
FLEXIBLE AND EFFICIENT
WORKFLOW DEPLOYEMENT OF
DATA-INTENSIVE APPLICATIONS ON
GRIDS WITH MOTEUR

Tristan Glatard12

Johan Montagnat1

Diane Lingrand1

Xavier Pennec2

ABSTRACT

Workflows offer a powerful way to describe and de-
ploy applications on grid infrastructures. Many work-
flow management systems have been proposed but
there is still a lack of a system that would allow both
a simple description of the dataflow of the application
and an efficient execution on a grid platform. In this
paper, we study the requirements of such a system,
underlining the need for well-defined data composi-
tion strategies on the one hand and for a fully paral-
lel execution on the other hand. As combining those
features is not straight forward, we then propose al-
gorithms to do so and we describe the design and im-
plementation of MOTEUR, a workflow engine that
fulfills those requirements. Performance results and
overhead quantification are shown to evaluate MO-
TEUR with respect to existing comparable workflow
systems on a production grid.

1 INTRODUCTION

As a consequence of the tremendous research effort
carried out by the international community these last
years and the emergence of standards, grid middle-
wares have reached a maturity level such that large
grid infrastructures where deployed (EGEE3, OSG4,
NAREGI5) and sustained computing production was
demonstrated for the benefit of many industrial and
scientific applications [Montagnat et al., 2004].

Considering the considerable amount of sequen-
tial, non grid-specific algorithms that have been pro-
duced for various data processing tasks, grid comput-
ing is very promising for performing complex com-
putations involving many computation tasks (codes
parallelism) and processing large amounts of data
(data parallelism). Indeed, beyond specific parallel
codes conceived for exploiting an internal parallelism,
grids are adapted to the massive execution of differ-
ent tasks or the re-execution of a sequential code on
different data sets which are needed for many scien-
tific applications. In both cases, temporal and data
dependencies may limit the parallelism that can be
achieved.

Yet, current middlewares expose rather low level
interfaces to the application developers and enacting
an application on a grid often requires a significant
work involving computer and grid experts. Work-
flow systems [Yu and Buyya, 2005] offer a simple way
to gridify an application by providing an explicit
description of the dependencies between its compo-
nents. They stands as an abstraction layer between
the low level grid middlewares and the user’s applica-
tion and have been successfully used to gridify several
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applications. However, those systems still focus ei-
ther on execution performance [Deelman et al., 2003]
or on expressiveness and user-friendly description of
the application [Oinn et al., 2004].

The goal of this paper is to design a workflow sys-
tem combining an expressive and user-friendly work-
flow description with an efficient execution of data-
intensive scientific applications. We study techniques
to simplify the workflow description from a user point
of view (section 2) and performance for the workflow
execution (section 3) on a grid. Even if some of those
methods have already emerged, combining them is
not straightforward and has never been done before
in classical workflow systems (section 4). We propose
the design and implementation of MOTEUR, a novel
workflow engine that combines expressive workflows
description with efficient grid execution in section 5.

All along this paper, we distinguish two grid mid-
dleware approaches, that influence application devel-
opment. To handle user processing requests, two
main strategies have indeed been proposed and im-
plemented in grid middlewares:

In the task based strategy, also referred to as global
computing, users define computing tasks to be ex-
ecuted. Any executable code may be requested by
specifying the executable code file, input data files,
and command line parameters to invoke the exe-
cution. The task based strategy, implemented in
GLOBUS [Foster, 2005], LCG26 or gLite7 middle-
wares for instance, has already been used for decades
in batch computing. It makes the use of non grid-
specific code very simple, provided that the user has
a knowledge of the syntax to invoke each task.

The service based strategy, also referred to
as meta computing, consists in wrapping ap-
plication codes into standard interfaces. Such
services are seen as black boxes from the mid-
dleware for which only the invocation interface
is known. Various interfaces such as Web Ser-
vices [World Wide Web Consortium, 2001] or
gridRPC [Nakada et al., 2005] have been standard-
ized. The services paradigm has been widely adopted
by middleware developers for the high level of flexibil-
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ity that it offers (OGSA [Foster et al., 2002]). How-
ever, this approach is less common for application
codes as it requires all codes to be instrumented with
the common service interface. To ease the migration
of existing codes, generic service wrappers have been
proposed [Kacsuk et al., 2004, Glatard et al., 2006a].

Task based and service based grid computing
strategies are very different. This difference is even
more visible when constructing application work-
flows. Those strategies differ regarding the descrip-
tion as well as the execution of the application. In
the two following sections, we will compare them and
discuss their respective strengths and weaknesses.

2 DATA-INTENSIVE DESCRIPTION

In this section, we focus on the expressiveness and
user-friendliness of the workflow description provided
by the task and service based paradigms.

2.1 WORKFLOW DESCRIPTION

An application workflow can be represented through
a directed graph of processors (graph nodes) repre-
senting processings and dependencies (graph arrows)
constraining their order of invocation (see figure 1).

2P

1P

3P

2P

1P

3P

Source

Sink

Fig. 1: Simple workflow example: task based (top)
and service based (bottom)

In the task based approach, the description of a
task, or computation job, encompasses both the pro-
cessing (binary code and command line parameters)
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and the data (static declaration). Workflow proces-
sors directly represent computing tasks and the de-
pendencies between them are precedence constraints.
The user is responsible for providing the binary code
to be executed and for writing down the precise in-
vocation command line. All computations to be per-
formed are statically described in the graph.

Conversely, in the service based approach, the ap-
plication program is described separately from the
data. The input data is treated as parameters (dy-
namic declaration), and the service appears to the
end user as a black box hiding the code invocation.
This difference in the handling of data (static or dy-
namic declaration) makes the application description
far easier from a user point of view.

In a service based workflow, each processor repre-
sents an application component and arrows represent
data dependencies. In addition to the processors and
the data arrows, a service based workflow represen-
tation requires a number of input and output ports
attached to each processor. Input ports are holding
references to the data to be processed and output
ports contain references to the data produced by a
service. The oriented arrows connect output ports to
input ports and represent data channels. Two special
processor nodes are defined: data sources are proces-
sors without input ports (they produce data to feed
the workflow) and data sinks are processors without
output ports (they collect the data produced).

2.2 DYNAMIC DATA SETS AND LOOPING

Task-based and service-based workflows differ in
depth in their handling of data. The non-static na-
ture of data description in the service-based approach
enables dynamic extension of the data sets to be pro-
cessed: a workflow can be defined and executed al-
though the complete input data sets are not known
in advance. It will be dynamically fed in as new
data is being produced by sources. Indeed, it is com-
mon in scientific applications that data acquisition is
an heavy-weight process and that data segments are
being progressively produced. Some workflows may
even act on the data production source itself, stop-
ping data production once computations have shown
that sufficient inputs are available to produce mean-

ingful results. Finally, this dynamicity is required
when the input data is the result of a data base query
whose response size is not known in advance.

A significant difference between the task and ser-
vice approaches coming from the ability of the latter
one to deal with dynamic data sets is that there may
exist loops in a service based workflow given that an
input port can collect data from different sources as
illustrated in the bottom of figure 1. This kind of
workflow pattern is common for optimization algo-
rithms: it corresponds to an optimization loop con-
verging after a number of iterations determined at
the execution time from a computed criterion. In this
case, the output of processor P1 would correspond to
the initial value of this criterion. P3 produces its re-
sult on one of its two output ports, whether the com-
putation has to be iterated one more time or not. On
the contrary, there cannot be a loop in the graph of a
task based workflow as this would mean that a pro-
cessor input is depending on one of its output. Exe-
cuting an optimization loop would not be possible, as
the number of iterations is dynamically determined
and thus cannot be statically described.

2.3 DATA-INTENSIVE APPLICATIONS

From a user point of view, the main difference be-
tween the task based and the service based ap-
proaches appears when considering the reexecution
of the same application workflow over different input
data sets, as it is commonly done for instance by so-
called embarrassingly parallel applications. In a task
based workflow, a computation task is defined by a
single input data set and a single processing. Execut-
ing the same processing over two different data sets
results in the description of two independent tasks.
This approach enforces the replication of the execu-
tion graph for every input data to process.

To get closer to the service-based approach, a sim-
ple extension to the task based approach is to propose
parametric data tasks descriptions where a generic
task can be described for a set of input data, result-
ing in the execution of multiple jobs: one per input
data. However, it is far from being commonly avail-
able in today’s production middlewares and it is often
treated at the application level. Moreover, paramet-
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ric tasks cannot be used in a workflow where each
task needs to be replicated for every input data set.

On the other hand, the service based approach
easily accommodates with input data sets. Data
sources are sequentially delivering input data but no
additional complexity of the application description
graph is needed. An example of the flexibility of-
fered by the service-based approach, related to data
sets processing, is the ability to define different data
composition strategies over the input data of a ser-
vice [Oinn et al., 2004]. When a service owns two
input ports or more, a data composition strategy de-
fines the composition rule for the data coming from
all input ports pairwise. Those data composition
strategies are studied in section 2.4.

2.4 DATA COMPOSITION STRATEGIES

Each service in a data-intensive workflow of services
is receiving input data on its input ports. Depending
on the desired service semantic, the user might envis-
age various input composition patterns between the
different input ports.

2.4.1 Basic data composition patterns

Although not exhaustive, there are two main data
composition patterns, very frequently encountered in
scientific applications, that were first introduced in
the Taverna workbench [Oinn et al., 2004]. They are
illustrated in figure 2. Let A = {A0,A1, . . . ,An} and
B = {B0,B1, . . . ,Bm} be two input data sets.

The one-to-one composition pattern (left of fig-
ure 2) is the most common. It consists in processing
two input data sets pairwise in their order of arrival.
This is the classical case where an algorithm needs to
process every pair of input data independently. An
example is a matrix addition operator: the sum of
each pair of input matrices is computed and returned
as a result. We will denote ⊕ the one-to-one compo-
sition operator. A ⊕ B = {A1 ⊕ B1, A2 ⊕ B2, . . .}
denotes the set of all outputs. For simplification, we
will denote A1 ⊕B1 the result of processing the pair
of input data (A1, B1) by some service. Usually, the
two input data sets have the same size (m = n) when
using the one-to-one operator, and the cardinality of
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Fig. 2: Action of the one-to-one (left) and all-to-all
(right) operators on the input data sets

the results set is m = n. If m 6= n, a semantics has
to be defined.

The all-to-all composition pattern (right of fig-
ure 2) corresponds to the case where all inputs in
one data set need to be processed with all inputs
in the other data set. A common example is the
case where all pieces of data in the first input set
are to be processed with all parameter configurations
defined in the second input set. We will denote ⊗
the all-to-all composition operator. The cardinality
of A ⊗ B = {A1 ⊗ B1, A1 ⊗ B2 . . . A1 ⊗ Bm, A2 ⊗
B1 . . . A2⊗Bm . . . . . . An⊗B1 . . . An⊗Bm} is m×n.

Note that other composition patterns with differ-
ent semantics could be defined (e.g. all-to-all-but-one
composition). However, they are more specific and
consequently more rarely encountered. Combining
the two operators introduced above enable very com-
plex data composition patterns, as illustrated below.

2.4.2 Combining data composition patterns

As illustrated at the left of figure 3, the pairwise one-
to-one and all-to-all operators can be combined to
compose data patterns for services with an arbitrary
number of input ports. In this case, the priority of
these operators needs to be explicitly provided by
the user. We are using parenthesis in our figures to
display priorities explicitly. If the input data sets are
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Fig. 3: Combining composition operators: multiple
input service (left) and cascade of services (right)

A = {A0, A1}, B = {B0, B1}, and C = {C0, C1, C2},
the following data would be produced in this case:

A⊕ (B⊗C) =
{

A0 ⊕ (B0 ⊗ C0), A1 ⊕ (B1 ⊗ C0),
A0 ⊕ (B0 ⊗ C1), A1 ⊕ (B1 ⊗ C1),
A0 ⊕ (B0 ⊗ C2), A1 ⊕ (B1 ⊗ C2)

}
Successive services may also use various combi-

nations of data composition operators as illustrated
at the right of figure 3. The example given corre-
sponds to a classical situation where an input data set
A = {A0, A1}, is processed by a first algorithm (using
different parameter configurations P = {P0, P1, P2}),
before being delivered to a second service for process-
ing with a matching number of data B = {B0, B1}.
The output data set would be:

B⊕ (A⊗P) =
{

B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A1 ⊗ P0),
B0 ⊕ (A0 ⊗ P1), B1 ⊕ (A1 ⊗ P1),
B0 ⊕ (A0 ⊗ P2), B1 ⊕ (A1 ⊗ P2)

}
(1)

As it can be seen, composition operators are a
powerful tool for data-intensive application develop-
ers who can represent complex data flows in a very
compact format. Although the one-to-one operator
preserves the input data sets cardinality, the all-to-all
operator may lead to drastic increases in the number
of data to be processed. It makes the task replica-
tion problem associated to the task-based workflows
combinatorial: an all-to-all composition produces an
enormous amount of tasks and chaining all-to-all pat-
terns just makes the application workflow represen-
tation intractable even for a limited number (tens) of
input data. Despite the availability of graphical tools

to design application workflows, dealing with many
input data quickly becomes impossible for users.

3 EFFICIENT WORKFLOW EXECUTION

Nowadays, executing data-intensive scientific appli-
cations on a single platform is not always possible,
even if the platform is a parallel one. First, from
a user point of view, it is frequent to compose ap-
plications using codes coming from different insti-
tutes, having various requirements, which imposes
the use of different platforms. Second, from a per-
formance point of view, it is crucial to choose the
right grid platform for the right service: a trade-
off has to be found between large scale multi-users
grids, providing high throughput and latencies and
local systems with low latency but also low through-
put [Silberstein et al., 2006, Glatard et al., 2006b].

3.1 SINGLE INTERFACE

The service based approach is able to transparently
deal with multiple execution platforms. Each service
is called as a black box without knowledge of the
underlying execution platform. Several services may
execute on different platforms transparently at the
application level, which is convenient when dealing
with legacy codes. In the task based approach, the
workflow engine requires a specific submission inter-
face for each infrastructure.

The service based approach is also well suited for
chaining the execution of different algorithms assem-
bled to build an application. Indeed, the interface to
each application component is clearly defined and the
middleware can invoke each of them through a single
protocol, regardless of their implementation.

3.2 RESOURCES ALLOCATIONS

The service based approach is making grid appli-
cation description easier than the task based one
as discussed above. It is thus highly convenient
from the end user point of view. However, in this
approach, the control of jobs submissions is del-
egated to external services, making the optimiza-
tion of the workflow execution much more diffi-
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cult, whereas many elaborated scheduling strate-
gies are developed for task graphs. Many solutions
have been proposed in the task-based paradigm to
optimize the scheduling of an application in dis-
tributed environments [Casanova et al., 2000]. Con-
cerning workflow-based applications, authors pro-
pose in [Chen and Yang, 2006] a framework to
adapt fixed-time constraints to the highly variable
case of grids. Works such as [Blythe et al., 2005,
Malewicz et al., 2006] propose specific heuristics to
optimize the resource allocation of a complete work-
flow. Even if it provides remarkable results, this kind
of solutions is not directly applicable to the service-
based approach: the services are black boxes isolat-
ing the workflow manager from the execution infras-
tructure. In this context, resources allocation is not
under the direct control of the workflow scheduler.
Hence, there is a strong need for precisely identify-
ing performance optimization solutions that apply to
service-based workflows.

Focusing on the service-based approach,
nice developments such as the DIET middle-
ware [Caron et al., 2002] and comparable ap-
proaches [Tanaka et al., 2003, Arnold et al., 2002]
introduce specific strategies such as hierarchical
scheduling. However, those works focus on mid-
dleware design and do not include any workflow
management yet. As far as we know, such a
deployment has only been done on experimental
platforms [Cappello et al., 2005], and requires more
investigation before being used on production
infrastructures.

3.3 EXPLOITING PARALLELISM

In the following sections, we study performance solu-
tions that can be applied in service-based workflows.
3 kinds of parallelism have to be exploited to enable
efficient execution.

3.3.1 Asynchronous services calls

To enable parallelism during the workflow exe-
cution, multiple application services have to be
called concurrently. The calls made from the
workflow enactor to these services need to be

non-blocking for exploiting the potential parallelism.
GridRPC services may be called asynchronously
as defined in the standard [Nakada et al., 2005].
Web Services also theoretically enable asyn-
chronous calls. However, the vast majority of
existing web service implementations do not cover
the whole standard and none of the major im-
plementations [Van Engelen and Gallivan, 2002,
Irani and Bashna, 2002] do provide any asyn-
chronous service calls for now. As a consequence,
asynchronous calls to web services need to be imple-
mented at the workflow enactor level, by spawning
independent system threads for each invocation.

3.3.2 Workflow parallelism

Given that asynchronous calls are possible, the first
level of parallelism that can be exploited is the in-
trinsic workflow parallelism depending on the graph
topology. For instance if we consider the simple ex-
ample presented in figure 1, processors P2 and P3

may be executed in parallel. This optimization is
trivial and implemented in all the workflow managers.

3.3.3 Data parallelism

When considering data-intensive applications, several
input data sets are to be processed using a given
workflow. Benefiting from the large number of re-
sources available in a grid, workflow services can be
instantiated as several computing tasks running on
different hardware resources and processing different
input data in parallel.

Data parallelism denotes that a service is able to
process several data fragments simultaneously with a
minimal performance loss. This capability involves
the processing of independent data on different com-
puting resources. Consider the simple workflow made
of 3 services and represented on top of figure 1. Sup-
pose that we want to execute this workflow on 3 in-
dependent input data sets D0, D1 and D2. The data
parallel execution diagram of this workflow is repre-
sented on the left of figure 4. On this kind of diagram,
the abscissa axis represents time. When a data set Di

appears on a row corresponding to a processor Pj , it
means that Di is being processed by Pj at the current
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Fig. 4: Data (left) and service (right) parallel execu-
tion diagrams of the workflow of figure 1

time. To facilitate legibility, we represented with the
Di notation the piece of data resulting from the pro-
cessing of the initial input data set Di all along the
workflow. For example, in the diagram of figure 4, it
is implicit that on the P2 service row, D0 actually de-
notes the data resulting from the processing of the in-
put data set D0 by P1. Moreover, on those diagrams
we made the assumption that the processing time of
every data set by every service is constant, thus lead-
ing to cells of equal widths. Data parallelism occurs
when different data sets appear on a single square of
the diagram whereas intrinsic workflow parallelism
occurs when the same data set appears many times
on different cells of the same column. Crosses repre-
sent idle cycles.

3.3.4 Services parallelism

Input data sets are likely to be independent from each
other, for instance when a single workflow is iterated
in parallel on many input data sets.

Services parallelism denotes that the processing of
two different data sets by two different services are
totally independent. This pipelining model, very suc-
cessfully exploited inside CPUs, can be adapted to se-
quential parts of service-based workflows. Consider
again the simple workflow represented in left of fig-
ure 1, to be executed on the 3 independent input data
sets D0, D1 and D2. The right of figure 4 presents
a service parallel execution diagram of this workflow.
Service parallelism occurs when different data sets
appear on different cells of the same column. We

here supposed that a given service can only process
a single data set at a given time (data parallelism is
disabled). Here again, service parallelism is of major
importance to optimize service-based workflows.

3.3.5 Data synchronization barriers

A particular kind of processors are algorithms that
need to take into account the whole input data set
in their processing rather than processing each in-
put one by one. This is the case for many statis-
tical operations computed on the data, such as the
computation of a mean or a standard deviation over
the produced results for instance. Such processors
are referred to as synchronization processors as they
represent real synchronization barriers, waiting for
all input data to be processed before being executed.
Data synchronization barriers are of course a limita-
tion to services parallelism. In this case, this level
of parallelism cannot be exploited because the input
data sets are dependent from each other.

4 STATE OF THE ART OF GRID-ENABLED
SCIENTIFIC WORKFLOW SYSTEMS

A detailed review of the workflow systems is avail-
able in [Yu and Buyya, 2005]. The main scien-
tific service-based workflow managers are the Kepler
system [Ludäscher et al., 2005], the Taverna work-
bench [Oinn et al., 2004] and the Triana workflow
manager [Taylor et al., 2005].

Kepler targets many application areas from gene
promoter identification to mineral classification. It
can orchestrate standard Web-Services linked with
both data and control dependencies and implements
various execution strategies. Taverna, designed in the
context of the myGrid e-Science UK project8, was
initially developed for the bioinformatics community
and is able to enact Web-Services and other compo-
nents such as Soaplab services [Senger et al., 2003]
and Biomoby ones. It implements high level tools
for the workflow description such as the Feta se-
mantic discovery engine [Lord et al., 2005]. Tri-

8http://mygrid.org.uk
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ana [Taylor et al., 2005], from the GridLab project9,
is decentralized and distributes several control units
over different computing resources. It has been ap-
plied to various scientific fields, such as gravitational
waves searching [Churches et al., 2003] and galaxy
visualization [Taylor et al., 2003].

The emblematic task-based workflow manager
is the Directed Acyclic Graph Manager (DAG-
Man)10. This system basically allows the descrip-
tion of precedence constraints between Condor jobs.
The Pegasus [Deelman et al., 2003] system is built
on top of it and implements scheduling optimiza-
tions. Close to DAGMan too, the P-GRADE por-
tal [Kacsuk and Sipos, 2005] offers a user-friendly
graphical web interface to it.

4.1 DATA COMPOSITION

As discussed in section 2, data composition is only
available in service-based workflow systems.
Taverna [Oinn et al., 2004].
The one-to-one and the all-to-all data composition
operators were first introduced and implemented in
the Taverna workflow manager. They are part of the
underlying Scufl workflow description language. In
this context, they are known as the dot product and
cross product iteration strategies respectively. The
strategy of Taverna for dealing with input sets of dif-
ferent sizes in a one-to-one composition is to produce
the min(m,n) first results only. However, the seman-
tics adopted by Taverna when dealing with a com-
position of operators as illustrated in figure 3 is not
fully satisfying as will be discussed in section 5.3.
Kepler [Ludäscher et al., 2005] and Tri-
ana [Taylor et al., 2005].
The Kepler and the Triana workflow managers only
implement the one-to-one composition operator.
This operator is implicit for all data composition
inside the workflow and it cannot be explicitly
specified by the user.

We could implement an all-to-all strategy in Ke-
pler by defining specific actors but this is far from

9http://www.gridlab.org

10Condor DAGMan, http://www.cs.wisc.edu/condor/

dagman/

being straight forward. Kepler actors are blocking
when reading on empty input ports. The case where
two different input data sets have a different size
(common in the all-to-all composition operator) is
not really taken into account. Similar work can be
achieved in Triana using the various data stream tools
provided. However, in both cases, the all-to-all se-
mantics is not handled at the level of the workflow
engine. It needs to be implemented inside the appli-
cation workflow.

4.2 PARALLELISM EXPLOITATION

In task-based workflow systems, the 3 kinds of par-
allelism described in the previous section are equiva-
lent and resume to the workflow one. Indeed, in this
approach, data as well as service parallelism are ex-
plicitly expanded in the workflow graph description.

Concerning the service-based approach, workflow
parallelism is available in Taverna, Kepler and Tri-
ana. Data parallelism is present in Taverna, even if
it is currently limited to 10 parallel threads. Ser-
vice parallelism is not available in this system yet,
although it is planned for the coming Taverna II.

Kepler implements the service parallelism within
its PN director. In this execution framework,
each processor (actor in the Kepler vocabulary)
is executed on a dedicated thread. Strategies
have been developed to cope with nested collec-
tions [McPhillips and Bowers, 2005] and to retrieve
data provenance [Bowers et al., 2006] in service par-
allel workflows but data parallelism is not present.

It appears that no existing workflow system imple-
ments all the features that we described in sections 2
and 3 to build an expressive and efficient workflow
manager, as we target to do so. Combining them is
not a trivial issue: in particular, fully exploiting par-
allelism leads to a complete disordering of the data
segments among the workflow, so that applying data
composition operators requires some developments.
In the next section, we thus propose a design and an
implementation of MOTEUR, a prototype workflow
engine that integrates those characteristics.
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5 THE MOTEUR WORKFLOW ENGINE

None of the existing workflow manager implementa-
tions mentioned in section 4 does combine data com-
position strategies (simple and compact framework to
describe scientific applications in a flexible service ori-
ented approach) and fully parallel execution (efficient
enactment of data-intensive applications on grids).
Our hoMe-made OpTimisEd scUfl enactoR (MO-
TEUR) prototype was designed to take advantage of
both, thus providing a flexible and expressive work-
flow description framework to the user and transpar-
ently exploiting parallel grid resources. It was im-
plemented in Java and is available for downloading
under CeCILL Public License (a GPL-compatible li-
cense) at http://www.i3s.unice.fr/∼glatard. A
basic portal is also available.
5.1 STANDARDS INVOLVED

As it is the most elaborated existing solution in terms
of data composition, we started from the Taverna
workbench. We thus adopted the Simple Concept
Unified Flow Language (Scufl) used by this system as
the workflow description language. This language is
convenient for describing data flows and widely used
in the e-Science community. Apart from describing
the data links between the services, the Scufl lan-
guage also defines so-called coordination constraints.
A coordination constraint is a control link which en-
forces an order of execution between two services even
if there is no data dependency between them. We use
coordination constraints to identify services that re-
quire data synchronization.

We developed a simple XML-based language to be
able to describe input data sets. This language aims
at providing a file format to save and store the input
data set in order to be able to re-execute workflows
on the same data set. It simply describes each item
of the different inputs of the workflow.

MOTEUR is interfaced to both Web Services and
GridRPC instrumented application codes.

5.2 ENACTOR IMPLEMENTATION

The central enactor periodically queries each proces-
sor of the service graph to determine whether it is

A

DC E

B

F

Fig. 5: Implementation of the synchronization bar-
rier: F starts when A, B, C, D and E are inactive
and have run at least once

ready to be enacted. The corresponding node then
computes the data sets resulting from the application
of its data composition strategy on its ports contain-
ing the data segments coming from its predecessors.
If a given data set has not been previously computed,
a dedicated thread is then started for the computa-
tion. When the computation is finished, the service
pushes the results to all of its successors ports.

Implementing synchronization barriers in a data
and service parallel workflow requires an in-depth in-
spection of the service tree. Indeed, if we for exam-
ple consider the workflow depicted on figure 5, where
service F synchronizes the data produced by both B
and E, it must be guaranteed that B and E have
produced all their data segments before F starts. A
necessary and sufficient condition to ensure this is
that all the ancestors of F are inactive and have pro-
cessed a non-null number of data sets. We used this
condition to implement synchronization barriers.

Handling the data composition strategies presented
in section 2.3 in a service and data parallel workflow
is not straightforward. Indeed, the data composition
result for a given service cannot be computed once
for all the data sets. Indeed, due to service paral-
lelism, the input data segments of a service are re-
ceived one by one in input ports. The data composi-
tion thus has to be recomputed each time a new data
segment is coming and the service has to record the
data sets it has already computed. Moreover, data
provenance has to be properly tracked in order to
compute one-to-one composition operators. Indeed,
due to data parallelism, a data is able to overtake
another one during the processing and this disorder-
ing could lead to a causality problem, as we exempli-
fied in [Glatard et al., 2005]. Besides, due to service
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parallelism, several data sets are processed concur-
rently and one cannot number all the produced data
once computations completed. We have implemented
a data provenance strategy to sort out the causality
problems that may occur. Attached to each processed
data segment is a history tree containing all the in-
termediate results computed to process it. This tree
unambiguously identifies the data as detailed in the
next subsection and in [Montagnat et al., 2006].

5.3 DATA COMPOSITION ALGORITHM

The semantics of combining data composition oper-
ators is not straight forward. Taverna provides the
most advanced data composition techniques. Yet, we
argue that the semantics adopted is not intuitive for
the end user. Consider the simple example described
in right of figure 3. The priority on the data com-
position is implicit in the workflow. There is no user
control on it. In this case, Taverna will produce:

B⊕Taverna(A⊗P) = { B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A1 ⊗ P0) }
(2)

More data will be produced at the output of the Ser-
vice1 (namely, A0⊗P1, A1⊗P1, A0⊗P2, A1⊗P2) but
the truncation semantics of the one-to-one operator
will apply in the second service and only two output
data will be produced.

This semantics differs from the one that we con-
sider and that is illustrated in equation 1. Given
that two correlated input data sets A and B, with
the same size, are provided, the user can expect that
the data Ai will always be analyzed with the corre-
lated data Bi, regardless of the algorithm parameters
Pj considered: this is the case in equation 1 where
Ai is always consistently combined with Bi.

In order to implement a clear and intuitive seman-
tics for such data compositions, we propose a new
algorithm. To formalize this approach, we need to
take into account the complete data flows to be pro-
cessed in the application workflow. Let us consider
the very general case, common in scientific applica-
tions, where the user needs to independently process
sets of input data A,B, . . . that are divided into data
groups. A group is a set of input data tuples that de-
fines a relation between data coming from different

sets. For instance:

G = {(A0, B0, C0), (A1, B1, C1), (A2, B2, C2)}
H = {(A4, B0), (A1, B2), (A2, B5), (A6, B6)}

are two groups establishing a relation between 3 data
triplets and 4 data pairs respectively. The relations
between input data depend on the application and
can only be specified by the user. However, we
will see that this definition can be explicit (as illus-
trated above) or implicit, just considering the work-
flow topology and the order in which input data seg-
ments are received by the workflow manager.

5.3.1 Data composition operator semantics

We consider that the one-to-one composition oper-
ator does only make sense when processing related
data. Therefore, only data connected by a group
should be considered for processing by any service.
When considering a service directly connected to in-
put data sets, determining relations between data is
straight forward. However, when considering a com-
plete application workflow such as the one illustrated
in figure 7, other services need to determine which of
their input data segments are correlated. The one-
to-one composition operator does introduce the need
for the algorithm described below.

Conversely, the all-to-all operator does not rely on
any pre-determined relation between input data. Any
number of inputs can be combined, with very differ-
ent meaning (such as data to process and algorithm
parameters). Each data received as input yields to
one or more invocations of the service for processing.

5.3.2 Algorithm

The directed data graph is constructed from the roots
(workflow inputs) to the leafs (workflow outputs) by
applying the two following simple rules implement-
ing the semantics of the one-to-one and the all-to-all
operators respectively:

1. Two data segments are always combined in an
all-to-all operation.

2. Two data (graph nodes) are combined in a one-
to-one operation if and only if there exists a
common ancestor to both data in the data graph.
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To implement it, MOTEUR dynamically resolves
the data combination problem by applying the fol-
lowing algorithm. We name orphan data, input data
that have no group parent.

1. Build the directed graph of the data sets to be
processed.

2. Add data groups to this graph.

3. Initialize the directed acyclic data graph:
(a) Create root nodes for each group instance

Gi and add a child node for each related
data.

(b) Create root nodes for each orphan data.

4. Start the execution of the workflow.

5. For each tuple of data to be processed:
(a) Update the data graph by applying the two

rules corresponding to the one-to-one and
the all-to-all operators.

(b) Loop until there are no more data available
for processing in the workflow graph.

To implement this strategy, MOTEUR needs to
keep representations of:

• the topology of the services workflow;

• the graph of data;

• and the list of input data that have been pro-
cessed by each service.

Indeed, the data graph is dynamically updated dur-
ing the execution. When a new data is produced,
its combination with all previously produced data
is studied. In particular in an all-to-all composition
pattern, a new input data needs to be combined with
all previously computed data. It potentially trigger
several services invocation. The history of previous
computations is thus needed to determine the exhaus-
tive list of data to produce.

The graphs of data also ensures a full traceabil-
ity of the data processed by the workflow manager:
for each data node, the parents and children of the
data can be determined. Besides, it provides a mean
to unambiguously identify each data produced. This
becomes mandatory when considering parallel execu-
tion of the workflow introduced in section 3.

S1 S2

S1

Implicit groups

A B

B

A

Fig. 6: Implicit groups definition.

5.3.3 Implicit combinations

The algorithm proposed aims at providing a strict
semantics to the combination of data composition
operators, while providing intuitive data manipula-
tion for the users. Data groups have been introduced
to clarify the semantics of the one-to-one operator.
However, it is very common that users are writing
workflows without explicitly specifying pairwise re-
lations between the data. The order in which data
segments are declared or send to the workflow inputs
are rather used as an implicit relation.

To ease the workflow generation by the user, groups
can be implicitly generated when they are not explic-
itly specified by the user. Figure 6 illustrates two
different cases. On the left side, the reason for gener-
ating an implicit group is straight forward: two input
data sets are being processed through a one-to-one
service. But there may be more indirect cases such
as the one illustrated on the right side of the figure.
The systematic rule that can be applied is to create
an implicit group for each one-to-one operator whose
input data segments are orphans. For example, in the
case illustrated in left of figure 6, the input datasets
A and B are orphans and bound one-to-one by the
S1 service. An implicit group is therefore created be-
tween A and B. In the case illustrated in the right
side of figure 6, the implicit group will be created be-
tween the two inputs of service S2. There will there-
fore be an implicit grouping relation between each
output of the first service S1(Ai) and Bi.
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Workflow engines Data composition Parallelism
one-to-one all-to-all WorkflowDataService

Taverna X X X / O
Kepler X O X O X
Triana X O X O X

MOTEUR X X X X X

Table 1: Comparison of the main service-based work-
flow managers. X: present; /: limited; O: absent

The implicit groups are created statically by ana-
lyzing the workflow topology and the input data sets
before starting the execution of the workflow.

5.4 MOTEUR EVALUATION

In table 1, the characteristics of the main service-
based workflow managers are compared to MO-
TEUR, considering the data composition operators
and the levels of parallelism implemented. It provides
a qualitative evaluation of the prototype we devel-
oped. MOTEUR is the only workflow manager that
implements the two basic data composition operators
and the 3 levels of parallelism at the same time. The
description of data-intensive workflows is made flexi-
ble due to the data composition operators and, on the
other hand, the execution is made much more perfor-
mant, as quantified in the following sub sections, that
consider a real data-intensive application.

5.4.1 Evaluation on a real application

We evaluated MOTEUR on a real data-intensive ap-
plication, which aims at assessing the accuracy of
medical imaging algorithms. It is based on a sta-
tistical procedure which computes accurate results
only if enough input data is available. This applica-
tion is very scalable: the larger the input data sets,
the more accurate it is. Hundreds of input images
are typically needed. The workflow of this appli-
cation is represented on figure 7. Each application
service corresponds either to one of the algorithms
to assess, or to related services for manipulating in-
put/output data formats for these algorithms. The
double squared last service of the workflow is the data
synchronization barrier corresponding to the statisti-
cal assessment procedure.

The application makes an intensive usage of the
data composition operators as illustrated in figure 7.
Despite the complexity of the application (hundreds
to thousands of tasks are needed for a full run), its
description remains very compact. The data compo-
sition strategies allow the user to easily change those
input data sets without modifying the workflow.

5.4.2 Performance results

We benchmarked this application on a Pentium IV,
2.4GHz, 512MB RAM running Linux 2.6.5. The exe-
cution of the workflow on a single input data set was
800 seconds. The application was tested on 126 in-
put data segments in sources A and B. The sequential
time on this data set would thus be 28 hours.

The platform used for this evaluation is the EGEE
production grid with the LCG2 middleware. This in-
frastructure is characterized by its high throughput
(3000 processors are available for our Virtual Orga-
nization) but also by its high latency (more than 5
minutes) due to its large scale and multi-users nature.

On this platform, we obtained a 13.2 speed-up on
our application using MOTEUR. The existing work-
flow solution that provides the required level of flex-
ibility to describe our application (i.e the Taverna
workbench) does not implement service parallelism
(see section 4). If we disable service parallelism in
MOTEUR, the speed-up of the application sinks to
7. Moreover, Taverna is currently limited to 10 paral-
lel threads only. MOTEUR thus provides a speed-up
higher than 1.9 with respect to the existing compara-
ble workflow engines. Going further in a quantitative
evaluation of MOTEUR would require to quantify the
impact of each parallelism level on the makespan of
the application. On a production grid infrastructure
such as EGEE, this problem is not straight forward
because the impact of a given level of parallelism de-
pends on the variability of the execution platform.
We are investigating solutions to address this prob-
lem through a probabilistic approach but this goes
beyond the scope of this paper.
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Fig. 7: Workflow of the application

5.4.3 MOTEUR overhead

Evaluating MOTEUR overhead on the execution is
necessary to identify sources of performance drops.
To quantify this overhead, we implemented a basic
simulator that fakes the grid middleware and assigns
fixed execution times to the jobs so that the middle-
ware overhead is negligible.

Figure 8 displays MOTEUR overhead with respect
to the number of input data segments on this applica-
tion. For 12 data segments, MOTEUR introduces a
latency of 15 seconds on the application. For each ser-
vice invocation, a few seconds are lost due to submis-
sion and polling loops. Indeed, the LCG2 middleware
does not provide any job status notification mecha-
nism, and the application has to periodically poll it.
A too short polling interval excessively stresses the
middleware workload manager, hence intervals have
to be at least a few seconds long. Those 15 seconds in
the overhead could be reduced by optimizing looping
delays but they are not of outmost importance in the
whole execution time.

Fig. 8: MOTEUR overhead

MOTEUR overhead reaches 31 seconds when the
number of input data segments is 126. If we linearly
model the overhead w.r.t the number of input data
segments, we obtain a penalty of 0.14 seconds per
extra data segment. This overhead is negligible as
compared to the application execution time, which
is several hours long, and to the grid infrastructure
access cost.

6 CONCLUSION

We presented a complete design of a workflow man-
ager focusing on ease of use and performance. User-
friendliness is achieved by the service based approach
that particularly eases the iteration of a workflow on
a whole data set by enabling data composition strate-
gies. We studied the semantic of those strategies.

Performance is a difficult point in the service based
paradigm and we described 3 levels of parallelism that
have to be exploited in order to exploit the resources
of grid infrastructures.

Because no existing workflow systems were provid-
ing the required features in data composition and par-
allelism, we implemented MOTEUR, a workflow en-
gine targeting those application requirements. It in-
cludes new algorithms to handle data synchronization
barriers and data composition strategies in a fully
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parallel environment.
We finally evaluated MOTEUR overhead on a med-

ical imaging application run on the EGEE grid. Even
when dealing with hundreds of data sets, MOTEUR
overhead remains around 30 seconds, which is negli-
gible for most of the data-intensive applications run-
ning on a production grid infrastructure. On this
application, MOTEUR provides a 1.9 speed-up with
respect to the workflow managers that offer the same
level of flexibility in the workflow description.
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Ludäscher, B., Cohen, S., and Davidson, S. (2006). A
Model for User-Oriented Data Provenance in Pipelined
Scientific Workflows. In International Provenance and
Annotation Workshop (IPAW), LNCS.

[Cappello et al., 2005] Cappello, F., Desprez, F., Dayde,
M., Jeannot, E., Jegou, Y., Lanteri, S., Melab,
N., Namyst, R., Vicat-Blanc Primet, P., Richard,
O., Caron, E., Leduc, J., and Mornet, G. (2005).
Grid’5000: A Large Scale, Reconfigurable, Controlable
and Monitorable Grid Platform. In 6th IEEE/ACM In-
ternational Workshop on Grid Computing (Grid’2005),
Seattle, Washington, USA.

[Caron et al., 2002] Caron, E., Desprez, F., Lombard, F.,
Nicod, J.-M., Quinson, M., and Suter, F. (2002). A
Scalable Approach to Network Enabled Servers. In
8th International EuroPar Conference, volume 2400 of

LNCS, pages 907–910, Paderborn, Germany. Springer-
Verlag.

[Casanova et al., 2000] Casanova, H., Legrand, A.,
Zagorodnov, D., and Berman, F. (2000). Heuristics
for Scheduling Parameter Sweep Applications in Grid
Environments. In 9th Heterogeneous Computing Work-
shop (HCW), pages 349–363, Cancun.

[Chen and Yang, 2006] Chen, J. and Yang, Y. (2006).
Multiple States based Temporal Consistency for Dy-
namic Verification of Fixed-time Constraints in Grid
Workflow Systems. Concurrency and Computation:
Practice & Experience.

[Churches et al., 2003] Churches, D., Sathyaprakash,
B. S., Shields, M., Taylor, I., and Wand, I. (2003).
A Parallel Implementation of the Inspiral Search Algo-
rithm using Triana. In Proceedings of the UK e-Science
All Hands Meeting, Nottingham, UK.

[Deelman et al., 2003] Deelman, E., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Blackburn, K.,
Lazzarini, A., Arbree, A., Cavanaugh, R., and Ko-
randa, S. (2003). Mapping Abstract Complex Work-
flows onto Grid Environments. Journal of Grid Com-
puting (JGC), 1(1):9–23.

[Foster, 2005] Foster, I. (2005). Globus Toolkit Version
4: Software for Service-Oriented Systems. In Inter-
national Conference on Network and Parallel Comput-
ing (IFIP), volume 3779, pages 2–13. Springer-Verlag
LNCS.

[Foster et al., 2002] Foster, I., Kesselman, C., Nick, J.,
and Tuecke, S. (2002). The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Sys-
tems Integration. Technical report, Open Grid Service
Infrastructure WG, GGF.

[Glatard et al., 2006a] Glatard, T., Emsellem, D., and
Montagnat, J. (2006a). Generic web service wrapper
for efficient embedding of legacy codes in service-based
workflows. In Grid-Enabling Legacy Applications and
Supporting End Users Workshop (GELA’06), Paris,
France.

[Glatard et al., 2005] Glatard, T., Montagnat, J., and
Pennec, X. (2005). Grid-enabled workflows for data
intensive medical applications. In 18th IEEE Interna-
tional Symposium on Computer-Based Medical Systems
(CBMS).

[Glatard et al., 2006b] Glatard, T., Montagnat, J., and
Pennec, X. (2006b). An experimental comparison of
Grid5000 clusters and the EGEE grid. In Workshop on

14



Experimental Grid testbeds for the assessment of large-
scale distributed applications and tools (EXPGRID’06),
Paris, France.

[Irani and Bashna, 2002] Irani, R. and Bashna, S. J.
(2002). AXIS: Next Generation Java SOAP. Wrox
Press.

[Kacsuk et al., 2004] Kacsuk, P., Goyeneche, A., De-
laitre, T., Kiss, T., Farkas, Z., and Boczko, T.
(2004). High-Level Grid Application Environment to
Use Legacy Codes as OGSA Grid Services. In Proceed-
ings of the Fifth IEEE/ACM International Workshop
on Grid Computing (GRID ’04), pages 428–435, Wash-
ington, DC, USA. IEEE Computer Society.

[Kacsuk and Sipos, 2005] Kacsuk, P. and Sipos, G.
(2005). Multi-Grid, Multi-User Workflows in the P-
GRADE Grid Portal. Journal of Grid Computing
(JGC), 3(3-4):221 – 238.

[Lord et al., 2005] Lord, P., Alper, P., Wroe, C., and
Goble, C. (2005). Feta: A light-weight architecture for
user oriented semantic service discovery. In European
Semantic Web Conference.
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