
Dynamic Attribute Grammars
(Extended Abstract)

Didier PARIGOT, Gilles ROUSSEL, Martin JOURDAN and]~tienne DURIS*

INRIA and Universit6 de Marne-la-Vall6e

A b s t r a c t . Although Attribute Grammars were introduced long ago,
their lack of expressiveness has resulted in limited use outside the do-
main of static language processing. With the new notion of Dynamic
Attribute Grammars defined on top of Grammar Couples, we show that
it is possible to extend this expressiveness and to describe computations
on structures that are not just trees, but also on abstractions allowing for
infinite structures. The result is a language that is comparable in power
to most first-order functional languages, with a distinctive declarative
character.
In this paper, we give a formal definition of Dynamic Attribute Gram-
mars and show how to construct efficient visit-sequence-based evaluators
for them, using traditional, well-established AG techniques (in our case,
using the FNC-2 system).

Keywords: Attribute Grammars, static anMysis, implementation, dy-
namic semantics, applicative programming.

1 I n t r o d u c t i o n and R e l a t e d Work

Attribute Grammars were introduced thirty years ago by Knuth [15] and, since
then, they have been widely studied [7, 6, 2, 17]. An Attribute Grammar is a
declarative specification that describes how attributes (variables) are computed
for rules in a particular grammar (i.e., it is syntax-directed). They were origi-
nally introduced as a formalism for describing compilation applications and were
intended to describe how to decorate a tree representing the program to compile.
In this application area, Attribute Grammars were recognized as having these
two important qualities:

- they have a natural structural decomposition that corresponds to the syn-
tactic structure of the language, and

- they are declarative in that the writer only specifies the rules used to compute
attribute values, but not the order in which they will be applied.

* Gilles Roussel is with Universit6 de Marne-la-Vall6e, 2, M16e du Promontoire,
93166 Noisy-le-Grand, France; e-maih roussel| The other authors
are with INRIA, Projet OSCAR, Domaine de Voluceau, Rocquencourt, BP 105,
78153 Le Chesnay Cedex, France; e-mail: {Didier .Parigot , Maxtin. Jourdan,
Etienne. Duris}@inria. fr; Web page: http://www-rocq, inria, fr/oscar/FNC-2/.

123

In spite of that, Attribute Grammar specifications are still not as widely used
as they could be. We believe that one of the main reasons for this is their lack
of expressiveness, which is due to the fact that, because of their historical roots
in compiler construction, the notion of (physical) tree was considered as the
only way to direct computations. Some works have attempted to respond to this
problem by proposing extensions to the classical Attribute Grammar formalism,
for instance Circular Attribute Grammars [9], Multi-Attributed Grammars [3],
Higher-Order Attribute Grammars [21] or Conditional Attribute Grammars [4].
Our own work [18, 19] has similarities with the latter two (like with HOAGs,
the computation tree is not isomorphic to the input tree, and like with CAGs,
attribute values can influence the choice of semantic rules to compute) but our
approach differs in important respects. First, for us, the notion of g r a m m a r does
not necessarily imply the existence of a (physical) tree and, in fact, our evaluators
can work without any tree. Secondly, our implementation technique is a simple
derivation of the traditional visit-sequence-based evaluation paradigm and does
not require the construction of any additional piece of tree.

Our view of the grammar underlying an Attribute Grammar is similar to
the grammar describing all the call trees for a given functional program or all
the proof trees for a given logic program: the grammar precisely describes the
various possible flows of control. In this context, a production describes an ele-
mentary recursion scheme (control flow) [5], whereas the semantic rules describe
the computations associated with this scheme (data flow).

It is very important to observe that all the theoretical and practical results
on Attribute Grammars are based only on the abstraction of the control flow
by means of a grammar and not at all on how its instances are obtained at
run-time. In particular, this applies to the algorithms for constructing efficient
evaluators for various subclasses of Attribute Grammars and the global static
analysis methods [10, 2, 17].

In consequence, we present two notions which comply with this view:

- G r a m m a r Couples allow to describe recursion schemes independently from
any physical structure and/or to exhibit a different combination of the el-
ements of a physical structure. A grammar couple defines an association
between a dynamic grammar and a (possibly empty) concrete grammar.

- D y n a m i c A t t r ibu te Grammars (DAGs) allow attribute values to influence
the flow of control by selecting alternative dynamic productions. We define
the new notion of semant ic rules blocks, decision trees for productions and
their semantic rules.

These extensions result in a programming language similar to a first-order lan-
guage with a functional flavor (because of the single-assignment property) that
retains the distinctive declarative character of Attribute Grammars. They have
been easily implemented in Olga, the input language to our FNC-2 system
[12, 11].

An informal, example-based comparison of Dynamic Attribute Grammars
with other programming paradigms appears in [18], together with a discussion

124

of how this leads to fruitful applications regarding analysis and implementation
techniques. In this paper, we concentrate instead on the definition and imple-
mentation of DAGs. At this point, the semantics of DAGs is given by their
functional implementation, as described here; we are working on a more elegant
formulation of the semantics, which would be too long to present here anyhow.
This paper is a much shortened version of [20], in which the interested reader
will find more details, more formalism and all the proofs.

The remainder of this article is divided in two sections. The first one presents
successively the classical definition of Attr ibute Grammars, the two new notions
of Grammar Couple and Dynamic Attribute Grammar and finally the construc-
tion of a classical Attr ibute Grammar which has the same "behavior" as a given
DAG (the Abstract Attribute Grammar, or AAG, associated with the DAG). The
second section demonstrates how to use classical AG-implementation techniques
to produce efficient, visit-sequence-based evaluators for DAGs.

2 D y n a m i c A t t r i b u t e G r a m m a r s

2.1 Reca l l s on Class ica l A t t r i b u t e G r a m m a r s

D e f i n i t i o n 1 (C o n t e x t - F r e e G r a m m a r) . A context-free grammar is a tuple
G = (N, T, Z, P) in which:

- N is a set of non-terminals;
- T is a set of terminals, N n T = ~;
- Z is the root non-terminal (start symbol), Z �9 N;
- P is a set of productions, p : X0 ~ X1 . . . Xn with Xo �9 N and X~ �9 (TUN).

In this paper, we will forget about terminals and parsing problems and consider
a grammar as an algebraic definition of a family of trees (or terms or structures).

D e f i n i t i o n 2 (A t t r i b u t e G r a m m a r) . An Attribute Grammar is a tuple AG =
(G, A, F) where:

- G = (N, T, Z, P) is a context-free grammar;
- A = U X E N H (X) t~ S (X) is a set of attributes, with H (X) the inherited

attributes of X E N and S(X) the synthesized ones;
-- F ---- U p E p F(p) is a set of semantic rules, where fp,a,x~ designates the se-

mantic rule defining the at tr ibute occurrence a(Xi) in production p : Xo --*
X 1 . . . X n and a �9 A(Xi) .

In the previous definitions, there is some ambiguity in the use of symbol Xi.
In the CFG definition, they represent non-terminals whereas, in the AG defini-
tion, they represent both the non-terminal occurrence (labeled by its position in
the production) and the non-terminal (type) itself. However, the position of a
name in a production is only relevant for X0, or to distinguish two non-terminal
occurrences and their types. Therefore, we consider a production as a set of
distinct names (with a specific one for the left-hand side), each with a type.

125

D e f i n i t i o n 3 (P r o d u c t i o n) . Let]; be a universal finite set of names. A pro-
duction p : Xo --* X 1 . . . X,~ in a CFG is a tuple ((X0,]2p), typep) in which:

i. l)p = {Xl, X 2 , . . . , X,~} C];, with n = Card(lYp), and X0 �9 1) -];v;
ii. typep: Yp~ --, g U T, where 1;~ -- {X0} u Yp, is a function which associates

to each name a unique type in the set of non-terminals and terminals, such
tha t typep(Xo) �9 N.

In the sequel of this paper, we will use the clearest of our two notat ions for a
p roduc t ion- -p : X0 --* X1 . . . X,~ or ((Xo,))v), typep)--according to the context.

We now give some notations relative to such a production:

- LHS(p) = Xo and RHS(p) = 1; v.
- W~,(p), the set of input or used at t r ibute occurrences in p, and Wd(p), the

set of output or defined at t r ibute occurrences, are defined as usual; W(p) =
W~ (p) U Wd (p).

We will deal only with well-formed AGs, so F(p) shall contain exactly one
semantic rule defining each output occurrence. Furthermore, all our AGs will be
in normal form.

2.2 D y n a m i c A t t r i b u t e G r a m m a r s

As said in the introduction, the basis for a Dynamic Att r ibute G r a m m a r is a
g rammar which describes the control flow (recursion scheme) of the intended
application. This control flow can depend purely on a t t r ibute values but also on
the shape of some physical tree, which will then be a distinguished paramete r
to the evaluator. Hence we have to make a difference, but also establish a corre-
spondence, between the g rammar which describes the concrete s t ructure and the
one which describes the computat ion scheme (which will "contain" the former,
in some sense). This is the motivation for the notion of G r a m m a r Couple.

D e f i n i t i o n 4 (G r a m m a r C o u p l e) . A Grammar Couple G = (Gd, Go, Concrete)
is a pair of context-free g rammars Gd = (Nd, Td, Zd, Pal) and Gc = (No, To, Zc, Pc)
and a function Concrete : Pd • 1) --* (Pc • Y) U {_l_}, where:

1. Nc C_ Nd; Td = To; if Gc is not empty 2 then Zd = Zc.
2. Vpd E Pd, we have:

i. VX �9 1)~, typep~(X) �9 (Nd -- Nc) ~ Concrete(pal,X) = .L;
ii. typer~(LgS(pd)) e (Nd-Nc) =~ VX �9 RgS(pd) , typep~(X) �9 (Nd --Arc);

iii. typepd(LHS(pd)) �9 Nc =~ 3/Pc �9 Pc such that:
�9 Concrete(pal, LHS(pd)) = (pc, LHS(pc)) and

typepd (L H S(pd)) = typepc (L H S(pc));
�9 VX �9 RHS(pd), typep~(X) �9 Nc =~ 3Y �9)2~ such tha t

Concrete(pal, X) = (Pc, Y) and typev~(X) = typevo(Y).

2 In completely tree-less applications, such as the factorial function [18], Gc is empty
and Concrete maps any element to .L.

126

3. Vp, q E Pd such that t ypep(LHS(p)) = typeq(LHS(q)) and
Concrete(p, L H S(p)) = Concrete(q, L H S(q)), we have:

i. LHS(B) = n g S (q) ;
ii. V X e I)p N];q, typep(X) = typeq(X);

iii. V X E])p N ~)q,Conerete(p,X) = Conerete(q,X).

Given the above constraints, we can unambiguously extend the function Concrete
to productions Pd of Pd.

In the previous definition, Gd and Gc respectively represent the dynamic
and concrete grammars, and Concrete gives the concrete production (or name)
corresponding to a dynamic one, i.e. a physical tree (or node). When the value of
this function is _L (undefined), it means that the argument is a purely dynamic,
or "abstract" object (it corresponds to some pure recursion scheme).

A dynamic production Pd is either purely abstract or associated with a unique
corresponding concrete production Pc, which has the same type as LHS. Further-
more, for all non-terminals with a concrete type in the RHS of Pd, there exists in
Pc a corresponding non-terminal with the same type. Note that a given physical
structure may be referenced more than once in the dynamic production and that
the concrete LHS, which by definition is associated with the dynamic LHS, may
also be referenced again in the dynamic RHS. These "special effects" are the
essence of DAGs and allow to express computations that were deemed impossi-
ble with classical AGs. The latter effect is illustrated in our whi le example (see
below), whereas the former is used in the double example of [18].

Condition 3 stems from the constraint that , for two productions with the
same LHS type and the same associated Concrete 3, the LHS must have the
same name and all names common to both productions must have the same
type. This implies in particular that, if the corresponding Concrete counterpart
of a such common name is not undefined, it is actually the same concrete object.

Our running example in this paper will be to define (an excerpt of) the
dynamic semantics of a programming language with a DAG describing an inter-
preter. This application is out of the reach of traditional AGs and is the basis
for our translation of denotational semantics into DAGs [16]. Fig. 1 presents the
structure of the whi le statement as part of a grammar couple (Gd, Gc, Concrete).
STAT, COND E N d U Nc respectively represent statements and boolean conditions.
n a m e : TYPE means that TYPE is the type of name and name_d=name_c means that
Concrete(pd,narae_d) = (pc,name_c). 4 p E Pc is the concrete production which
describes that a whi le statement is made of a condition and a body statement.
p~ and Pt E Pd are two dynamic productions which represent the recursive and
termination behaviours of a whi le structure.

A semantic rules block is a conditional structure (decision tree) which defines
all the dynamic productions that are applicable at a same point (either associated
with the same concrete production or the same purely dynamic non-terminal,
see the constraints in definition 7 below), their semantic rules and the conditions
specifying how to choose between them.

3 with possibly Concrete = .l_.
4 where pd and pc are unambiguously defined by the context.

127

Concrete production p G Pc:
p: while:STAT -> cond:COND body:STAT

Dynamic productions p~ and pt E Pd:
Pr: w=while : STAT -> cond=cond: COND body=body : STAT loop=whi le : STAT
Pt: w=while :STAT-> cond=cond:COND

Fig. 1. Par t of a grammar couple for the whi le statement

(h . e n v (c o n d) := h . env (w) , - - c o m m o n s e m a n t i c rule R j
((s . c (c o n d)) , - - boolean expres s ion

(w=while : STAT -> cond=cond: COND body=body : STAT l o o p = w h i l e : STAT~
h . e n v (b o d y) := h .env(w) - - t rue case : (pr ,R')
h.env(loop) := s.env(body)
s.env(w) := s.env(loop))~

(w=while:STAT -> cond=cond:COND~ -- false case : (pt,R")

s . e n v (w) := h . e n v (w))))

Fig. 2. The semantic rules block for the whi le statement

D e f i n i t i o n 5 (S e m a n t i c Ru l e s B lock) . A semantic rules block b is induc-
tively defined as follows:

b = (R, (e, b, b)) I (P, R)

where R is a possibly empty set of (unconditional) semantic rules, e is a condition
(boolean expression over at tr ibute occurrences) and p is a production.

Fig. 2 presents the semantic rules block describing the denotational-like se-
mantics of the whi le statement. Attributes names are prefixed by h. for inher-
ited, and s. for synthesized. The at tr ibute env represents the execution envi-
ronment (store, etc.) of a statement and s . c carries the value of the condition.

In a block, semantic rules are associated with any node of the decision tree
whereas the productions appear only at the leaves. The following definition
shows how a block is "flattened" into a collection of traditional productions-
with-semantic-rules.

D e f i n i t i o n 6 (T~ b se t) . For each block b, 7~ b is the set of all semantic rules in
b, qualified by the conjunction (path) of conditions that constrain (enable) them
and the production to which they are attached:

�9 n (p , R> =

�9 " ~ (R , (e , b b l a i s e)) =

let T~ b' Oi((ci,pi), R~),
nb, . .o = uj((c ,pj), Rj)

in Ui(((e, t r u e) . c i , p i) , R U R~) U u i (((e , f a l s e) . c j , p j) , R u R j) .

128

The T~ b set for our while example can be derived from Fig. 3 below by forgetting
about the D P transformation introduced before definition 9.

For a given semantic rules block b, we define PT~ b as the set of all productions
in b: "PT~ b = {p] ((c ,p) ,R) �9 T~b}. We say that the pair ((c ,p) ,R) is well-]ormed
if the semantic rules set R is well-formed for the production p and each condition
e in path c refers only to input attribute occurrences of p.

We are now ready to define complete Dynamic Attribute Grammars.

Defini t ion 7 (Dynamic AG). A Dynamic Attribute Grammar is a tuple AG =
(G, A, F) where:

- G = (Gg, Go,Concrete) is a grammar couple;
- A = UxeN~ H (X) ~ S (X) is a set of attributes;
- F is a set of semantic rules blocks such that:

1. Vb E F, every ((c,p), R) E ~b is well-formed, as defined above;
2. Vp E Pd, 3! b E F such that p e 7)T~b;
3. Vp, q E P~, with p �9 PT~ b' and q �9 :PT~ hi, such that typep(LHS(p)) =

typeq(LHS(q)) = X , we have:
�9 X � 9
�9 X �9 Nr =~ (bi = bj ~:~ Concrete(p) = Concrete(q)).

A Dynamic Attribute Grammar describes a function taking as arguments:

- values for all the inherited attributes of the start symbol (since these are not
banned), and

- if the concrete grammar in the grammar couple is not empty, a concrete tree
described by this grammar,

and which returns the values of the synthesized attributes of the start symbol.
The computation of the attributes is defined in an "obvious" way and is guided at
each "dynamic node" by the values of the various conditions and, when relevant,
by the production applied at the corresponding concrete node. The formal defi-
nition of the semantics of a DAG, based on the notion of consistently attributed
dynamic (virtual) trees, is the topic of our present work; in the meantime, it
will be defined by its implementation, as described below, and we hope that
the sequel of this paper and the examples in [18] will help the reader intuitively
grasp the semantics and operation of a DAG.

2.3 A b s t r a c t A t t r i b u t e G r a m m a r s

We claimed earlier that Dynamic Attribute Grammars could be implemented
using the same techniques as classical AGs. The basic idea is simple [10]:

1. build from the given DAG a classical AG which has the same "behavior"
(syntax--i.e., recursion scheme---and dependencies--i.e., data flow);

2. generate the evaluator for this classical AG;
3. transform this evaluator so that it correctly implements the original DAG.

129

In this section, we show how to construct this equivalent classical AG, which we
call the Abstract Attribute Grammar (AAG) associated with the DAG.

Let b = (R, (e, (PT, RT), (PF, RE)))) be the simplest form of a (conditional)
block. Basically, the productions and semantic rules in the AAG which will
reproduce the behavior of this block are, on one hand, PT associated with the
rules in R U RT and, on the other hand, (pF ,R U RE). This is indeed correct
from the point of view of the recursion schemes and data flows, and the well-
formedness conditions on the DAG will ensure that the resulting AAG will also
be well-formed. The definition below formalizes this intuition and adds the very
important constraint that no at t r ibute defined by a rule in the groups subject
to the condition (RT and RE) can be evaluated before the condition.

D e f i n i t i o n 8 (A b s t r a c t A G) . The Abstract Attribute Grammar for a given
Dynamic Attr ibute Grammar D A G = (G = (Gd, Go, Concrete), A, F) is a tuple
A A G = (Ga, Aa, F~) where:

- G~ -- (N~, T~, Za, P~); N~ --- Nd; Za = Zd; T~ = Td; Aa = A;
- P~ = {c.pd : Xo --+ X l X,~p~ I 35 e F,((c, pd) ,R) e T~ b with Pd : Xo --+

X1... X,~, e Pd};
- Fa = U~ep.F~(p) is a set of semantic rules, with F~(p) = R such that

p = c.pd and 3b E F, ((c, pd), R) E j:b, with ~-b defined below.

In this definition, C.pd is just a name for a production in A A G which encodes
its origins in DAG: the production Pd and sequence of guards c. For instance,
for our whi le example, the two productions in the AAG in Fig. 3 below are the
same as p~ and Pt in Fig. 1, up to t he production names.

Let D P be the transformation which, to a given semantic rule of the form
fp,~,x : a (X) := exp and a condition e seen as an expression over some at t r ibute
occurrences, associates the modified semantic rule DP(fp ,a ,x , e) : a (X) :=
dp(exp, e), where dp is the polymorphic function defined as dp(x, y) = x. The
definition of D P extends to set of semantic rules: D P (R , e) = { D P (f p , : , z , e) I
]p,:,x E R}. The purpose of D P is to make sure that a given at t r ibute cannot
be evaluated before condition e, without altering its value.

D e f i n i t i o n 9 (~-b se t) . For each block b, ~b is the set of all semantic rules in
b, qualified and modified by the conjunction (path) of conditions that constrain
(enable) them and attached to their respective production:

�9 ~-(p,R) __ {((e ,p) ,R)}

�9 f f~(R,(e,b blal ,e)) =

let ~-b, U~((ci,pi), R~),
o,., = u j ((e j , p j) ,

in Oi(((e, true).c, ,p,), R O D P (R , , e))
U uj(((e , fa lse) .c j ,p j) , R u D P (R j , e)).

This is nearly the same as the flattened form ~b, except that it makes explicit
the "control dependencies" on the conditions. Fig. 3 presents the productions
and modified semantic rules in the AAG for the whi le statement.

"130

{(((,.c(cond), t rue)
w=while:STAT ->

h.env(cond)
h.env(body)
h.env(loop)
s.env(w) :=

(((s.c(cond), false)

P

cond=cond:COND body=body:STAT loop=while:STAT),
:= h . e n v (w)
:= dp(h.env(w),s.c(cond))
:= d p (s . , n v (b o d y) , s . c (c o n d))
d p (s . e n v (l o o p) , s . c (c o n d))) ,
, w=while:STAT -> cond=cond:COND),

h . e n v (c o n d) := h . e n v (w)
s.env(w) := d p (h . e n v (w) , c (c o n d))) }

Fig. 3. Productions and modified semantic rules in the Abstract AG for the
while statement

It is clear that, given an "abstract" tree that represents the same recursion
scheme as some computation described by the DAG, the AAG describes the
same computation over this tree: the values of the attributes will be the same
and, a posteriori, we can check that the conditions will have the same values,
too. The other additions to the AAG are pure dependencies which ensure that
the evaluation of the conditions and of the attributes alternate in the "right"
order. This observation is the basis for the formal definition of the semantics of
a DAG, on which we are working.

3 V i s i t - S e q u e n c e - B a s e d I m p l e m e n t a t i o n

In this section, we show how to produce evaluators for dynamic AGs based on the
visit sequence paradigm [14, 8, 1]. This is our preferred method because: these
evaluators reach the best compromise between the time and space efficiency and
the generality of the AG class they can implement; this is the paradigm we have
implemented in FNC-2 [12] (for the reason just mentioned and for their versa-
tility); and they are the easiest to transform into functions or procedures, which
gives a basis for our studies on the relationships between AGs and functional
programming [18].

The presentation in this version of the paper is very informal, relying almost
entirely on pictures and examples. The formal definitions, the theorems and their
proofs appear in [20].

Fig. 4 illustrates the generation process and introduces the various objects it
manipulates. It proceeds as follows (the figure numbers refer to the corresponding
objects for the while example):

1. We construct the abstract AG corresponding to the given dynamic AG and
test or make sure that it is/-ordered, by exhibiting or constructing appro-
priate totally-ordered partitions (TOPs) {Tx I X 6 N} of the attributes of
each non-terminal. Since not all AGs are/-ordered, this may fail for some
dynamic AGs. For the while example we have TSTAT = {h.env}{s.env} and

=

131

black box

~ ' k Guard Merge
A A G "~ T O P s os ~ gos ~, cos

ad-hoc

Leave
: dvs

Fig. 4. The basic idea

~uard((s.c(cond), true).pr , osp~) =
h.env(w), h .env(cond) , s . c (cond) , conds.c(cond),
h.env(body) , s .env(body) , h . env(ioop) , s . env (ioop) , s.env(w)

Ou rd((s.c(eo d), /) ,) =
h. env(w), h. env (c o n d) , s. c (tonal), conds.c(cond), s. env (w)

Fig. 5. Guarded ordered sequences for the while productions

2. Using these TOPs, we generate, for each of the productions of the AAG, a
separate visit sequence represented by an ordered sequence os, i.e. an ordered
subset of W(p) such that the total order on os respects the partial order "y(p)
of the augmented dependence graph D(p)[Txo, Tx1 , . . . , Tx,]. os is derived
from "y(p) by topological sort and it is easy to construct the visit sequence
from os. Note that this step and the previous one are exactly the same as
for a traditional AG.

3. Each production in the AAG corresponds to some "guarded production" c.p
in the dynamic AG. We hence reintroduce in each ordered sequence marks
for the evaluation and test of the various conditions (guards) of the dynamic
production it corresponds to; for each condition, in the order defined by the
path in the decision tree, this occurs as soon as all the attribute occurrences
on which it depends are available. This leads to guarded ordered sequences
(Fig. 5).

4. We then merge all the guarded ordered sequences corresponding to the same
block, so as to obtain a single conditional ordered sequence structured just
like the decision tree of the block (Fig. 6). To make this possible, we have to
make sure that these visit sequences are "compatible", i.e. that, for a simple

h . e n v (w) , h . e n v (c o n d) , s . c (c o n d) ,
(s.c(cond),

(h . env (body) , s .env(body) , h . env(loop) , s . env(loop) , e.env(w)),

Fig. 6. Conditional ordered sequence for the while block

132

begin i; eval h .env(cond); v i s i t 1, cond;
(s.c(cond),

(eva l h .env(body); v i s i t 1, body;
eval h . e n v (l o o p) ; v i s i t 1, loop;
eval s.env(w); leave i),

(eval s . env(w); leave 1)).

Fig. 7. Conditional visit sequence for the wh i l e block

block of the form (R, (e, (PT, RT) , (PF, RF))), the parts of the guarded visit
sequences for PT and pF that appear before the evaluation of the condition e
both compute exactly the same collection of at tr ibute occurrences. This point
is discussed further below.

5. We transform each conditional ordered sequence into a conditional visit se-
quence by the same process as the traditional transformation of an ordered
sequence into a visit sequence (Fig. 7).

6. We cut each conditional visit sequence in "slices" corresponding to the vari-
ous visits to the LHS node, so as to make each slice a separate visit]unction,
and we reintroduce at the beginning of each such function the branching
code executed in previous visits.

Because our whi le example is not significant enough to illustrate the last step
(there is only one visit), we show in Fig. 8 the (augmented) dependency graphs
for two productions of an imaginary abstract AG. These productions depend
on a condition over a purely synthesized at tr ibute of a name common to both
productions, s (W). If this condition is true, then Pt is applied, otherwise it is
pf . In Fig. 9 we present successively the conditional ordered sequence associated
with these productions, the corresponding conditional visit sequence and the
dynamic visit sequence.

Let us get back to the notion of compatibility, briefly touched upon in step 4
above. Consider a simple block b = (R; (e , (p T , R T) , (p F , R F))) and the two
guarded ordered sequences gosT = Guard(pT, OST) ---- OS'T.COnde.os'~ and gos F =
6 u a r d (p f , osF) = OS'F.COnd~.os ~ which will be constructed for PT and PF. We
want to produce a conditional ordered sequence which will: evaluate the at-
tributes "before" the condition; evaluate the condition; according to the value of
the latter, continue with one of the sequences or the other. To make this possible,
we have to make sure that os' T and os' F are compatible, i.e. they contain exactly
the same set of at t r ibute occurrences. Hence the whole construction relies on the
following theorem:

T h e o r e m 10. Given a block b = (R, (e, (pl, RT) , (P2, RE))) which induces:

- PT = (e, t rue) .p l , PF = (e, fa lse) .p2 e Pa,
- OST and OSF the ordered sequences generated by the topological sort algo-

rithm,

133

p,

A
h X s r

h Y s r h W s r

A
h X s

h W s r

Fig. 8. An example of dependence graph

s(w),
(cond,

(s(Y),
(s(x),

begin 1; v i s i t
(cond,

(

- - condition over s (W)
s(X), h(X), h(Y), h(W), r (Y) , r(W), r (X)) ,
h(X), h(W), r(W), r (X)))

(a) The conditional ordered sequence

1, W;

visit I, Y; eval s(X); leave i;
begin 2; eval h(Y); eval h(W); visit 2, Y;
visit 2, W; eval r(X); leave 2;),
eval s(X); leave 1;
begin 2; eval h(W); visit 2, W; eval r(X); leave 2;))

(b) The conditional visit sequence

begin i; visit 1, W;
(cond ,

(v i s i t 1, Y; eva l s(X);),
(eval s(X);))

leave 1 ;
begin 2;
(cond,

(eval h(Y); eval h(W); visit 2, Y; visit 2, W; eval r(X);),
(eval b(W); visit 2, W; eval r(X);))

leave 2;

(c) The dynamic visit sequence

Fig. 9. Example of lZisit and Leave transformations

134

g iven ~/(p) where p = c.p~ = (el , t l) . (e2, t2) . . . (e,~, t,~).pd do
os *-- e; i ~-- 0;S ~-- 0;
r e p e a t

i ~--- i + 1;
i f i = n + 1 t h e n S ~ W (p)
else S ~- S U :D:D+(e~) - - dependency cone of the condition
r e p e a t

compute $(os); - - the set of attributes ready]or evaluation
a (X ,) ~-- 7)ick(E(os) A S);
o s ~ - o s . a (X ~) ;

un t i l E(os) A S = 0
unt i l os is complete.

F ig . 10. Conditional topological sort of W (p)

- gOST = Guard(pT, OST) = OS~T.COnd~.os~ and gosF = Guard(pF ,OSf) -=
OS~F.COnde.os~ the corresponding guarded ordered sequences,

i] the choice]unction used in the topological sort is deterministic, then os' T =

OSIF .

In [20], we present two approaches to the construction of ordered sequences and
the proof of this compatibility theorem: the first one (black box) uses the clas-
sical construction of Ordered sequences, without any modification, but requires
that we start with a slightly more rigid AAG 5 than the one presented earlier;
the second one (ad hoc) starts with the standard AAG but requires that the
construction of ordered sequences (topological sort) is aware of the conditions
(see Fig. 10: at tr ibutes to evaluate are picked in the "dependency cone" of the
successive conditions).

The final form of our evaluators is based on the visit]unction paradigm [21].
An important property of this implementation is that , when we use classical,
static storage optimization techniques [13] and, as a last resort, the binding tree
technique [21], no at t r ibute needs to be stored in the tree anymore. It is hence
quite appropriate for the implementation of Dynamic AGs, in which the physical
tree need not be isomorphic to the computation tree or even exist at all.

The last step before the generation of these visit functions, namely the con-
struction of dynamic visit sequences (Fig. 9), is required to account for the fact
tha t the visit-sequence selection mechanism of Dynamic AGs is richer than that
of classical AGs: the latter only depends on the production which is applied at
the root of the visited subtree, whereas the former (possibly) uses this informa-
tion but also the conditions. So, when we cut a conditional visit sequence into
"slices" corresponding to the various visits to the LHS, we need to reintroduce

5 The added constraint enforces that no son which is not entirely in the "intersection"
of PT and p f is visited before the evaluation of condition e. This may lead to the
rejection of a few/-ordered, meaningful DAGs.

135

in each of them the branching code executed in previous visits. This assumes
of course that the values of the various conditions computed in one visit are
correctly transmitted to subsequent visits as non-temporary local attributes.

This concludes the construction of visit-sequence-based evaluators for Dy-
namic AGs. Like for traditional AGs, these evaluators are as efficient as possible.
When the dynamic AG is evaluable in one pass, the generated visit functions
are the same as what one could write by hand in any language with recursive
functions; however, when dependencies are more complicated, hand-writing the
evaluator is close to impossible, unless one uses some sort of delayed evaluation
mechanism--e.g, lazy evaluation of functional programs--, but then our eager
evaluators are more efficient. See [18] for a longer discussion of this topic.

4 C o n c l u s i o n

In this paper we have argued that in the term "Attribute Grammar" the notion
of grammar does not necessarily imply the existence of an underlying tree, and
that the notion of attribute does not necessarily mean decoration of a tree. We
have presented Dynamic Attribute Grammars, a new, simple extension to the
AG formalism which allows the full exploitation of the power of this observa-
tion. They are consistent with the general ideas underlying Attribute Grammars,
hence we retain the benefits of the results and techniques that are already avail-
able in that domain.

Our goal in providing these extensions to the Attribute Grammar formalism
is to bring this powerful tool into a larger context of usefulness and applicabil-
ity. Its declarative and structured programming style and existing static analysis
techniques become more general under this extended view and reveal themselves
as complementary to other formalisms such as functional programming or infer-
ence rule programming [18].

This approach is of practical interest because, as we have shown, the mech-
anisms necessary to support Dynamic Attribute Grammars were already part
of the FNC-2 system, which has proved its usefulness on real applications; this
made their implementation easy. It is also promising because it opens the way
to the application of good results developed for Attribute Grammars to other
programming paradigms.

References

1. Henk Alblas. Attribute evaluation methods. In Alblas and Melichar [2], pages
48-113.

2. Henk Alblas and Bo~ivoj Melichar, editors. Attribute Grammars, Applications and
Systems, volume 545 of Lect. Notes in Comp. Sci., Prague, June 1991. Springer-
Verlag.

3. IsabeUe Attali. Compilation de programmes TYPOL par attributs sdmantiques.
PhD thesis, Universit~ de Nice, April 1989.

136

4. John Boyland. Conditional attribute grammars. ACM Transactions on Program-
ming Languages and Systems, 18(1):73-108, January 1996.

5. Bruno Courcelle and Paul Franchi-Zannettacci. Attribute Grammars and Recur-
sive Program Schemes (i and ii). Theor. Comp. Sei., 17(2 and 3):163-191 and
235-257, 1982.

6: Pierre Deransart and Martin Jourdan, editors. Attribute Grammars and their
Applications (WAGA), volume 461 of Leer Notes in Comp. Sci., Paris, September
1990. Springer-Verlag.

7. Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars:
Definitions, Systems and Bibliography, volume 323 of Lect. Notes in Comp. Sei.
Springer-Verlag, August 1988.

8. Joost Engelfriet. Attribute grammars: Attribute evaluation methods. In Bernard
Lorho, editor, Methods and Tools for Compiler Construction, pages 103-138. Cam-
bridge University Press, 1984.

9. Rodney Farrow. Automatic Generation of Fixed-point-finding Evaluators for Cir-
cular, but Well-defined, Attribute Grammars. In ACM SIGPLAN '86 Symp. on
Compiler Construction, pages 85-98, Palo Alto, CA, June 1986.

10. Martin Jourdan. Des bienfaits de l'analyse statique sur la raise en oeuvre des
grammaires attribudes. M~moire d'habilitation, D~partement de Math~matiques
et d'Informatique, Universit~ d'Orl~ans, April 1992.

11. Martin Jourdan and Didier Parigot. The FNC-2 System User's Guide and Refer-
ence Manual. INRIA, Rocquencourt, 1.9 edition, 1993.

12. Martin Jourdan, Didier Parigot, Catherine Julia, Olivier Durin, and Carole Le
Bellec. Design, implementation and evaluation of the FNC-2 attribute grammar
system. In ACM SIGPLAN '90 Conf. on Programming Languages Design and
Implementation, pages 209-222. White Plains, NY, June 1990. Published as ACM
SIGPLAN Notices, volume 25, number 6.

13. Catherine Juli~ and Didier Parigot. Space Optimization in the FNC-2 Attribute
Grammar System. In Deransart and Jourdan [6], pages 29-45.

14. Uwe Kastens. Ordered attribute grammars. Aeta Informatica, 13(3):229-256,
1980. See also: Bericht 7/78, Institut fiir Informatik II, University Karlsruhe
(1978).

15. Donald E. Knuth. Semantics of context-free languages. Math. Systems Theory,
2(2):127-145, June 1968.

16. St6phane Leibovitsch. Relations entre la s6mantique d6notationneUe et les gram-
maires attribu6es. Rapport de DEA, Universit6 de Paris VII, September 1996.

17. Jukka Paakki. Attribute grammar paradigms - - A high-level methodology in
language implementation. ACM Computing Surveys, 27(2):196-255, June 1995.

18. Didier Parigot, I~tienne Duris, Gilles Roussel, and Martin Jourdan. Attribute
grammars: a declarative functional language. Rapport de recherche 2662, INRIA,
October 1995. ftp ://ftp. inria, fr/INRIA/publications/RR/RR-2662, ps. gz.

19. Didier Parigot, Etienne Duris, Gilles Roussel, and Martin Jourdan. Les gram-
maires attribu6es: un langage fonctionnel d~claratif. In Journdes Francophones
des Langages Applicatifs 96, pages 263-279, Val-Morin, Qu6bec, January 1996.
Aussi dans les Acres des jourudes du GDR Programmation 95.

20. Didier Parigot, Gilles Roussel, Martin Jourdan, and Etienne Duris. Dy-
namic attribute grammars. Rapport de recherche 2881, INRIA, May 1996.
ftp ://ftp. inria, fr/INRIA/publications/RR/RR-2881, ps. gz.

21. S. Doaitse Swierstra and Harald H. Vogt. Higher Order Attribute Grammars. In
Alblas and Melichar [2], pages 256-296.

