s terminates if on each node α, and
at each round � all the one-round computations of P converge to a fixpoint, i.e.
all sequences (Iα

i (�),Pα
i (�)) have a limit (Iα(�),Pα(�)) for i → ∞, and moreover

all sequences (Iα(�),Pα(�)) have a limit (Iα,Pα) for � → ∞. The collection of
limits (Iα)α∈VG is called a distributed fixpoint of the program P.

5 Complexity

In this section we investigate the complexity of Netlog programs. Their termi-
nation is of course undecidable. Nevertheless, for restricted classes of programs,
we can obtain bounds on their complexity. We consider three complexity mea-
sures. Two are classical in distributed computing, the distributed time and the
message complexity. The last one, the in-node complexity, is generally ignored
for distributed systems, but it is interesting in this context since it admits nice
bounds as well.

– The distributed time complexity, is the maximum number of rounds of any
local execution of any node till the termination;

– The per-node message complexity, is the maximum number of messages sent
by any node till the termination;

– The per-round in-node computational complexity, is the time complexity of
the in-node computation in one round.

Several factors can cause the non-termination of a program. (i) A program can
generate an unbounded number of new values, by using arithmetic functions for
instance. Even if the domain in which the program ranges is bounded, (ii) the
sequences of instances Iα

i (�) can very well not converge at some round �. Or,
(iii) the sequences (Iα(�),Pα(�)) do not have limits.

By controlling these three causes of non-termination, we can obtain well-
behaved programs, which admit polynomial complexity bounds. To solve the
first problem, range restrictions can be imposed on the variables in the rules to
guarantee that they range over some finite set of values. The main problem is
to prevent arbitrary recursion over the creation of new values.

A program P is range-restricted, if for each input instance, there is a domain
of size polynomial in the instance (for a polynomial depending upon P ), such
that the fixpoint of the program can be computed over this restricted domain,
that is with all variables ranging over the restricted domain, while producing the
same result. Although undecidable, this property can be enforced by syntactic
restrictions.
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For lack of space, we only illustrate such restrictions on two examples of
Section 3. In rule (16), the fourth attribute of WRoute, with variable n, say
Lth, is a new-value attribute. The literal ¬WRoute(x, , z, ) in the body of the
rule guarantees a functional dependency from (Src, Dst) to Lth, and thus a
bound on the value of Lth. In rules (18) and (19), there is a recursion between
SLength and WRoute. The aggregation function in rule (18) ensures a functional
dependency from the first and second attributes of SLength to the third, and a
linear bound on these values. It follows that the number of values in WRoute is
also linearly bounded.

Let us tackle now the second problem. We say that a program P is inflation-
ary if I ⊆ Ψ↓

P (I, L) for any set of facts L. Programs without consumption nor
aggregate function are inflationary. However, this is a very restrictive condition
but it can be relaxed, by allowing to replace monotonically, at each iteration
of the fixpoint operator, facts with an aggregate attribute (with the aggregated
value continuously either increasing or decreasing). Such programs are called
quasi-inflationary. Rules (18) and (19) define a quasi-inflationary program for
instance adding continuously facts in relation WRoute and updating SLength
with continuously smaller values.

The third problem can be tackled by guarded communication. A push
rule is guarded if its body can only be instantiated using facts from the local
instance, not from the incoming messages. At the syntactic level, this can be
enforced easily by forbidding recursion over head relations in P ↑. Consequently,
if L is a set of facts over the head relations of P ↑, Ψ↑

P (I ∪L) = Ψ↑
P (I). Rule (18)

for instance is guarded.
A program is well-behaved if it is a range restricted, quasi-inflationary pro-

gram with guarded communication. We can prove the following result.

Theorem 1. Well-behaved programs have distributed time complexity, per-node
message complexity, and per-round in-node computational complexity polynomial
in the size of the input instance.

Netlog programs can be transformed into equivalent programs which admit more
efficient execution. We have considered several aspects of the optimization
as well as the adaptive behavior of programs. First, the implementation of
Netlog is based on a semi-naive evaluation, which triggers only rules over
inputs where one of the relations in the body of the rule has been updated
since the previous iteration of the fixpoint. Second, the implemented version
of Netlog supports modules of rules. Programs are decomposed into distinct
modules, which model specific tasks and trigger one another after completing
their fixpoints.

6 The Netquest System

The Netquest virtual machine presented in Section 2 has been implemented. It
relies on an embedded DBMS, with which the Engine is coupled.
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We choose to rely on an embedded DBMS, to simplify the programing of the
system, increase its portability, and allow the extension to data intensive ap-
plications. This choice is by no means a limitation since an increasing number
of small devices have now embedded DBMSs such as smart phones or iMote
devices, for which we carried out experiments. The Netlog programs are com-
piled into SQL queries, which are then loaded on the embedded databases. Our
compiler can currently produce queries for either MySQL or SQL Server.

The main component is the Engine which computes the fixpoints Iα and Pα

on each node α. It loads the queries corresponding to a program and runs them
against the database, till a fixpoint is reached. Most of the computation is thus
performed by the DBMS. The Engine has some additional functionalities, not
developed in the present paper, such as timers, necessary for networking pro-
tocols. Programs are organized into modules to ease programming. Netquest
also uses optimization techniques, such as the triggering of rules by new facts,
which avoid unnecessary re-computation, when there are no changes in the in-
put of rules. Netquest also relies on a more complex type system standard for
programming languages, and integrates aggregate functions available in SQL.

The router handles the queues of incoming and outgoing messages, and works
according to the semantics presented in this paper. This implies to revisit the
functionalities of standard routers.

Netquest has been installed and tested over two platforms: the network simu-
lator WSNet [8], as well as a network emulator developed in the project. A large
set of protocols from different areas have been programmed in Netlog and tested
over these two experimental platforms, while a visualization tool allows to follow
the network activity, the communication, as well as the execution of individual
rules.

7 Conclusion

Declarative languages for distributed programming are very promising, but they
raise technical difficulties. In this paper, we have proposed a new rule-based
language, that on one hand is well suited for programming network applications
and protocols, but meanwhile admits a well defined semantics, which solves
problems raised by previous proposals.

Our objectives are to produce code which is (i) easy to write because it relies
on declarative statements; (ii) adaptive, can be compiled into different algorithms
depending upon the dynamic context; and (iii) verifiable formally. All these
objectives require a formal semantics.

We are currently far though from declarative languages for networking. In-
deed, in current proposals, most of the distributed optimization techniques has
to be expressed in the rules. We are currently working on automatic transla-
tion of rule programs to equivalent programs which are optimized, can adapt to
changes in the network, much like query optimization techniques in the context
of databases.
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We choose to implement Netlog on top of a DBMS, to allow data intensive ap-
plications, and increase the portability of the system over heterogeneous devices
and networks. Our first experiment on devices are rather conclusive.
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