
 PAGE 3

Programme Réseaux du Futur et Services (VERSO)

DataRing Project
Title: P2P Data Sharing for Online Communities

D1.3: Revised DataRing Architecture

31 dec. 2010

Partner in charge of deliverable: ATLAS (INRIA)

Contributors: GEMO (INRIA), LIG, LIRMM, Telecom ParisTech

Abstract. In this report, we present the revised DataRing architecture. The major revision is a more detailed
definition of the DHT layer, called Shared-data Overlay Network (SON), which provides DHT and gossip
communication for DataRing services. We also identified a new advanced service for P2P recommendation,
P2Prec.

 PAGE 3

1. Introduction

In this deliverable, we present our revision of the DataRing architecture and services. The major revision is a
more detailed definition of the DHT layer, called Shared-data Overlay Network (SON), which provides DHT
and gossip communication for DataRing services. We also identified a new advanced service for P2P
recommendation, P2Prec (see Deliverable D5.2: Demo of replication, caching and indexing services).
SON (http://www-sop.inria.fr/teams/zenith/SON) is based on a set of basic concepts for developing and
deploying in a simple and effective way multiple services (e.g. directory, query, summary or
recommendation). SON is an open source development platform for P2P networks using web services,
JXTA and OSGi. SON combines three powerful paradigms: components, SOA and P2P. Components
communicate by asynchronous message passing to provide weak coupling between system entities. To
scale up and ease deployment, we rely on a decentralized organization based on a DHT for publishing and
discovering services or data. In terms of communication, the infrastructure is based on JXTA virtual
communication pipes, a technology that has been extensively used within the Grid community.
In this report, we first describe the revised DataRing Architecture, with SON and P2Prec. Then, we describe
SON’s architecture.

2. Revised DataRing Architecture

DataRing has a layered service-based architecture (see Figure 1). Besides the traditional advantages of
using services (encapsulation, reuse, portability, etc.), this enables DataRing to be network-independent so it
can be implemented over different structured (e.g. DHT). The main reason for this choice is to be able to
exploit rapid and continuing progress in such networks. Another reason is that it is unlikely that a single
network design will be able to address the specific requirements of many different community applications. In
Figure 1, we call “local data” the data managed by the participants, i.e. repository metadata, data, and data
sources. Local data is managed by a local DBMS.
Then, the three main layers in DataRing are, bottom up: SON, data services, and DataRing services.

SON
SON consists of an overlay network and a distributed storage layer. It also includes There is the Peer
communication (Peercom) service which we add in the first version of the DataRing architecture. It enables
peers to exchange messages. It also allows a peer to call a remote service, e.g. a Web service using SOAP,
which is provided by another peer over the P2P network. We describe the main layers below. The overlay
network layer is on top of Internet (TCP/IP) and in charge of routing. It implements the DHT lookup() function
and manages peers dynamic behavior (joins/leaves of peers). The distributed storage layer provides key-
based data searching and data distribution by implementing the put() and get() functions. This DHT layer can
be supported by different DHTs, such as Chord or Free Pastry. Typically, a DHT maps a key k to a peer P
called responsible for k with respect to a hash function h. Peers maintain information about O(logN) other
peers in a finger table and resolve lookups via O(logN) messages to other peers. In addition, SON provides
support for gossiping messages and call web services (WS).

Data services
The data services are the following. The DS access service provides all other DataRing services within a
participant the ability to access the data source, typically through a wrapper interface. As in data integration
systems, we must have such wrapper interface implemented for each different kind of data source. However,
we will use the same(s) DBMS for the data sources.
The data privacy service provides purpose-based disclosure and trust control over shared data. All data
accesses from the search and query service which need to respect data privacy use this service.

 PAGE 3

The replica and cache management service enables participants to replicate and cache DataRing data (or
DS data which have been integrated) and propagate updates to replicas with consistency guarantees.

DataRing services
The DS discovery and integration service helps discover data sources in a given network (e.g. a corporate
network) and their relationships in terms of semantics and schema mappings. Such service is very important
to ease the activity of administrating DataRing and automate schema integration using approximate
mappings. This service is useful to the search and query service to help reformulate queries using schema
mappings.
The search and query service provides basic keyword search and more structured query processing
functionality. This service also performs translation of keyword search queries into more structured queries
when schemas are available for the DS discovery service.
P2Prec is a recommendation service for P2P content sharing systems that exploits users’ social data. To
manage users’ social data, we rely on Friend-Of-A-Friend (FOAF) descriptions. It combines efficient DHT
indexing to manage the users’ FOAF files with gossip robustness to disseminate the topics of expertise
between friends

Figure 1. Revised DataRing Layered Architecture

3. Shared-data Overlay Network (SON)

Using SON, the development of a P2P application is done through the design and implementation of a set of
components. Each component includes a non-functional code that provides the component services and a
code component that provides the component logic (business code). The complex aspects of asynchronous
distributed programming (non-functional code) are separated from code components. The Component
Generator (CG) automatically generates this non-functional code from a description of services (provided or
required services) for each component. This CG component is not present at the execution of the SON
infrastructure.

The SON infrastructure (see Figure 2) is composed of a Component Manager (CM), a publishing and
discovery module of component (DHT), and a connection module (PIPES). The Component Manager

 PAGE 3

defines how to load and runtime components, the publishing and discovery module allows to publish or
discovery components on different peers. The connection module provides connection between remote
components on peers.

Figure 2. Overview of Shared-data Overlay Network Architecture

At run-time the Component Manager (CM), run by default performs the creation of new component instance
and the connections between them. To establish a connection between two components, the CM uses the
services description of each component.

They exist two configurations of this SON infrastructure. The first configuration (local) can manage the local
exchange between the components, on the same peer. The CM manages locally a list of components. The
second configuration allows managing the publishing and discovery of components in a network. In this
context, CM delegates the management of lists of remote components to a Distributed Hash Table (DHT).
The connection module is used for open the remote connections between remote components. These two
configurations offer a great flexibility at our infrastructure. In fact, these configurations can be called
dynamically at run-time.

SON is implemented in Java on top of OSGi technology (http://www.osgi.org/) which provides all basic
services for the lifecycle of our components, in particular, the deployment services. SON uses the dynamic
loading of bundles (components) of OSGi. It is composed of a set of bundles and thus launches as an OSGi
configuration. In addition, many OSGI developments are directly usable by our platform. Concerning the
Component Generator, it has been integrated into Eclipse environment (http://www.eclipse.org/) as a
plugins. The programmer develops his Java code with the IDE Eclipse, in classic way. Then, after defining
the services description, non-functional code can be generated using this CG plugins in order to obtain a
component usable by the SON infrastructure.

The component model
This component model is based on a description of services required and provided of component. The
Services description of a basic Gossip component is given in Figure 3. The input keyword corresponds to
a provided service definition, and output keyword to a required service definition. The Component
Generator (CG) automatically generates an equivalent description in Web Services format (WSDL) when
generating the non-functional code from the services description of the component.

 PAGE 3

Figure 3. Service description of the Gossip component

The component model is based on the generation of a non-functional code (container) according to the
services description. This generation extends the component code written by user. This generation offers
free to users, a programming style as multi-agent programming. This programming style is usually
recognized to facilitate distributed application development. At each time, only one message (message
received) is treated by the component. This run-time model avoids the common problems of concurrent
programming.

Component Manager
At run-time, when a component (A) wants to connect with another component (B), then A component uses
the service ConnectTo(A,B) provided by the CM. As is the CM that created the component, the
components are by default connected to the CM. To establish a connection between two components, the
CM uses the services description for associate the services provided of first component at services required
of second component, and vice versa. After the connection process, the two components communicate
directly with each other without going through the CM. A basic example of association is given in Figure 4.

The advantages of this association of services is be perform at run-time without that each component knows
statically the services of other components. In fact, each component can, on the fly, connect to any
component. The assembly of components of a given application is not necessarily known statically and can
evolve dynamically over time. The components are autonomous and independent.

Through these mechanisms, it is possible to build applications with only the necessary components and
simplify interconnection with local or remote components. This generation extends the user code and hide all
the mechanisms of communication by asynchronous messages such as: 1) transformation a method call by
a message sending; 2) managing the queue of messages received; and 3) broadcasting a message to a set
of components. These mechanisms are completely transparent to the designer of the application. Indeed, to
access at all SON infrastructure functionalities, the user uses only this ConnectTo service/method in his
business code.

 PAGE 3

Figure 4. Model of a component

Deployment descriptor
The deployment description file is used to describe the initial state of the application. It describes instances
of components and connections to be created by the Component Manager to launch the application. Of
course, after this, other components can ask to be connected to each other dynamically by the ConnectTo
service. A component instance is identified by the pair (type_[src,dist]=component name,
id_[src,dist]=instance name), see an example in Figure 5.

Figure 5. An example of deployment descriptor

The connection model
The Component Manager load components and creates instances of components from the deployment
descriptor or when it receives ConnectTo service. CM maintains a list of all components loaded and
instances created in locally. For instance when the CM receive the ConnectTo(A,B) service, if B
component instance is not exist then the CM create this B component instance. To make the connection
between two components, the CM uses the services descriptors to retrieve components instance names,
their types and services provided and required. After the CM connects two components, these components
can communicate with each other directly without going through the CM.

In distributed mode, two solutions are proposed for the publication and discovery of the components
available on the network. For the first solution, broadcast mode, each peer (each CM) provides access to all
components created of connected peers. This solution is usable only for small network with few peers
connected. For remote connections, two implementations are proposed; one built on the UDP transport
protocol and the other on the TCP protocol. For the second solution (see Figure 6), Peer-to-Peer mode, each
CM publishes components created in a Distributed Hash Table (DHT). This DHT is accessible to all
registered peers on the network. This P2P solution is composed of two modules: DHT module for publication
and discovery of components and PIPES module for communication between remote peers.

 PAGE 3

Figure 6. Architecture of SON at run-time

DHT module
CM delegates the management of lists of remote components to this DHT module. In the current version, we
use the OpenChord implementation for the DHT module, but nothing prevents from using other
implementations. For this purpose, an interface was defined with the usual methods (put (key,value)
and get(key)) that can be expected from a DHT module. At each creation of a component, the CM
publishes into this DHT, the useful information’s for that a remote component can connect to this component.

PIPES module
The PIPES module handles the communication between remote components. It opens the TCP connection
between peers. It is based on the concept of virtual pipes introduced into the JXTA technology. This concept
allows passing through a single TCP connection, several logical communications (virtual pipes) between
peers. Using this abstraction allows each component to open a virtual pipe to read messages sent to it. A
virtual pipe is identified by a universally unique identifier (UUID for Universally Unique Identifier).

This identifier is associated with the component instance name and is registered in the DHT as follows:

[Key: Component Instance Name, Value: UUID of the virtual pipe]

[Key: UUID of the virtual pipe, Value: UUID of the PIPES module]

[Key: UUID of the PIPES module, Value: IP + port number]

The second record associates the virtual pipe component with the PIPES module it belongs. The third record
associates the PIPES module with its IP address and port number. Thus, two peers can find into the DHT all
the information needed to connect components.

