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ABSTRACT
Taverna and Galaxy are two workflow systems developed
specifically for bioinformatics applications. For sequence
analysis applications, some tasks can be implemented easily
on one system but would be difficult, or infeasible, to be
implemented on the other. One solution to overcome this
situation is to combine both tools in a unified framework
that seamlessly makes use of the best features of each tool.
In this paper, we present the architecture and implemen-
tation of a high-level system that provides such a solution.
Our approach is based on meta-workflows and workflow pat-
terns. We present a case study about the design of universal
primers to demonstrate the capabilities of our system and
to explain how the interplay between Taverna and Galaxy
simplifies the analysis process.

1. INTRODUCTION

1.1 Scientific workflow systems
The use of the scientific workflow paradigm for design-

ing and executing data processing and analysis pipelines has
gained wide attention over the past decade. The paradigm
addresses many problems faced by researchers working in
the bioinformatics domain, and in particular genome anal-
ysis applications. For such applications, users typically col-
lect and analyze sequence data from multiple sources. The
analysis itself is conducted using multiple software tools and
proceeds in a staged fashion with the output of one tool feed-
ing an input to another. Many of the tools can be compute
intensive and their implementation typically makes use of
high performance computing resources which can be hosted
within the user’s organization or remotely at another orga-
nization. The same applies to the data sources used in the
analysis where some could be hosted locally and others can
be hosted remotely. Scientific workflow systems provide an
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easy-to-use metaphor that can be used for both designing
and executing bioinformatics applications in such a hetero-
geneous environment.

Informally, a workflow is a general term used to describe
the steps needed to solve a certain task. An abstract repre-
sentation of a workflow is typically a directed graph where
each node represents a task to be executed and edges rep-
resent either data flow or execution dependencies between
different tasks. With the help of a scientific workflow sys-
tem, the nodes in the graph can be mapped to real data
sources and software components that can be executed ei-
ther locally on the user machine or remotely at distributed
locations. Two key advantages typically cited for using sci-
entific workflow systems. The first advantage is that they
can provide an intuitive and high-level model that can be
used by application scientists themselves for building com-
plex applications. The application scientists with little or no
programming expertise can focus on the logic of their appli-
cations and no longer need to worry about the technical
details of accessing and invoking the software components
and/or distributed data sources they need. Such details can
be delegated to the workflow system itself. The second ad-
vantage is that recording application steps as a workflow pro-
vides an efficient means for assuring reproducibility of the
analysis results and allows sharing of the workflows them-
selves between users.

Building on these advantages, a large number of academic
scientific workflow systems have been developed in the past
decade. Examples include Discovery Net [16, 9], Taverna
[14, 11], Triana [18, 17], Kepler [12] and OMII-BPEL [5].
These different tools share many common features. They
typically provide a visual front-end that enables users to
compose their workflows using the graph-based metaphor.
This visual interface also allows users to define individual
steps that are possibly mapped to specific data sources and
executable software tools and to define the associated pa-
rameters. Once the workflow is composed, it is submitted
to an execution engine that handles the invocation of the
tools and also handles the data transfer between them.

However, different scientific workflow systems have been
developed with different applications and use cases in mind.
This has inevitability influenced what is considered as an
atomic task, or node, in each system. Furthermore, the dif-
ferent systems build on slightly different programming mod-
els, and thus the meaning of an arc connecting two nodes
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typically differs from one system to another. As a result, the
same conceptual or abstract workflow designed by the user
on a whiteboard typically ends up looking, and behaving,
differently on different workflow systems. A recent survey
and comparison of some of these workflow systems and their
underlying programming models can be found in [6].

1.2 Motivation
Our work in this paper stems from our recent work and

experience in building the NUBIOS system, a bioinformatics
resource for the Egyptian bioinformatics community (www.
nubios.nileu.edu.eg) using locally installed high perfor-
mance computing facilities while still allowing access to re-
mote tools. NUBIOS also aims at providing a simplified user
interface enabling users to compose and execute their own
workflows, and also to have access to workflow libraries that
pre-package widely used tasks. To enable this, we considered
and evaluated three existing workflow systems; InforSense,
Galaxy and Taverna as candidates for use within our infras-
tructure. The InforSense system is a commercial product
based on the outputs of the Discovery Net project [9]. The
other two systems are based on an open source frameworks.
Although all systems are widely used in bioinformatics, each
offers different advantages in terms of usability and perfor-
mance due to differences in their internal language assump-
tions and also differences in their architecture.

Our objective in this paper is to investigate the devel-
opment of simple methods that enable interoperability be-
tween different scientific workflow systems in general, and
the two open source systems; Taverna and Galaxy in par-
ticular. In doing so, our approach is based on developing
a meta-workflow approach with a simplified user GUI that
looks more similar to a traditional flow chart, and thus more
accessible to the user. We also build mapping tools based
on the paradigm of workflow patterns that can translate the
implementation of the meta-workflow to either system. The
outcome of our work that interests the bioinformatics sci-
entists is a software system, called Tavaxy, that combines
the advantages of both systems for the sequence analysis
domain.

This paper is organized as follows: Section 2 provides a
brief comparison between Galaxy and Taverna, and intro-
duces the workflow patterns. Section 3 describes a simple
demonstration application in sequence analysis and its im-
plementation in both systems. Section 4 introduces Tavaxy
and its architecture based on workflow patterns. In Section
5, we implement the workflow of the demonstration applica-
tion in Tavaxy, and show also the interplay between Galaxy
and Taverna in Tavaxy. Conclusions are in Section 6.

2. BACKGROUND
Taverna[14, 11] was developed as general purpose scien-

tific workflow tool as part of the myGrid e-science initiative
with the aim of simplifying access to, and coordination of, re-
mote Web and Grid services within a particular application.
As a general purpose workflow tool, Taverna can generally
work with any data type and does not come with any pre-
packaged sequence analysis tools. However, a large library
of existing tools that operate on genomic sequences has been
developed and integrated by the Taverna user community.
In contrast, Galaxy[10] provides an integrated system that
supports the retrieval of sequences from genome databases
(particularly UCSC and Ensembl) and for processing, anno-

tating and analyzing these sequences using a large library
of software tools that comes with the system. It should be
noted that both systems are easily extensible allowing in-
tegration of different tools, and in general can be provide
the same functionality to the user. Yet, each system has a
set of unique features that are not supported by the other,
thus ultimately affecting their ease of use. In the remainder
of this section, we provide an overview of both systems and
then provide a brief comparison of their features.

2.1 Taverna
The Taverna workbench follows an explicit model for work-

flow authoring. Its main entry point is the workflow editor
allowing users to drag, drop and connect components rep-
resenting different data sources and tools. The system is
built on a decoupled architecture that separates the editor
from the enactment engine. Workflows in Taverna are repre-
sented internally in the SCUFL (Simple Conceptual Unified
Flow Language) for representing workflows as DAGs (Di-
rected Acyclic Graphs). SCUFL supports predominately a
data flow model of execution. Nodes in the graph represent
processors which transform input data to output data. A
processor with no input acts as a data source and a pro-
cessor with no outputs acts as a data sink. The directed
arcs between the nodes are generally channels for passing
the output of one processor as input to another.

Taverna supports iterative execution of a processor by pro-
viding a set of configurable iteration strategies that specify
how to iterate over a list of inputs. In addition, Taverna
supports a number of control flow constructs for organiz-
ing control flow operations. For example, an arc connecting
two nodes can simply indicate sequential dependency be-
tween two nodes with no data flowing on it, and conditional
branching is achieved by passing a special ’failure’ token on
one of is output branches.

Data source and sink nodes are widely used in Taverna.
The advantage of the feature is that it makes the dependence
on the parameters explicit and allows them to be easily con-
trolled either by the user or by other processors allows the
user to explicitly control how each output is handled. The
key disadvantage is that heavily relying on using them ends
up generating workflows with a large number of nodes even
for a simple task.

2.2 Galaxy
Galaxy follows mainly an implicit model for workflow cre-

ation while still allowing the user to access, modify and share
the created workflows explicitly. The main entry point is a
portal-like interface where the user is presented with a large
list of sequence manipulation tools, each with a special user
interface allowing the user to upload data, set execution pa-
rameters including where the output is stored and to submit
a task for execution. As the user submits more tasks where
the output of one task is used as input to another, the sys-
tem automatically records a history log. This log is then
presented to the user as a graphical workflow which can be
edited and submitted for further executions as needed.

Similar to Taverna, Galaxy supports a data flow model
operation with the outputs of one node flowing as input
to other nodes. However, it does not rely on an explicit
workflow language to represent workflows. The properties
of each node (e.g. its parameters) and the properties of each
link (i.e. the associated nodes and flowing data types) are



simply stored in a relational database. If a user modifies a
node or a link, the database is directly updated.

2.3 Comparison
As discussed previously, our primary aim was to choose

a workflow tool that would simplify access and execution
of sequence analysis tasks on our bioinformatics server as
well as using remote resources. Some of the tools executing
locally are developed in house, e.g. [2, 1] and execute on
our local high performance cluster. For other tools such as
BLAST which require updated databases we typically rely
on using remote servers.

2.3.1 Features of Galaxy not in Taverna

• Local service execution: The complete Galaxy sys-
tem can be installed to run locally or it can be used
through web-based interface at the Galaxy server (http:
//main.g2.bx.psu.edu). For our own NUBIOS infras-
tructure this is ideal. Relying solely on remote servers
executing in other countries introduces performance
penalties when Internet connectivity becomes limited.
This is a common occurrence in many developing coun-
tries.

• Native support for sequence manipulation: Galaxy
has a large built-in library of sequence manipulation
and analysis tools. These include, among others, for-
mat converters, analysis packages, such as EMBOSS
[15], and data processing utilities supporting opera-
tions like joining and filtering. Interestingly, these op-
erations work not only on traditional string or number
keys as in the database domain, but works also on in-
tervals specifying positions in the genomic sequences.
Taverna, on the other hand, requires integrating these
tools separately. This requires programming experi-
ence to wrap the locally installed tools within web-
service interface.

• Enhanced usability: The usability in Galaxy is an
attractive feature, because its portal-like interface pro-
vides a more natural representation of functionalities.
Furthermore, the workflows generated in Galaxy tend
to look much simpler than those generated in Taverna.

• Scheduling support for HPC cluster operation:
Galaxy, once installed, runs directly on local high per-
formance computing cluster, including HPC implemen-
tation of single tools and also scheduling of complete
workflows. Taverna on the other hand does not pro-
vide scheduling functionality which needs to be imple-
mented separately to make use of our HPC facilities.

2.3.2 Features in Taverna not in Galaxy

• Support for remote services: Taverna is web-service
based and requires no installation of the analysis tools,
allowing access to remote servers. This is and advan-
tage using local services only is not possible for other
institutions in developing countries that have limited
computational resources and do not host up-to-date
databases.

• Support for control flow operations: Taverna con-
tains more workflow constructs such as if-else and loops

which are typically required in many tasks. This ac-
cordingly allows the design and execution of complex
workflows. These constructs are not directly supported
in Galaxy, and accordingly puts a limitation on the
types of workflows that can be executed on Galaxy.

• Explicit XML representation of workflows: Work-
flows in Taverna are represented and stored in the
SCUFL format which is simple to share and manip-
ulate outside the editor. Galaxy uses no explicit rep-
resentation specifying the workflows. Instead, a work-
flow is stored directly on its built-in workflow database.
Sharing a workflow between two users is still possi-
ble and is achieved by setting appropriate permissions
within their user accounts.

• Access to a service directory and workflow repos-
itory: Taverna includes support for a service directory
and ontology based search tools. These features, which
are basically attributed to the simple SCUFL format,
have created a wide community of users and contribu-
tors. This provides a valuable resource allowing us to
locate, retrieve and re-purpose existing tools and work-
flows. Galaxy currently does not support such registry
facility.

2.4 Workflow patterns
Workflow patterns are set of constructs that model a (usu-

ally recurrent) requirement (sub-process); the description of
these constructs is an integral part of the pattern definition.
Workflow patterns, despite being less formal than workflow
languages, have recently received increasing popularity due
to their practical relevance in comparing and understanding
the features of different workflow language implementations.

As originally introduced in [19], workflow patterns were
used to characterize business workflows and were catego-
rized into control flow patterns, which specify the execution
of activities, data flow patterns, which specify the handling
and access of data items, resource and operational patterns,
which organize the execution of tasks on the available re-
sources, and exception handling patterns, which handle er-
rors during workflow execution. We note that the concept of
patterns is in general applicable to scientific workflows and
some of the specified patterns for business processes can still
be used for scientific ones.

In this section, we review some workflow patterns that can
be used in comparing the operation of Taverna and Galaxy.
For compactness of presentation, we will specify control flow
pattern in association with the flow of involved data.

1. Sequence: In this pattern, which can be referred to
as pipeline, task B runs after the execution of task
A. The data that is produced by A and has to be
processed by B moves over an edge whose start is an
output port at A and destination is an input port at B.
The concept of ports allows to select among different
results of A the pieces of data to be processed by B.
Desired execution dependencies involving no data can
be achieved by dummy output from A to B. That is,
each edge should involve data transfer and is specified
by the data it passes from task A to B. This pattern
is supported by both Taverna and Galaxy.

2. Synchronous Merge: A task is invoked only if all
incident tasks are executed; Figure 1(a) depicts this



Figure 1: Control workflow patterns modelling the ex-

ecution of workflow tasks.

pattern with three tasks A, B, and C, where task A
and B should be completed before C. This pattern
also specifies that task C takes two inputs (one from
A and another from B) and the data flowing from A
and B to C goes to different input ports. This pattern
is supported by both Taverna and Galaxy.

3. Multi-choice Fork: This includes the use of if-else
and switch-case constructs to execute a task if a condi-
tion is satisfied. In this pattern, the data flows to the
pre-specified input ports. This pattern is supported
only by Taverna.

4. (Parallel) synchronized fork: Figure 1(b) depicts
this pattern with three tasks A, B, and C. Tasks B
and C run after the execution of A (possibly in parallel
depending on the workflow execution algorithm). The
data output from A flows according to two schemes:
1) One copy is passed to B and another one to C. 2)
Different data items passed to B and C. This pattern
is supported by both Taverna and Galaxy.

5. Simple iteration: This pattern specifies repetition
of a workflow task. In Figure 1(c), the node B, which
could be a sub-workflow is repeated many times. The
number of iterations can be either fixed or dependent
on the data produced at each step. In each iteration, a
piece of output of task B can replace the corresponding
piece of input. For example, a parameter file can be
passed to B and at each iteration this parameter file
is modified and passed again to B. But we stress that
the iteration pattern has specified input and output
ports. This pattern is supported only by Taverna.

3. MOTIVATING EXAMPLE
While conducting our evaluation we compared the imple-

mentation of a number of sequence analysis workflows in
both Taverna and Galaxy. In this section we focus on one
of these workflows which is simple enough to highlight and
contrast some of their key features.

3.1 Design of Universal Primers
Polychain Reaction (PCR) is a lab technology used to iso-

late and multiply DNA segments. A primer is a short DNA
sequence used to start the PCR process. A primer sequence
is chosen such that it is complementary to a subsequence of
the DNA segment to be isolated and multiplied. In a mix-
ture of DNA segments representing a number of genes, the
primer binds only to the complementary part of it and the
multiplication will be specific to this DNA segment.

Figure 2: High-level view of the Universal Primer Work-

flow. The extract consensus step identifies the conserved re-

gions. Parsing and handling the sequences are usually imple-

mented using Perl/Pythons scripts or some utility tools.

To reduce the cost, researchers opt to design a single
primer that can bind to homologs of a gene existing in mul-
tiple taxa or species. This type of primers is called universal
primer. The design of universal primer is more complicated
than the design of traditional primers, because the DNA
sequences of these genes are not identical and acquire mu-
tation over time, especially in bacteria and viruses. The
computational challenge in universal primer design is thus
to select primers which are unique to the gene of interest
but similar enough among multiple homologs of it.

To this end, the following workflow is used: First, the gene
homologs are searched for in the database using the pro-
gram BLAST [3, 4]. Then multiple alignment of the genes
of interest is computed using programs like ClustalW [13] or
T-coffee [13]. (Scientists usually use multiple programs to
have more reliable results.) The highly conserved (similar)
regions in this alignment are identified and the respective
sub-sequences are extracted as potential primers. Finally,
the physical properties (basically melting temperature) of
these potential primers are evaluated using a program like
ePrimer3 (EMBOSS version of Primer3 [13]). Those primers
passing the evaluation are reported. Each of these steps has
a set of parameters, and a step is repeated with less strin-
gent parameters if no output is obtained. Two confirmatory
steps are added to the design of universal primers: The first
is to run a search in a universal primer database to check
for the availability of known primers for the set of input se-
quences. The second is to run the program BLASTN after
checking the physical properties to ensure the specificity of
the primer sequences to the input set of genes.

3.2 High-level workflow representation
Figure 2 shows an abstract whiteboard view of the whole



workflow based on conventional flowchart notation. The
user submits his own gene sequence or a reference to it in a
biological database. The universal primer database can be
available at the user site or at remote site. All the programs
and scripts in this workflow can run locally. But for some in-
stitutions/users it is better to use the remote BLAST server,
which is faster and connected to the up-to-date version of
the nucleotide database.

3.3 Involved Patterns
This workflow, despite being simple, includes all the pat-

terns introduced above.

• Sequence: This is easy to observe from the figure. For
example, the tasks of running T-coffee and computing
the consensus run one after another.

• Simple Fork: The collected sequences from BLAST are
passed to ClustalW and T-coffee to be aligned. Each
of these two programs take the same copy of the data.

• Multi-choice Fork: We have an if-else condition to
check availability of primer in a database.

• Merge: The conserved regions obtained by the two
programs are merged together in one file. In Galaxy,
we can make use of the advanced merge operations,
where repeated conserved regions mapped to the same
location are filtered out.

• Iteration: The first BLAST step is repeated many
times until enough number of sequences is retrieved.

3.4 Galaxy and Taverna implementation
Figures 3 and 4 shows the implementation of the uni-

versal primer workflow in both Galaxy and Taverna. The
numbers in the diagrams represent the workflow patterns
used as discussed in the next section. (1 refers to multi-
choice, 2 refers to iteration, 3 refers to fork, and 4 refers
to merge.) The iteration and multi-choice fork are missing
in the figure of Galaxy, because they are not supported by
it, and in essence our abstract definition of the workflow
cannot be directly implemented in the system. These two
patterns are, however, implicitly supported by Taverna, es-
pecially the iteration involving BLAST. The parameters of
each task are more implicit in Galaxy than in Taverna.

4. TAVAXY: A META-WORKFLOW SYSTEM
As seen in previous sections, making a straightforward

choice between Taverna and Galaxy for our purposes is not
easy. A pragmatic approach is to attempt to maintain a hy-
brid environment where we can use both systems and to en-
able interoperability, or at least co-existence, between them.

4.1 Workflow Interoperability Approaches
Investigating interoperability between workflow systems

is not a new idea and has been previously attempted in
various contexts since the mid nineties. The WfMC (Work-
flow Management Coalition) [20] defines eight models, or
approaches, for achieving interoperability between workflow
systems. These are 1) No interoperability; 2) Co-existence;
3) Gateway API; 4) Limited Common API Subset; 5) Com-
plete Workflow API; 6) Shared Definition Formats; 7) Proto-
col Compatibility; and 8) Common Look and Feel Utilities.

Figure 3: Universal Primer Workflow in Galaxy. Numbers

denote workflow patterns used. (For more details, zoom in

original PDF.)

We note that in the WfMC models Levels 1-2 require hu-
man intervention, Levels 3-5 enable run-time interoperabil-
ity between two workflow systems allowing one system to
invoke workflows on the other, Levels 6-8 typically imply
that two workflow tools are based on the same workflow lan-
guage, or at least an ability to translate workflows expressed
in one workflow language to another.

An example of achieving run-time interoperability between
scientific workflow systems are presented in [8] in the context
of the EU-funded SIMDAT project. There interoperability
between both InforSense and Taverna was achieved using a
Gateway approach. In this case the native APIs for both
workflow engines were exposed as Web/Grid Services. This
simple method allowed InforSense workflow, for example, to
be treated as remote service invoked from Taverna, and vice
versa. This approach went beyond simply being able to in-
voke the execution of a workflow already stored on either
workflow engine. One workflow engine, e.g. InforSense, was
allowed to submit a SCUFL workflow definition of the Tav-
erna engine and then to invoke its execution. The approach
is not difficult since the InforSense workflow simply treats
the SCUFL workflow as an XML file and does not attempt
to treat it as a workflow. Similarly, Taverna did not need
to understand the internal DPML representation of the In-
forSense workflow and treated it as an XML file that was
passed as input to a remote service call.

An alternative approach, suggested in [7] is based on us-
ing an interactive wizard to help a user execute workflows
using different workflow systems. Workflow definitions in
different workflow languages are stored in a semantically
annotated workflow repository. The wizard helps the user
locate the best workflow that implements a given task and
also to submit it for execution on the appropriate engine.
On its own this approach allows a semi-manual co-existence
between two workflow systems. The wizard approach does
not provide an ability to configure the control flow of the
predefined tasks. However, as suggested in [7] it can easily
be incorporated into a run-time interoperability framework.

4.2 A Meta-Workflow Approach
As opposed to achieving run-time interoperability between

workflow systems, achieving language-based interoperability
between such systems is generally not easy in absence of a



Figure 4: Universal Primer Workflow Taverna. Numbers

denote workflow patterns used. (For more details, zoom in

original PDF.)

Figure 5: Architecture of the system Tavaxy.

unified standard language. Performing automatic transla-
tion from one language to another is also difficult. As dis-
cussed in the previous sections different workflow systems
are typically built using different assumptions, leading to
different execution semantics.

Our approach in this paper is to define a new notion of
meta-workflows. A meta-workflow is a high-level descrip-
tion of the steps in workflow, expressed in its own language,
but that is not directly executable on any particular work-
flow system. Instead, the meta-workflow needs to be first
translated into fragments of workflows that are expressed
in existing workflow languages, with each fragment being
submitted to the appropriate workflow engine for execution.
The translation could be based on using automatic tools or
be semi-automatic as in the case workflow authoring assis-
tant described above. The advantage of the meta-workflow
approach, compared to a simple wizard, is that the user can
define and user any number of control flow patterns as de-
scribed below.

4.3 Tavaxy architecture
Figure 5 shows the architecture of Tavaxy, our meta-

workflow system built on top of Galaxy and Taverna.

Meta-Workflow Authoring Tool and Language
The meta-workflow authoring tool is web-based and builds
on the look and feel of Galaxy. To avoid complications
associated with designing yet a new workflow language, a

composed workflow is stored in a modified SCUFL format.
There are three key modifications. First the modifications
allow support for a user defined set of workflow patterns to
be included and used in meta-workflow authoring. Second
they minimize the use of source and sink nodes in workflow
definitions. Parameters for any node, including those repre-
senting workflow patterns are explicitly defined in the node
itself just as in the Galaxy and InforSense systems. Thirdly,
they allows tagging which parts of the meta-workflow should
execute on a Taverna engine and which should execute on
a Galaxy engine. By default, Taverna sub-workflows will
make use of remote service calls and Galaxy sub-workflows
will execute on the local infrastructure.

The combination of these variations result in a graphical
notation that looks more similar to a traditional flow chart.
To avoid loose execution semantics and un-controlled cyclic
loops problems we restrict the definition of workflow pat-
terns used to be block structured; loops, conditionals and
parallel forks have explicit start and end points that must
be defined.

Workflow Pattern Database
The workflow pattern database stores the definition and im-
plementation of the control flow workflow patterns used in
Tavaxy. All patterns need to be block structured allowing
encapsulation of sub workflows within them. For example
no cyclic loops are allowed in an iteration pattern. A switch
and fork node must have a matching merge pattern, or end
nodes. Users may update the database with new patterns
provided they follow the restrictions and add the appropri-
ate implementation strategies for each workflow engine.

Host Workflow Engines
We have two workflow engines: Primary and Secondary. The
primary is the main engine that coordinates the user work-
flow and can invoke the secondary engine to execute sub-
workflows. This invocation of the secondary engine is en-
abled by the Meta-workflow Mapper introduced below. The
Taverna engine is already a standalone application and can
be invoked from the shell given workflow as input. How-
ever, this is not the case with Galaxy. Therefore, we per-
formed some software engineering effort on the Galaxy sys-
tem, where we separated the user interface, the workflow
database, and the workflow engine from each other. After
this modification, the primary engine can be either the one
of Taverna or the one of Galaxy. Once one of them is cho-
sen as a primary engine, the other serves as the secondary
engine. Our current implementation uses the one of Galaxy
to make use of the local computational resources.

Meta-workflow Mapper
Based on the parameters set by the user the Meta-workflow
mapper performs the following set of tasks to generate exe-
cutable workflows:

• Parses the SCUFL format and checks its syntax.

• Chooses and generates an appropriate implementation
for each workflow fragment and workflow pattern in
terms of the primary workflow system.

• Generates calls to the secondary workflow system and
encapsulates them in an appropriate manner as sub-
workflows in the primary workflow system.



Figure 6: Universal Primer Workflow in Tavaxy. The di-

amond shape corresponds to switch-case or if-else construct.

The circle encapsulates steps that should be iterated. The

fork and merge operations are given special shapes. The cloud

around a tool name indicates remote invocation. (For more

details, zoom in original PDF.)

• It enables mapping of input and output ports between
sub-workflows on primary and secondary engines.

Implementation of the patterns
In Tavaxy, there are two versions for the implementation
of each pattern: One that runs on Taverna and one that
runs on Galaxy. The Taverna implementation is based on
invoking remote web services, the Galaxy based pattern is
invoked to execute on the local infrastructure. Because the
patterns switch and iteration are not supported by Galaxy,
we wrote special scripts that realize these patterns. The
Galaxy engine then handles these scripts as tasks. In brief,
these scripts work as follows:

1. The script for iteration pattern takes as input the task
(or sub-workflow) that iterates, its parameters, the
termination criteria, and information about feedback
data. The output specified by the user is passed to the
next task upon termination.

2. The script for switch pattern takes as input 1) the
multi-choice condition, and 2) the data to be passed
to the next tasks. It then executes a synchronous
fork pattern such that a dummy data is passed to the
branch violating the multi-choice condition.

5. TAVAXY IN ACTION

5.1 Universal Primer Workflow Realization
Figure 6 shows the universal primer example implemented

in the web-based workflow editor of Tavaxy. The patterns
mentioned above are implemented in Tavaxy as integral con-
structs. The iteration, switch, fork, and merge patterns are
given special shapes referring to their execution semantics.
In the universal primer example, the user runs all the pro-
grams locally except for BLAST, by setting the appropriate
options. In the Figure, a cloud background indicates that
this task runs remotely. Similarly, if the primer database
and the attached search engine are remote, Tavaxy by de-
fault uses a wrapper to run this step. The iteration pattern
includes a remote call to BLAST. Hence, all the iteration
pattern is encapsulated as sub-workflow and passed to the
Taverna engine. If the BLAST were called locally, then the
local script implementing this pattern is invoked and run
on local machines. The merge pattern passes the output of
T-coffee and ClustalW to the step where a tool is invoked
to combine both output sequence lists in one list. (Here
two input ports are assigned to the task associated with the
merge operation.)

5.2 Interplay between Galaxy and Taverna
Figure 7 shows a part of the SCUFL format of Tavaxy

specifying our universal primer workflow. In this exam-
ple, Galaxy is the primary host engine and executes sub-
workflows on Taverna. In the figure, we highlight the sub-
workflow involving iteration and shows how it is exported
to Taverna. The idea is to call Taverna as a program and
passes the sub-workflow as an argument with the input data.
The output data are retrieved and passed to the next step
in the workflow.

Figure 8 shows a part of the tavaxy SCUFL format assum-
ing Taverna is the primary host engine. The workflow im-
plements the universal primer example. Here, we highlight
the part of the workflow that runs ClustalW on Galaxy on
the local machines. The idea is to call Galaxy from Taverna
through web-service interface. In this invocation, we spec-
ify the program Galaxy should execute and the data that is
passed to the sub-workflow.

6. CONCLUSIONS
In this paper we introduced Tavaxy, a system that achieves

high-level interoperability between two popular tools, Galaxy
and Taverna, in the bioinformatics domain. The approach
is based on meta-workflows and the use of patterns. We
demonstrated the usefulness of this approach via the design
of universal primers. The set of patterns we introduced are
implemented in the first prototype of Tavaxy. Currently,
we are working on improving the prototype we have and
on increasing the set of patterns with more higher level ones
specific to the sequence analysis domain. These patterns will
further ease the composition of sequence analysis workflows
and provides efficient solutions to recurrent tasks.
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