
INRIA Contribution to UMRIDA
Frédéric Alauzet, Gautier Brethes, Alain Dervieux, Adrien Loseille



Overview of INRIA role

WP 2 Perturbation methods 2.1.-2.2 (2.4PM):
Large number of uncertain variables.
Deliverable D2.1–06-11 (delivered).

WP 2 Perturbation methods 2.3 (21.5PM): numerical
properties:

Scope of this talk

=⇒ error estimates and correctors
=⇒ new operators for the generation of adaptive meshes

WP 3-3.2 Test cases (8.5PM)

WP 5 Exploitation (1PM).



Numerical Error Model

Problem statement

A numerical output, “u”,
an error estimate.

Assumptions

Numerical error control uses more and more frequently
adapted meshes, which reinforce mesh convergence,
error estimates depend in most case on asymptotic mesh
convergence.

Proposed approach:

Mesh adaptation for flow problems,
use of correctors for proposing a probabilistic model, e.g.

X ∼ N (µ, σ2) = N (u + corrector , (corrector)2).

a posteriori study of the validity of the probabilistic model.
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Overview

Status and (quick) review on error estimation for UQ and adaptivity

Hessian-based (geometric)
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key ingredients: (convergent) recovery of derivatives of Wh
close-form of the optimal metric (natural anisotropy)

Goal-oriented

|j(W )− jh(Wh)|, with j(W ) =
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key ingredients: PDE-dependent adjoint system A∗
h W∗

h =
∂ jh
∂W

close-form of the optimal metric (Euler and laminar NS)

Norm-oriented
‖ΠhW −Wh‖L2(Ω)

key ingredients:
a corrector is involved (basis for UQ)
corrector used as second member for goal-oriented-estimate
close-form of the optimal metric (Euler and laminar NS)



Proof of concept: An a priori corrector

−∆u = f in Ω = [0,1]× [0,1] u = 0 on ∂Ω

∫
Ω

∇(Πhu − uh) · ∇φh dΩ =

∫
Ω

∇φh∇(Πhu − u) dΩ

=
∑
∂Tij

∇(φh|Ti − φh|Tj ) · nij

∫
∂Tij

(Πhu − u) dσ

Approximate Πhu − u ≈ H(u) · δX · δX with a superconvergent
approximation of the Hessian of uh, obtain u′h ≈ Πhu − uh:∫

Ω

∇u′h ·∇φh dΩ =
∑
∂Tij

∇(φh|Ti −φh|Tj ) ·nij

∫
∂Tij

Hh(uh) · δXM · δXM dσ.

[Brethes and Dervieux, 2013]



Proof of concept: An a priori corrector

Example: u(x) = x(1− x)y(1− y), 1600 vertices

In red: Πhu − Πhu = 0, in blue: Πhu − uh, in green Πhu − (uh + u′h)

The corrector performs 70% of its work (for a mesh with English flag
topology).



Proof of concept: An a priori corrector

Example: u(x) = x(1− x)y(1− y), 1600 vertices

Proposed “uncertainty interval”

in red: exact Πhu − Πhu
in green corrected Πhu − (uh + u′h),
in black Πhu − (uh + u′h)±|u′h|.



Norm-oriented metric optimization (Euler case)

Goal: Minimize ‖Πhu − uh‖L2

Parameterize the discretization “h” by a Riemannian metricM .

Step 1: first solve the linearised error system:∫ ∫
φdiv

∂Fh

∂W
(−δW ) =

∫ ∫
∇φh(Fh(Wh)−F(W )).

Step 2: then solve the adjoint system:

Ā∗hW ∗
h =

∂δW
∂W

,

Step 3: compute the adjoint metric with the corrector as functional:

Mopt = min ‖δW‖

the three-step process being re-iterated until we get a fixed point.



Problematics : Mesh Generation

Adaptivity is the core of our approach for UQ
Industrial problems are involved =⇒ complex geometries

Many phenomena =⇒ Many kinds of
meshes

Turbulent flow: isotropic,structured, . . .

Shock waves: anisotropic O(1/100− 1000)

Boundary-layers: quasi-structured
O(1/104 − 106)

Frontal High-Quality Small Anisotropy
Delaunay Robust Anisotropy but Bad Quality
Octree-based Robust Surface mesh not constrained
Cartesian Robust Low Anisotropy, viscous effects
BL Extrusion Closure of the domain, adaptivity
Local Refinement Robust Slow, High Anisotropy but Bad Quality

=⇒ No Unique Technology
=⇒ Robustness decreases with Geometry Complexity



Scope and overview of the approach

Robustness is the primary concern

1 Local mesh modification operators
adaptivity is an iterative procedure
no mesh =⇒ no solution
always a valid mesh on output
use of simplicial meshes

Handling all types of meshes is the secondary concern

2 Unique operator
mesh adaptation : surface-volume
mesh optimization: edge-face swaps, point smoothing
boundary layer mesh generation: hybrid entities insertion



Example: boundary-layer shock interaction

Mach 1.4, Re=2.7 107

Viscous plate, RANS

Adaptation on the Mach/Density, 20 iterations, Total cpu 1h (8 procs)

280 000 Vertices and 1.3 M tets.



Example: boundary-layer shock interaction

Initial mesh with boundary layer

Adaptivity based on a boundary layer metric











Anisotropy and alignment



Conclusions

Error estimations

Model problem : Poisson equation
Current work directed at Euler equations
Ongoing validation for manufactured solution
Corrector studied with MUSCL scheme

Mesh adaptation/generation

Operator operational for anisotropic phenomena, complex surface
Current work directed at full coupling adaptive BL


