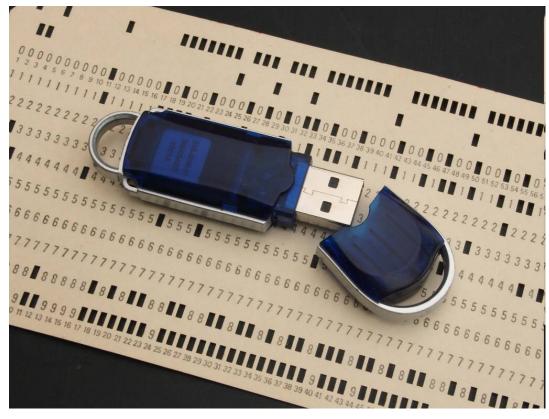
The Promise and Peril of **Big Data**



Alexei (Alyosha) Efros CMU (school-year), INRIA (summer)

It's hard to be a computer...

How the computer sees the world:

The Guitar Player Pablo Picasso (1911)

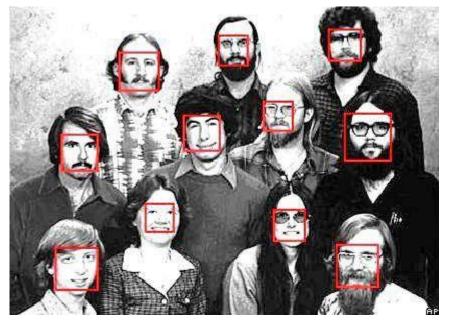
"Data, Data, Data... Watson, I need Data!" [Sherlock Holmes, 1886]

But If you want to publish a NIPS paper...

Features

Learning Algorithm

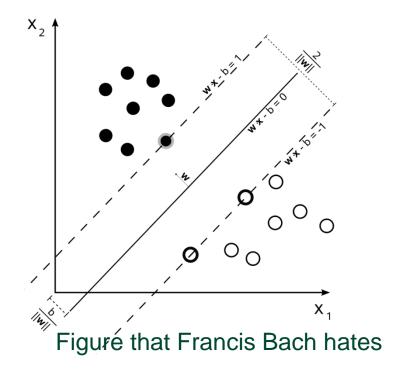
Face Detection: Big Success Story



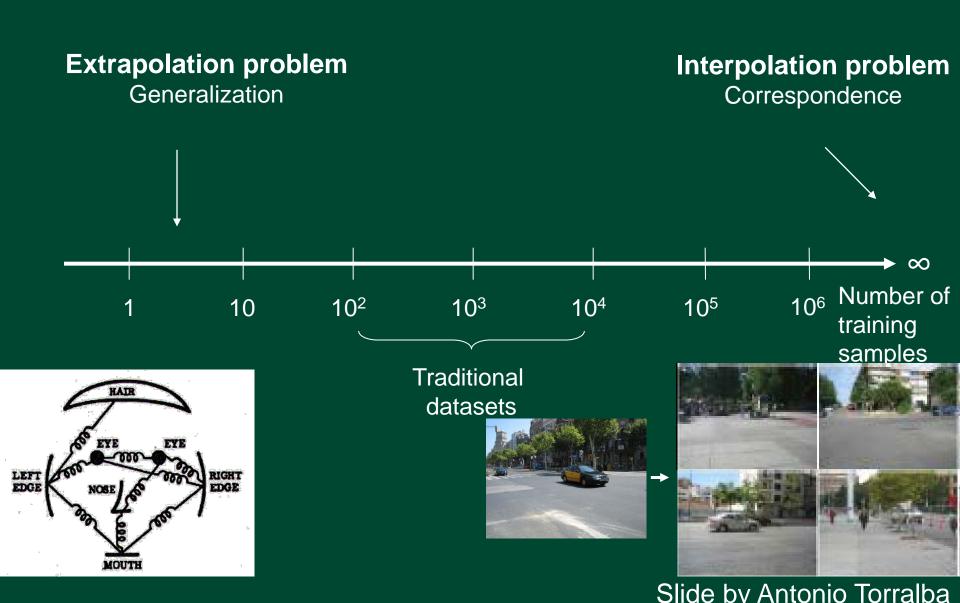
- Rowley, Baluja, and Kanade, 1998
- Schniderman & Kanade, 1999
- Viola & Jones, 2001

Modern Recognition is largely Data-Driven

- In non-linear SVMs:
 - In ML, people report ~10% of data are support vectors
 - In recognition, up to 2/3 of data are support vectors!!!
- In linear SVMs:
 - Typical setup: 4000 dim.
 HOG, only 300 "chair" examples



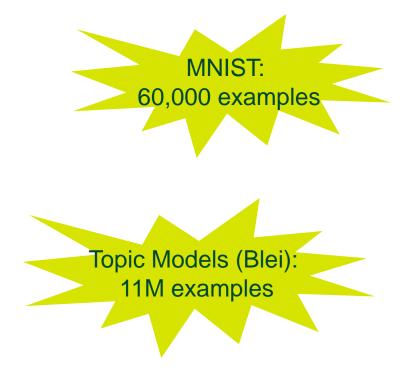
Recognition Learning Spectrum



Everything else being equal...

... the visual world is just much **richer**!

- MNIST Digits
 - 10 digits *
 - ~1,000 variations = 10,000
- English words
 - ~100,000 words *
 - ~5 variations = 500,000
- Visual world
 - ~100,000 objects *
 - ~10,000 variations (pose, scale, lighting, intra-category)
 - = 1,000,000,000 (1 billion!)



Yet, we train on 15 examples?!

Caltech 101

If you want to start a company...

Data

Features

Algorithm

Amnon Shashua

To make research progress...

Data / Features / Algorithms

Big Message...

Keep the data -you never know when you will need it!

Texture

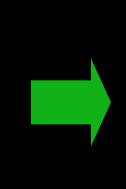
- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

radishes

rocks

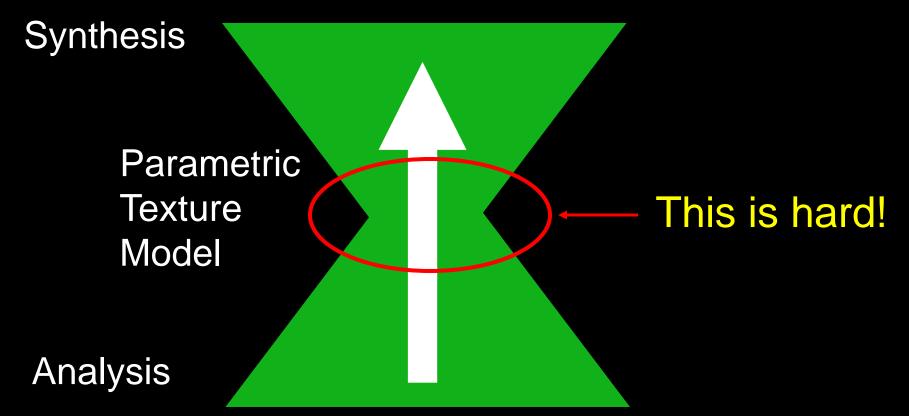
yogurt

Texture Synthesis



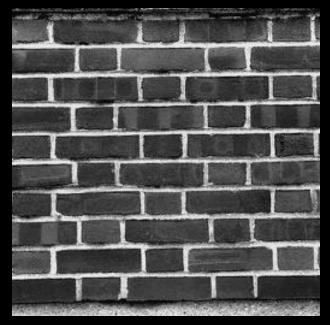
Classical Texture Synthesis

Novel texture



Sample texture

Throwing away too much too soon?



input texture

synthesized texture

Non-parametric Approach

Novel texture

Synthesis

Analysis

Sample texture

Motivation from Language

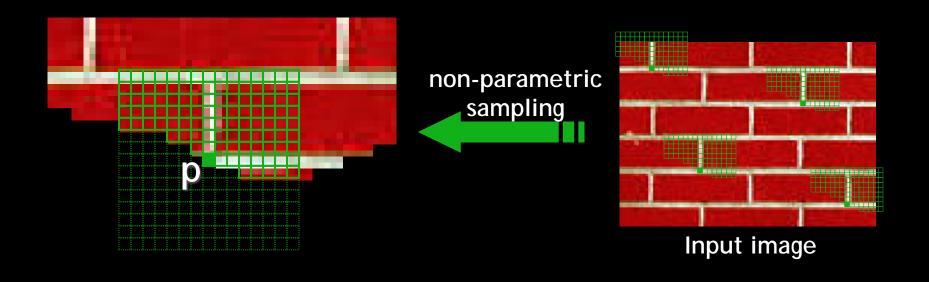
- [Shannon,'48] proposed a way to generate English-looking text using N-grams:
 - Assume a generalized Markov model
 - Use a large text to compute prob. distributions of each letter given N-1 previous letters
 - Starting from a seed repeatedly sample this Markov chain to generate new letters
 - Also works for whole words

WE NEED TO EAT CAKE

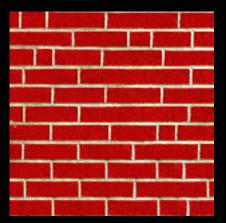
Mark V. Shaney (Bell Labs)

- Results (using alt.singles corpus):
 - "As I've commented before, really relating to someone involves standing next to impossible."
 - "One morning I shot an elephant in my arms and kissed him."
 - "I spent an interesting evening recently with a grain of salt"
- Notice how well local structure is preserved!
 - Now, instead of letters let's try pixels...

[Efros & Leung, '99]



Texture Growing

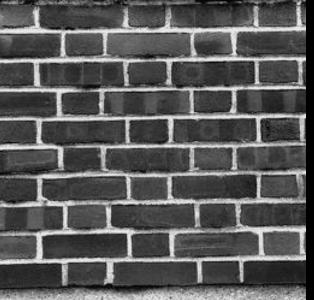


Homage to Shannon

r Dick Gephardt was fai rful riff on the looming in nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system h g with this latest tanger

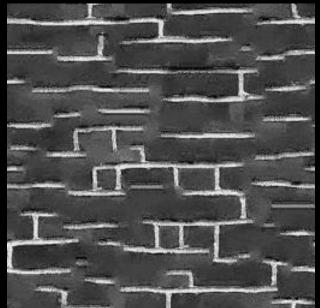


thaim. them ."Whephartfe lartifelintomimen el ck Clirticout omaim thartfelins.f out 's aneste the ry onst wartfe lck Gephtoomimeationl sigab Chiooufit Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Wieontongal s k Cirtioouirtfepelong pme abegal fartfenstemem tiensteneltorydt telemephinsperdt was agemen ff ons artientont Cling peme as trtfe atith, "Boui s nal s fartfelt sig pedr‡rdt ske abounutie aboutioo tfeonewas you abownthardt thatins fain, ped, ains, them, pabout wasy arfuut countly d, In A h ole emthrängboomme agas fa bontinsyst Clinüt i ory about continst Clipeoµinst Cloke agatiff out 0 stome ininemen fly ardt beoraboul n, thenly as t G cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbout cout congagal comininga mifmst Cliny abon 'al coountha.emungaint tf oun Vhe looorystan loontieph. intly on, theoplegatick (iul fatiecontly atie Diontiomf wal s f tbegàe ener <u>mthahgat's enenhinhas fan, "intchthory abons v</u>



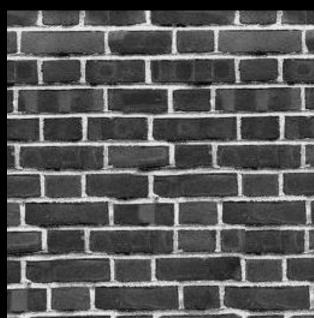
input image

Portilla & Simoncelli





Xu, Guo & Shum



Wei & Levoy

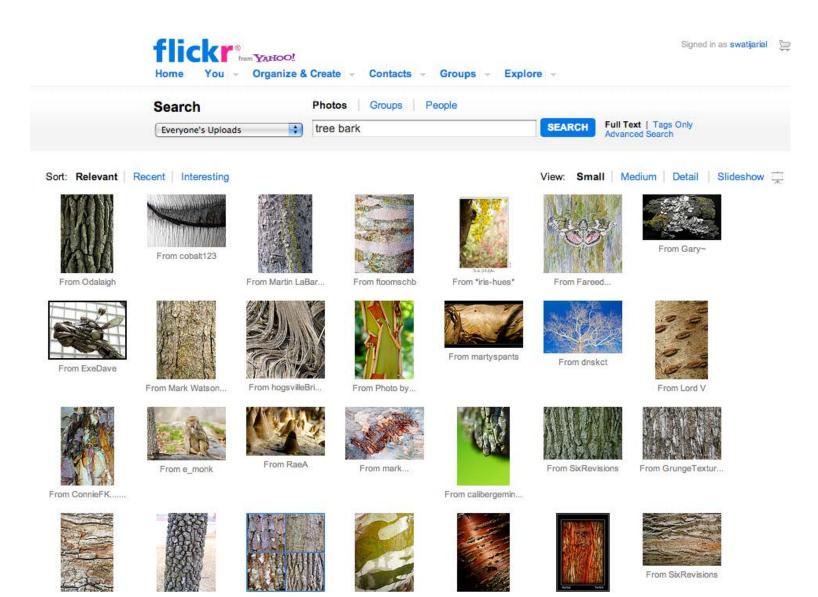
Our algorithm

Two Kinds of Things in the World

$$\frac{\partial \mathbf{u}}{\partial t} = -\left(\mathbf{u}\cdot\nabla\right)\mathbf{u} + v\nabla^{2}\mathbf{u} - \frac{1}{d}\nabla p + \mathbf{f}$$

+ weather + location + ...

Lots of data available



"Unreasonable Effectiveness of Data"

[Halevy, Norvig, Pereira 2009]

 Parts of our world can be explained by elegant mathematics:

- physics, chemistry, astronomy, etc.

But much cannot:

- psychology, genetics, economics, etc.

Enter: The Magic of <u>Big Data</u>

- Great advances in several fields:

• e.g. speech recognition, machine translation, Google

- A.I. for the postmodern world:
 - all questions have already been answered...many times, in many ways
 - Google is dumb, the "intelligence" is in the data

★ Google Search: clime stairs - Netscape														
File	Edit Vie	🔆 Google Search: clime punishment - Netscape												<u>_ ×</u>
	<u> </u>		View G											
	Back	l 🎸	· 🔒	× N	3		1	Mu	4	e£.	<u></u>	2		N
ě 🔪	🌾 🕻 Bool	Bac	k Forv	vard R e	eload	Home	Search	Netscape	Print	Security	Shop	Stop		
ě.	🖲 WebM	👔 🦋 Bookmarks 🙏 Location: http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=clime+punishment 💿 🌍 What's Related												
		🧃 🖳 W	/ebMail [🖳 Calend	dar 🖳	Radio	🖳 People	🖳 Yellow	Pages [🖳 Download	l 🖳 Cus	tomize		
(~				-	Adv	vanced S	Search	Profe	rences	Landua	age Tools	Search Tips	_
	JL		0			IM E			_	ences	Langua	ige roois	<u>bearch hps</u>	
				JY	IC	CII	me pui	nishme	nt					
				0			Google	Search						
Web														
Se	arche	Web Images Groups Directory News												
	Searched the web for clime punishment. Results 1 - 10 of about 4,250. Search took 0.06 s													cond
l Di	d you													
			ou m	ean:	crim	e pu	Inishme	ent						
				cun.	<u>ermi</u>									

The Good News

Really stupid algorithms + Lots of Data = "Unreasonable Effectiveness"

The Bad News

Visual Data is much more difficult

• text:

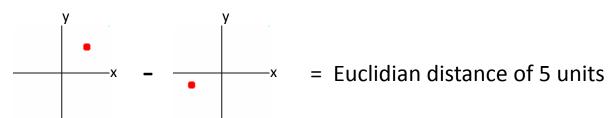
- clean, segmented, compact, 1D

• Visual data:

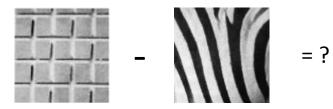
- Noisy, unsegmented, high entropy, 2D/3D

Distance Metrics

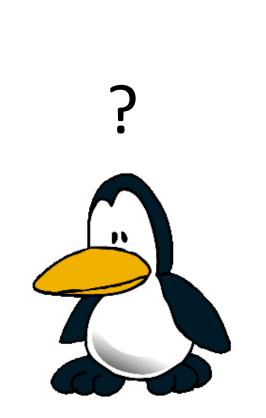
- *CLIME CRIME* = hamming distance of 1 letter



= Grayvalue distance of 50 values



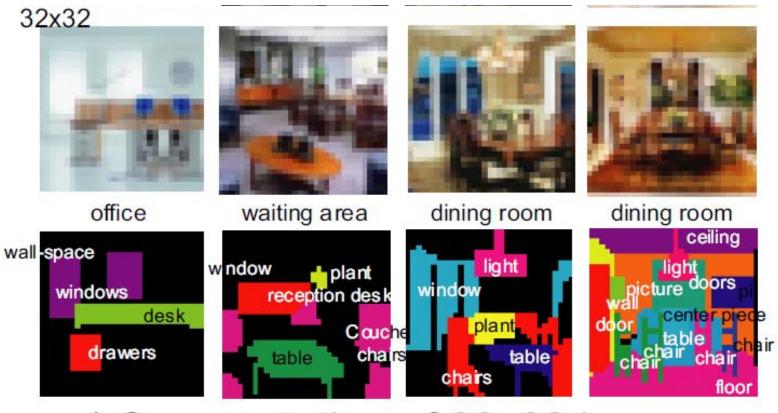
L2 norm says these are not similar



Make them tiny!

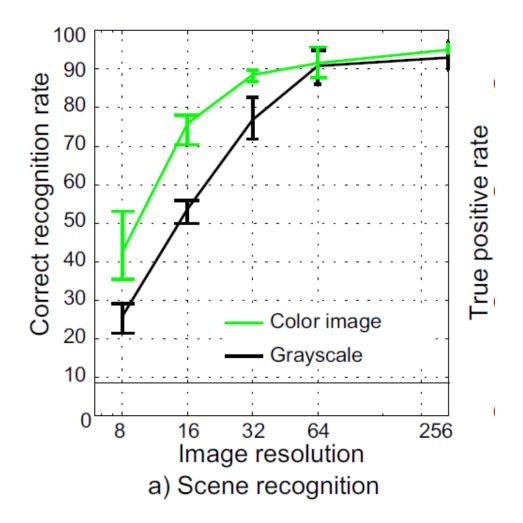
Lots of Tiny Images

 80 million tiny images: a large dataset for nonparametric object and scene recognition Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008.



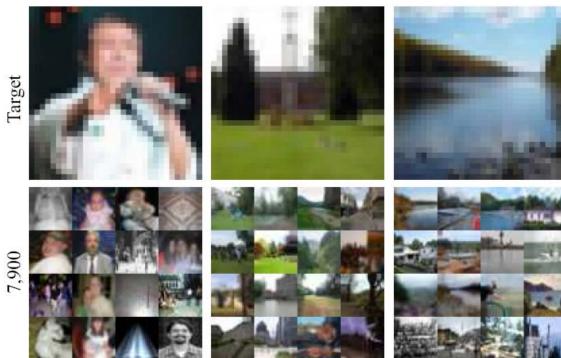
c) Segmentation of 32x32 images

Human Scene Recognition



Lots Of

Images

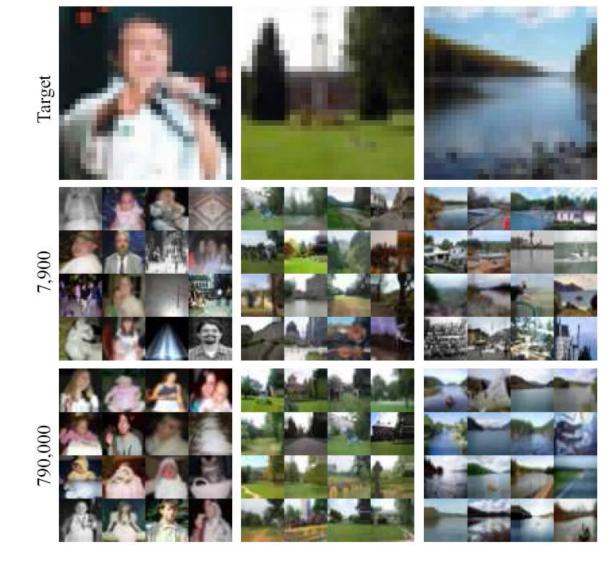


7,900

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008

Lots Of

Images



Lots

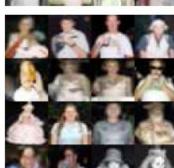
Of Images

79,000,000

790,000

Target

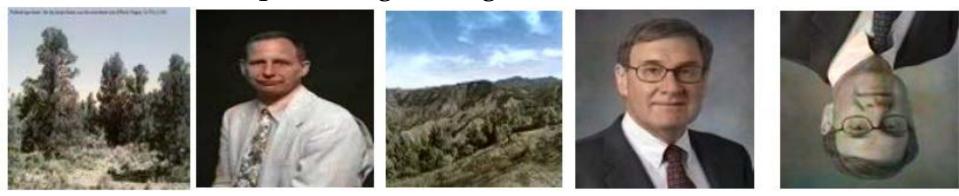
7,900



Automatic Colorization

Grayscale input High resolution

Colorization of input using average



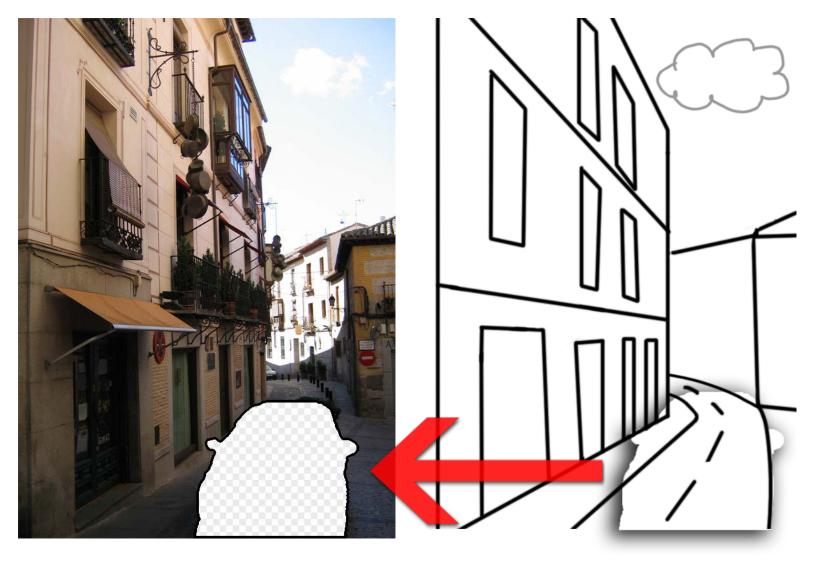
Not a pixel lover? No problem!

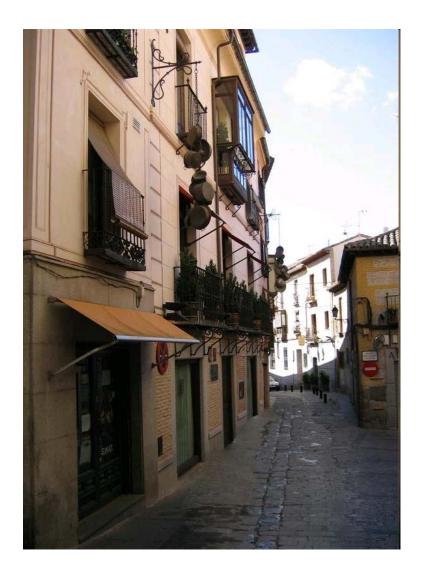
Let's match gradients

[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

Efros and Leung result

Scene Matching for Image Completion

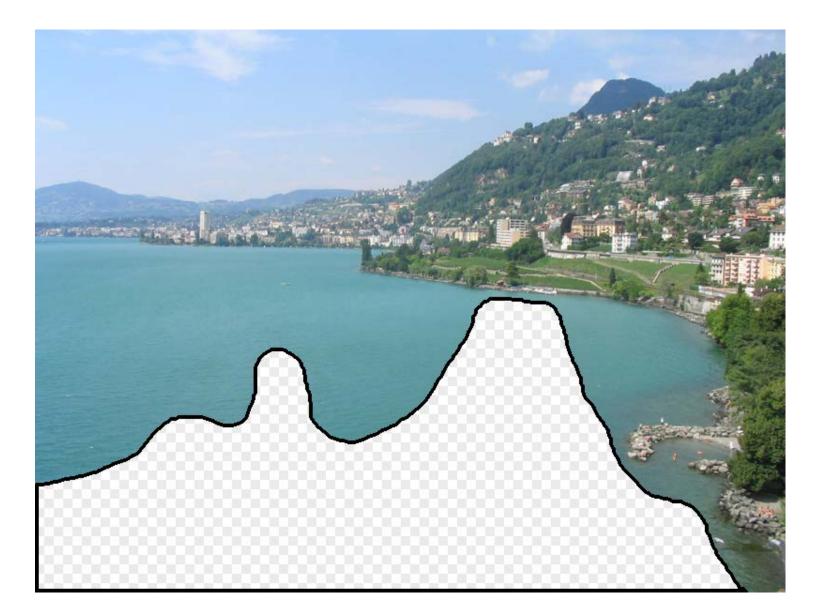


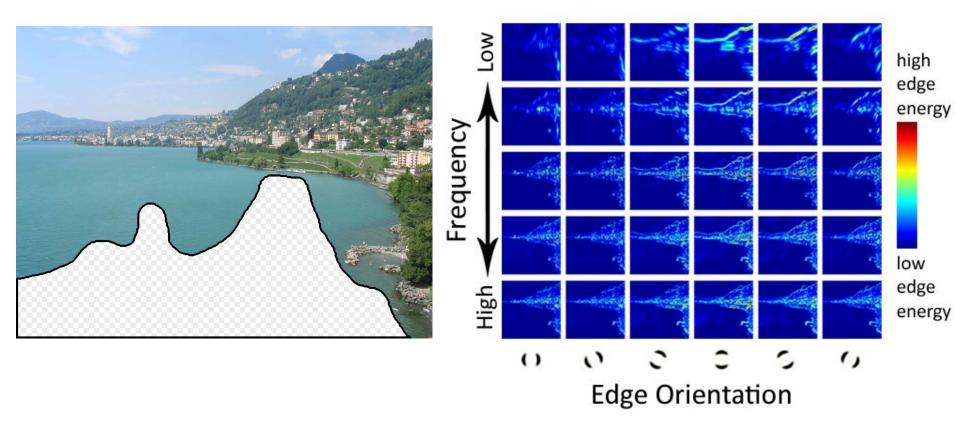


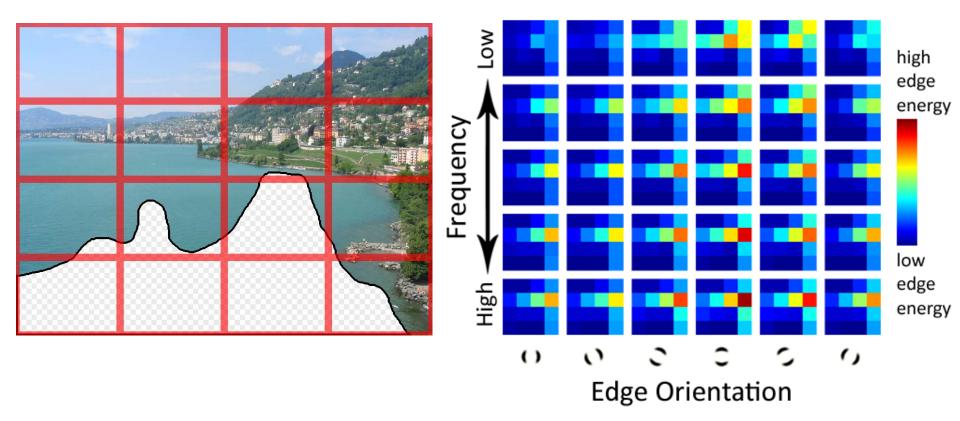
Scene Completion Result

The Algorithm

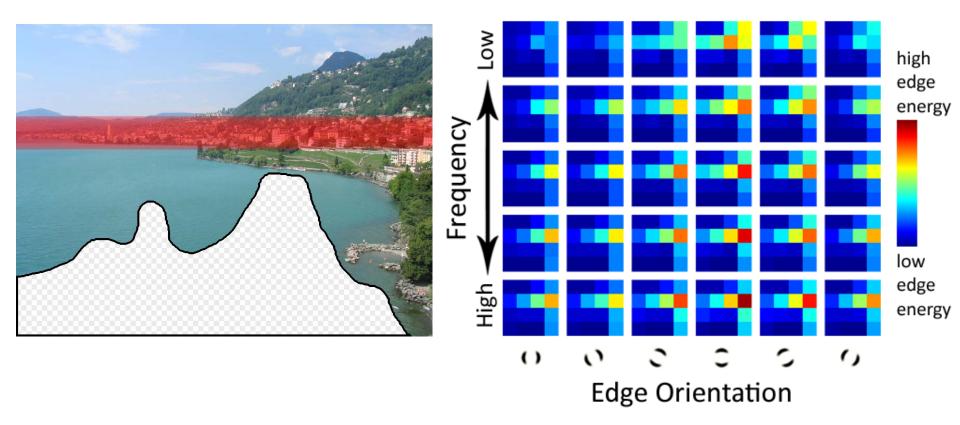
Scene Matching



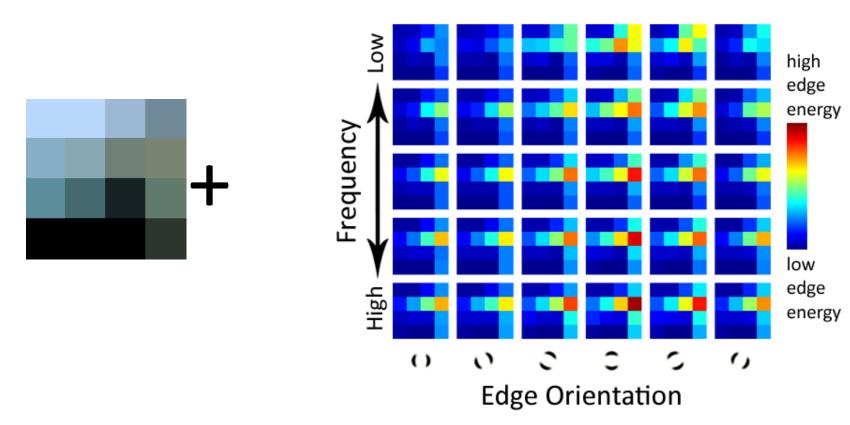




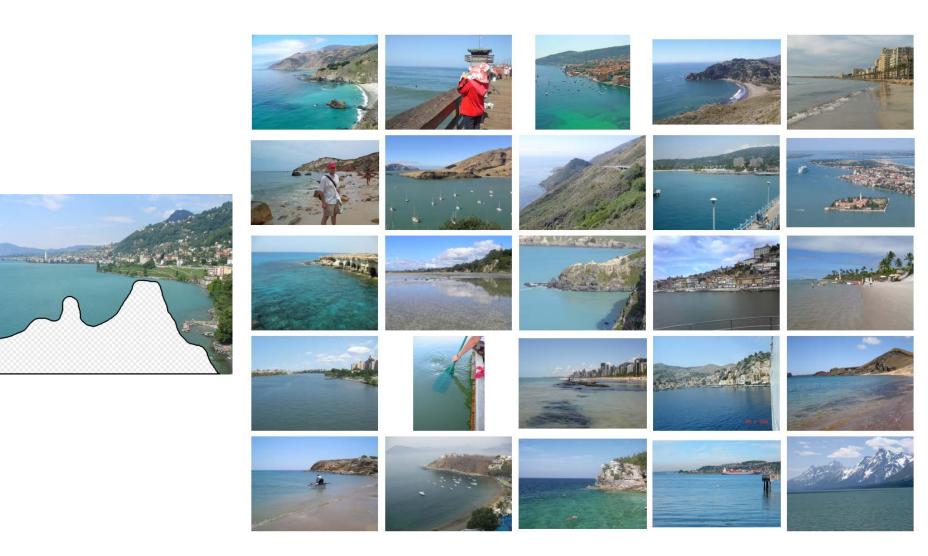
Scene Gist Descriptor (Oliva and Torralba 2001)



Scene Gist Descriptor (Oliva and Torralba 2001)

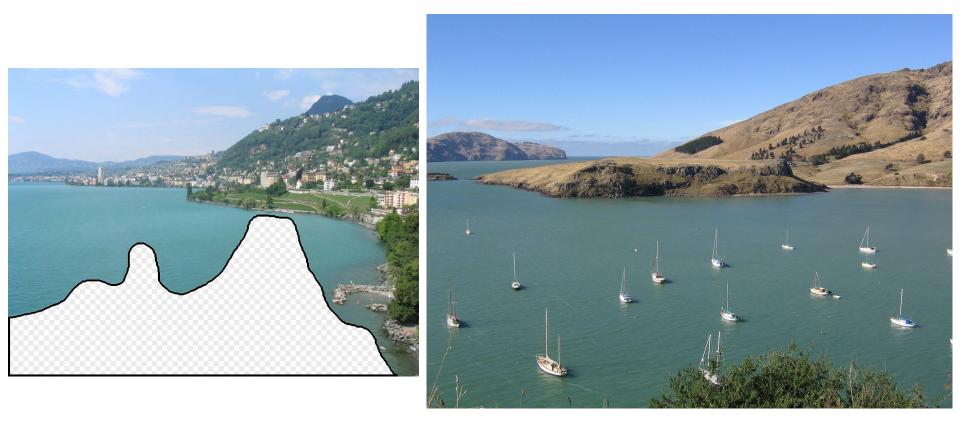


2 Million Flickr Images

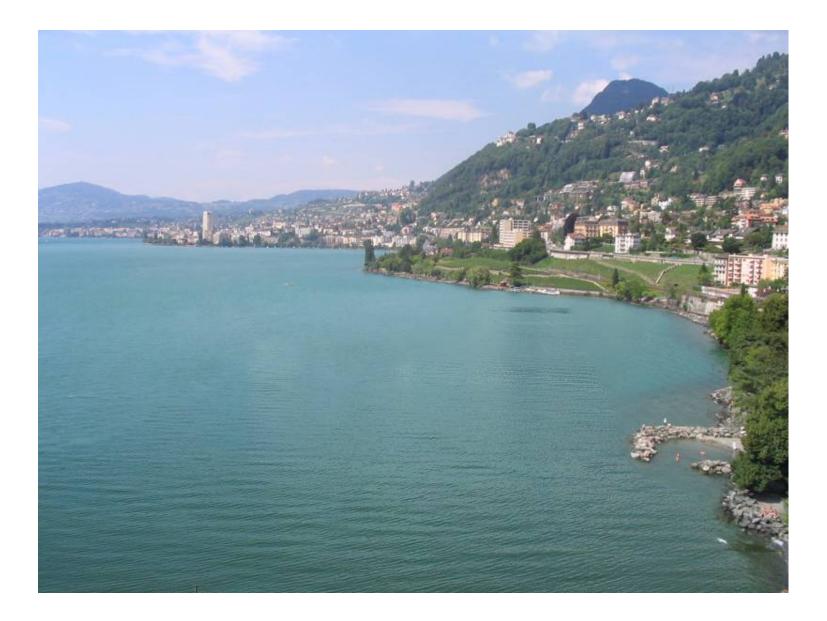


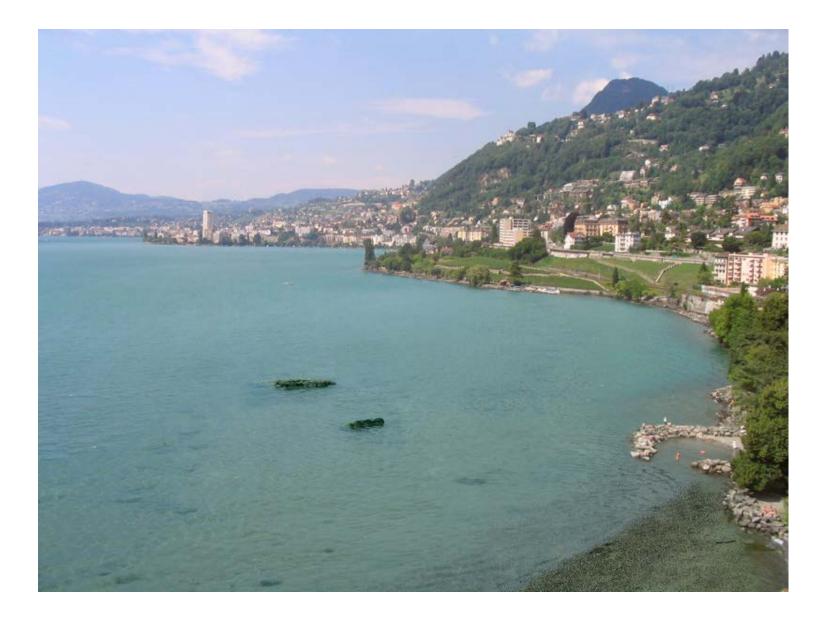
... 200 total

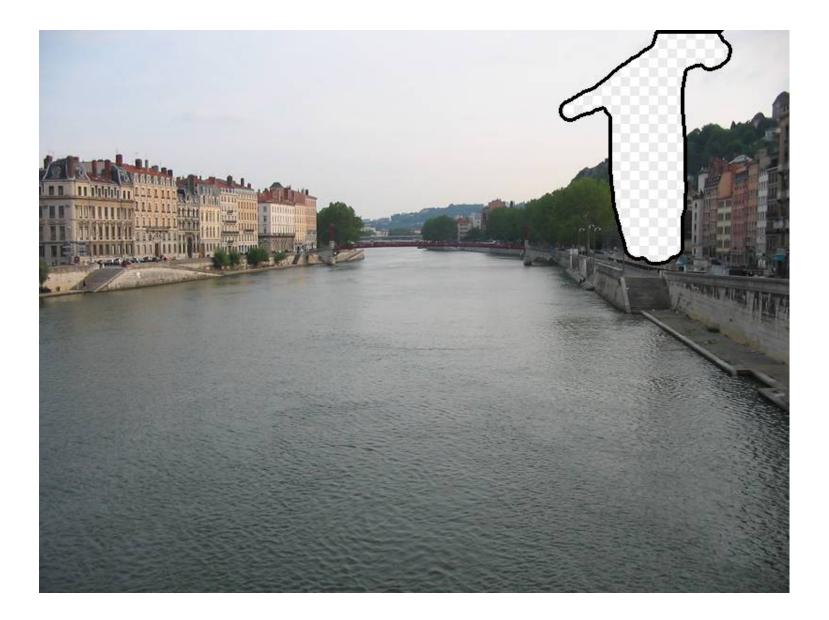
Context Matching

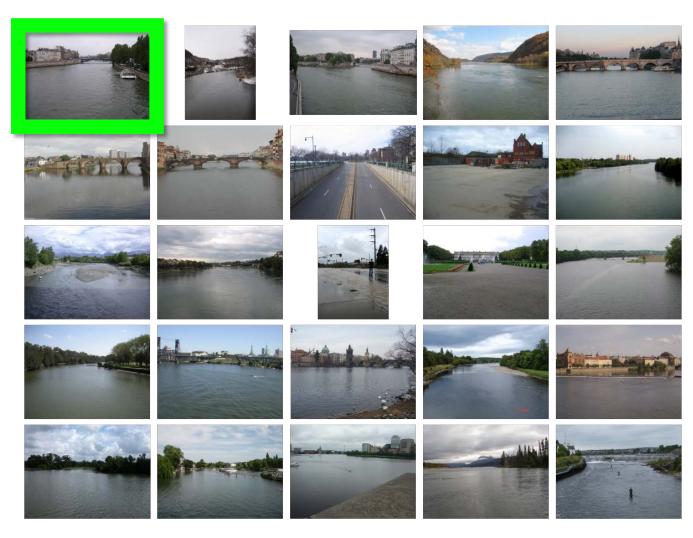


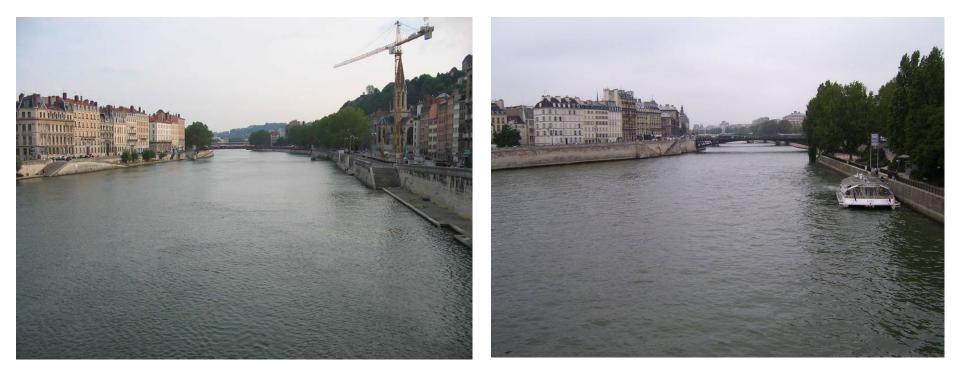
Graph cut + Poisson blending

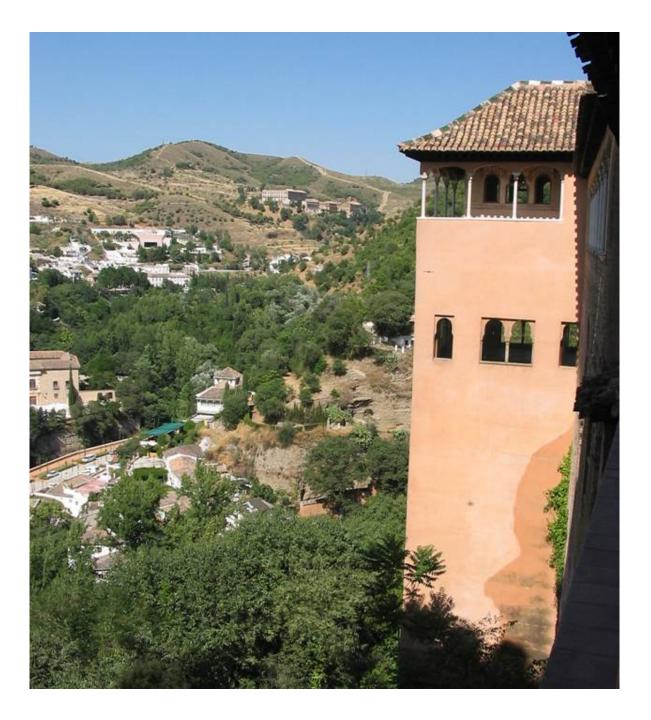


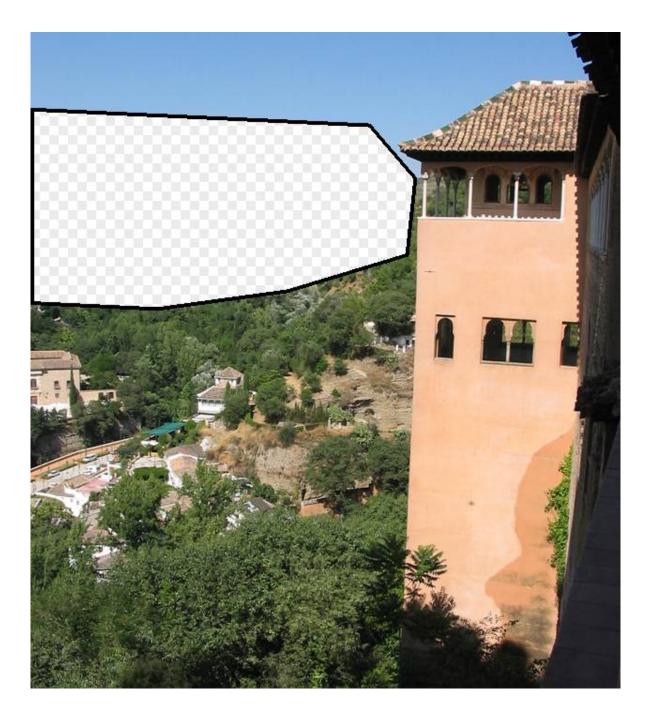


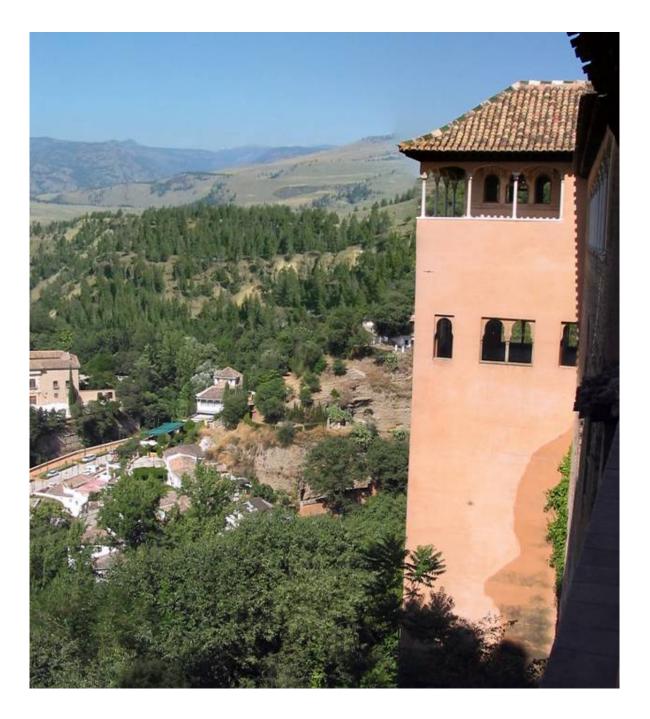










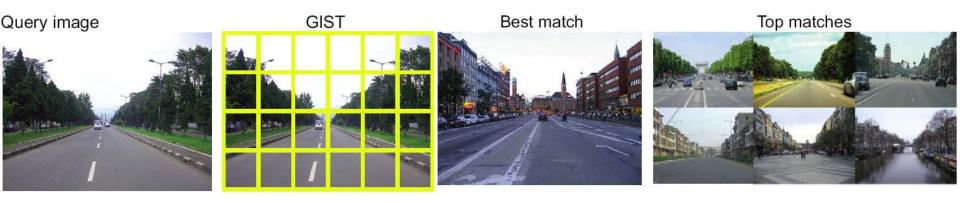


Why does it work?

Nearest neighbors from a collection of 20 thousand images

Nearest neighbors from a collection of 2 million images

Scene matching with camera transformations





Sivic, Kaneva, Torralba, Avidan, Freeman, Internet Vision Workshop, 2008 *updated version to appear in Proceedings of the IEEE (2010)*

Creating and exploring a large, photorealistic virtual space

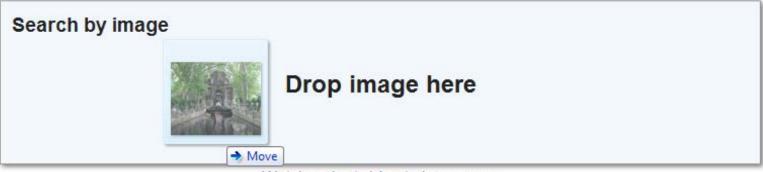
Josef Sivic (INRIA/ENS), Biliana Kaneva (MIT), Antonio Torralba (MIT), Shai Avidan (Adobe) and Bill Freeman (MIT)

IEEE Workshop on Internet Vision, 2008

Cross-Domain Matching

"Local – bad Global – good!" (after Orwell)

Medici Fountain, Paris



Watch a short video to learn more.

medici_summer.jpg × luxembourg gardens

Search

About 2 results (0.29 seconds)

Images

Maps

Videos

News

Shopping

More

lmage size: 1024 × 829

No other sizes of this image found.

Visually similar

10

Medici Fountain, Paris (winter)

Search

About 2 results (0.29 seconds)

Image size:

713 × 600

Images

Maps

Videos

News

Shopping

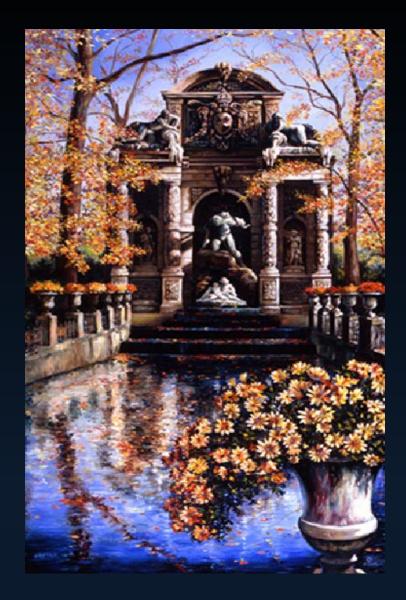
More

No other sizes of this image found.

Visually similar

RAF THE





painting.png × describe image here

Search

About 2 results (0.29 seconds)

Images

Maps

Videos

News

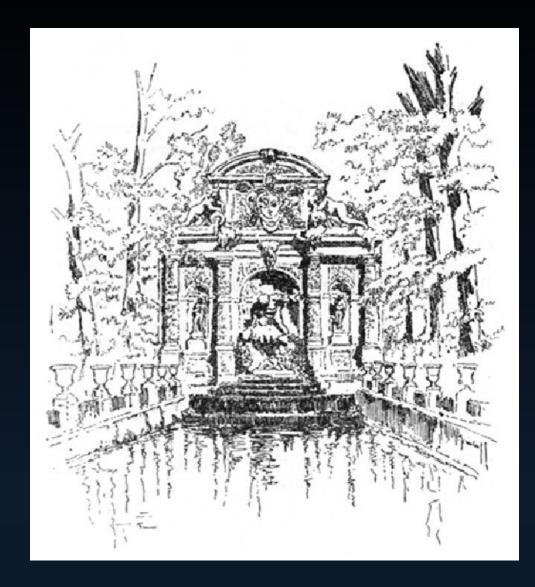
Shopping

More

Image size: 319 × 482

No other sizes of this image found.

Visually similar



medici_sketch.bmp × describe image here

Search

About 2 results (0.29 seconds)

Maps

Videos

News

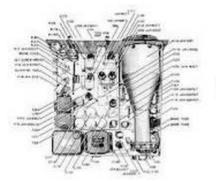
Shopping

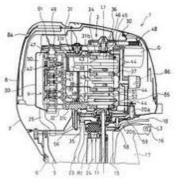
More

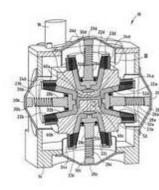
Image size: 443 × 482

No other sizes of this image found.

Visually similar

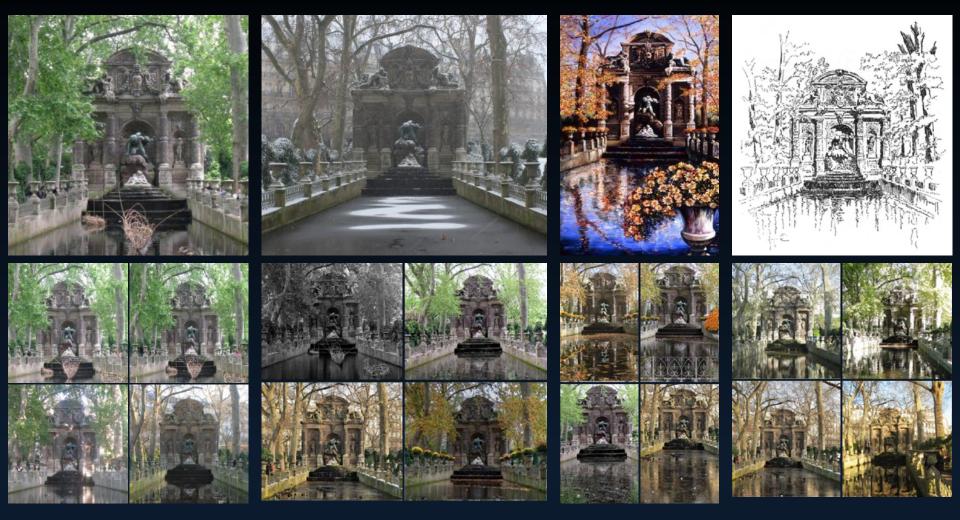




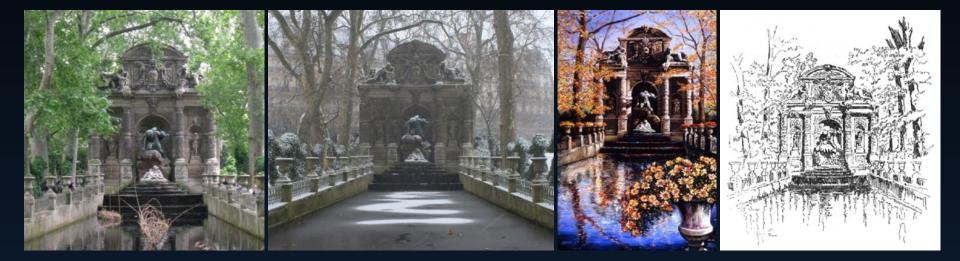


0

OUR GOAL [SIGGRAPH ASIA'11]

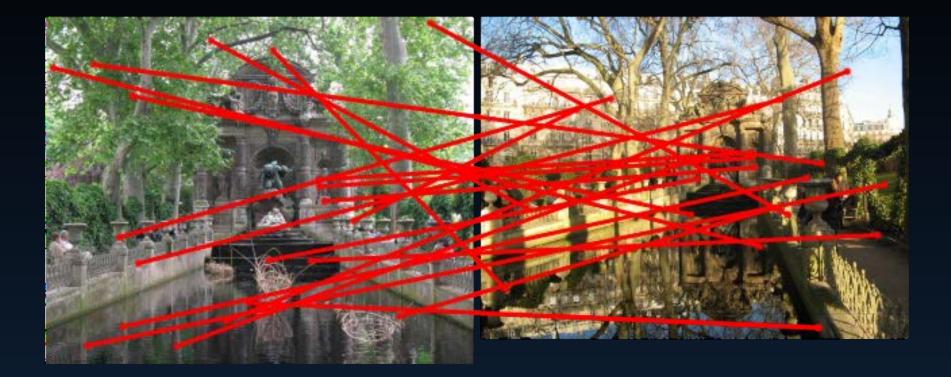


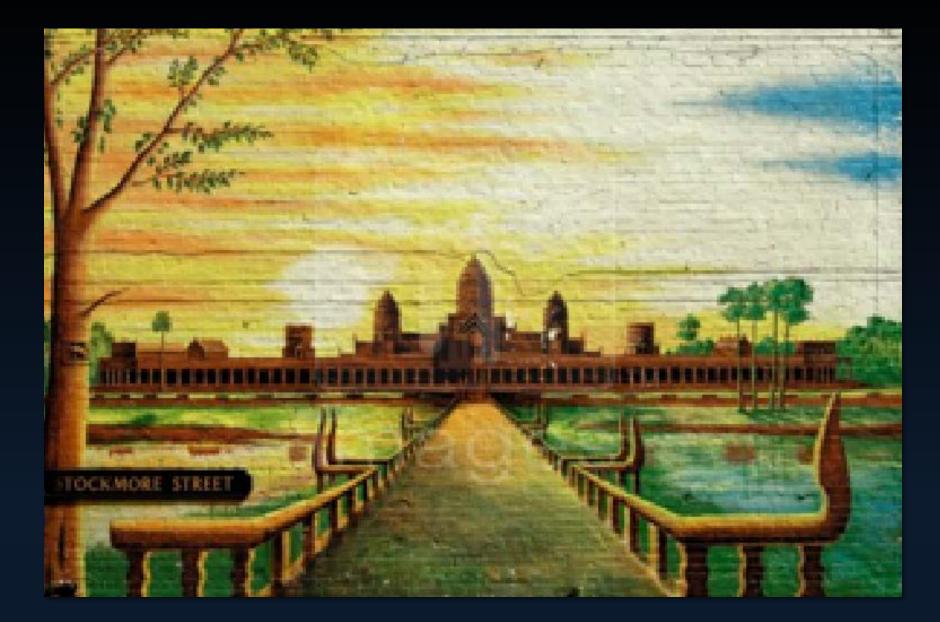
WHY IS THIS SO HARD?



EXAMPLE: SIFT MATCHING

Example: SIFT Matching

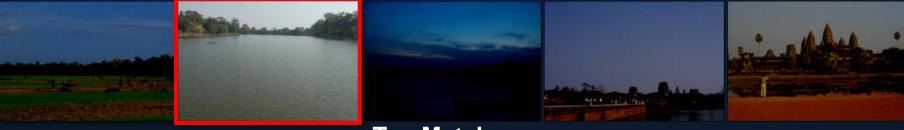




Input Query

Input Query

Input Query



IMPORTANT PARTS?

Input Query

Important Parts

Top Matches

Input Query

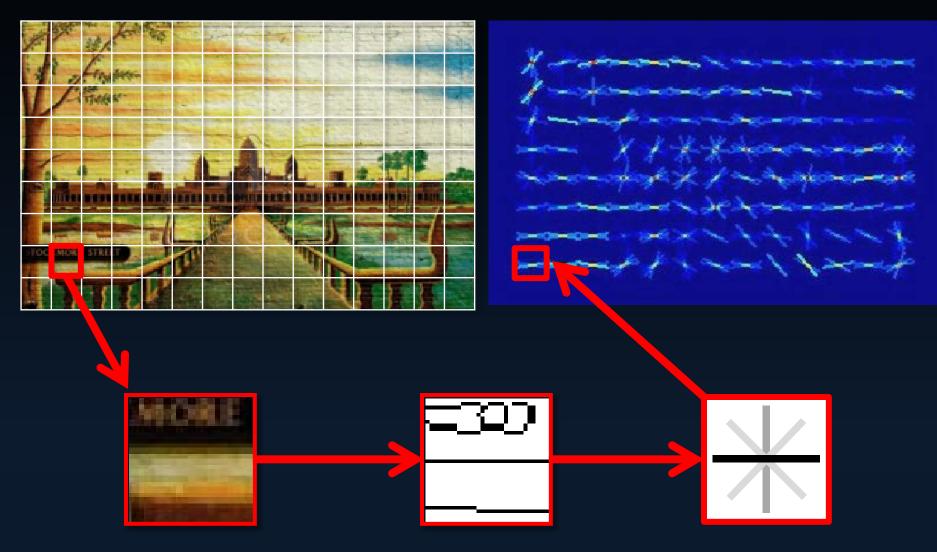
"Data-driven Uniqueness"



Possible Explanation

- If the space of images was uniform, nearest neighbor would work perfectly well
- But the space is very non-linear, non-Eucledian
- The Exemplar-SVM is trying to make a small, linear rescaling of visual space, near the query point
 - i.e. capturing the natural image statistics near the exemplar
 - Or maybe global is good enough (see Deva)

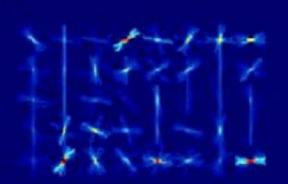
FEATURE REPRESENTATION HISTOGRAM OF ORIENTED GRADIENTS (HOG)



Input Query

HOG

Top Match



Top Match

Learnt Weights

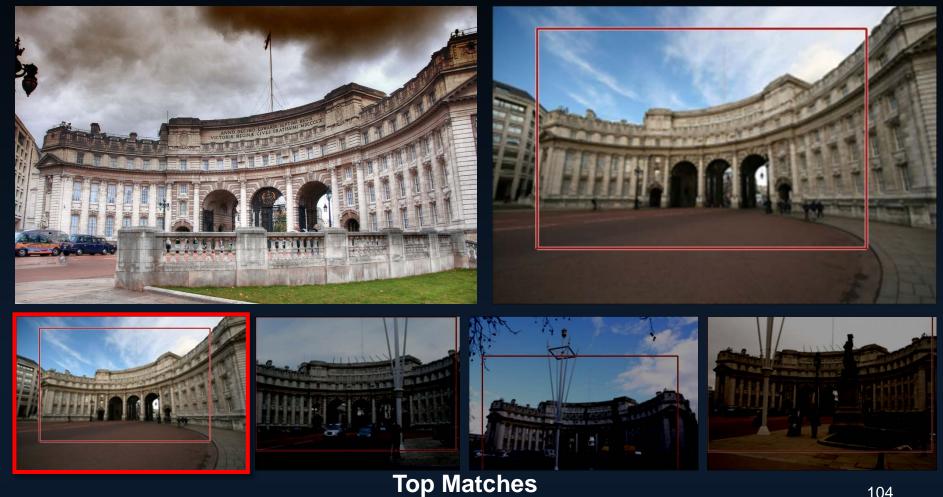
SEARCH USING IMAGES

Input Query



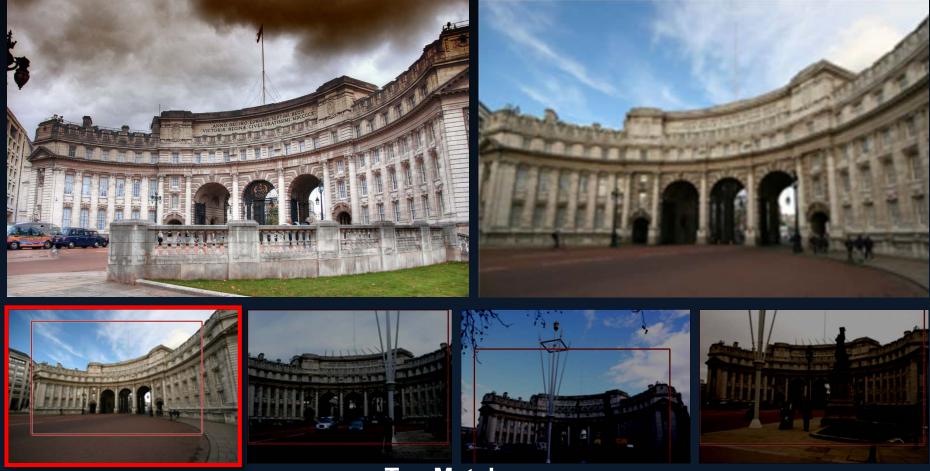
SEARCH USING IMAGES

Input Query



SEARCH USING IMAGES

Input Query



SEARCH USING PAINTINGS

Input Painting

Our

GIST

Bag-of-Words

Tiny Images

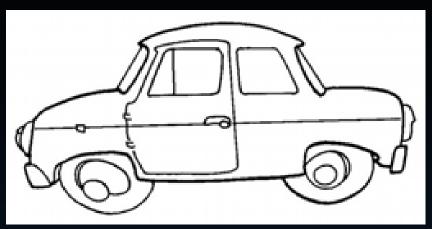
SEARCH USING PAINTINGS

Input Painting

SEARCH USING PAINTINGS

Input Painting

SEARCH USING SKETCHES



Input Sketch



Tiny Images

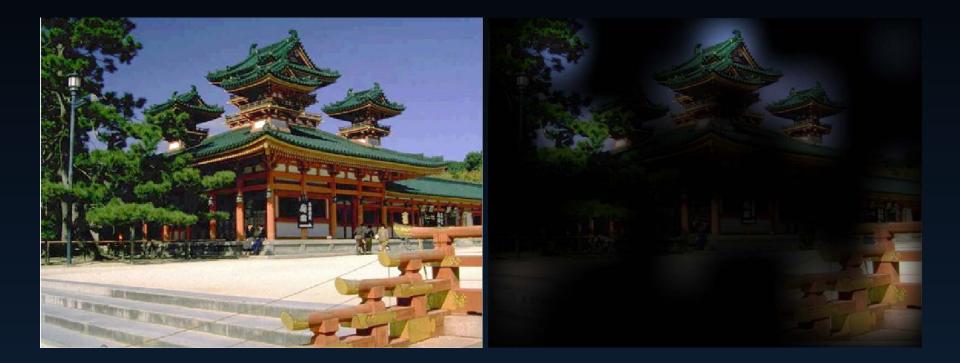
GIST

Bag-of-

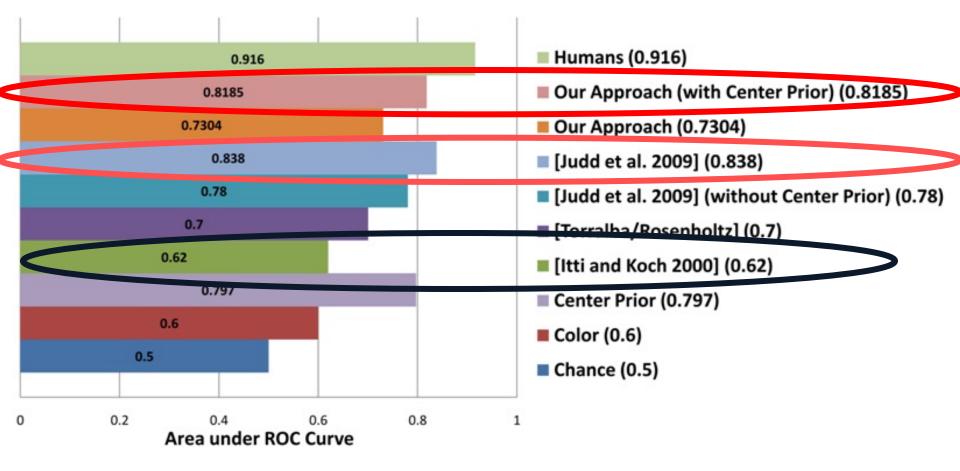
SEARCH USING SKETCHES

SALIENCY

PROXY FOR SALIENCY?



PREDICTING SALIENCY SALIENCY DATASET [Judd et al., 2009]



WHERE DOES IT FAIL?

Top Matches

APPLICATIONS

WHERE WAS THE PAINTER STANDING?

Input Painting



PAINTING2GPS

Input Painting

Retrieval set 10,000 Geo-tagged Flickr Images

100 top matches used to estimation

PAINTING2GPS

Input Painting

Estimated Geo-location

Estimated using 100 top matches

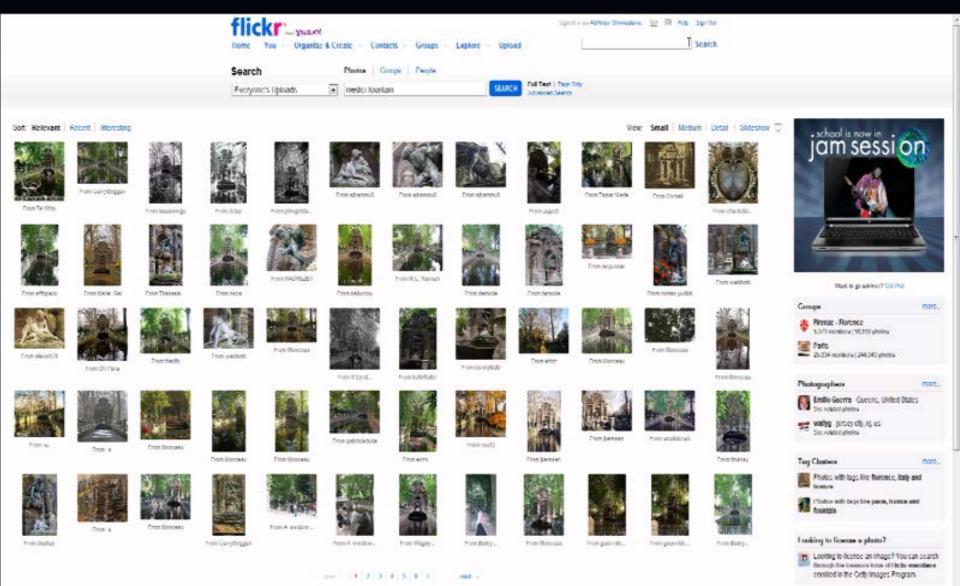
PAINTING2GPS

Input Painting

Sydney Opera House

VISUAL SCENE EXPLORATION

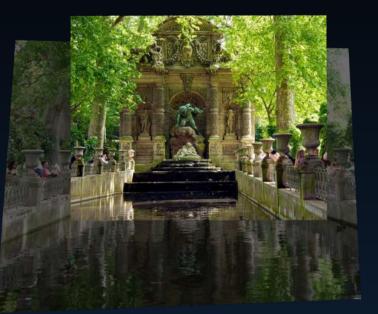
VISUAL SCENE EXPLORATION



Organizing Visual "Garbage Heap"

"It irritated him that the "dog" of 3:14 in the afternoon, seen in profile, should be indicated by the same noun as the dog of 3:15, seen frontally..."
"My memory, sir, is like a garbage heap."
-- Jorge Luis Borges, Funes the Memorious

PHOTOSYNTH [Snavely et al., 2006]



Synth 1

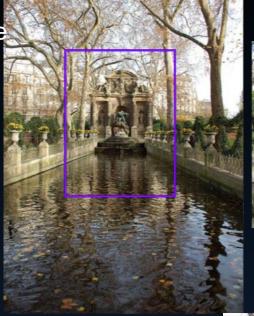
Synth 2

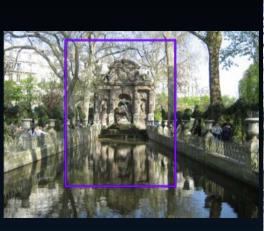
Synth 3 ...

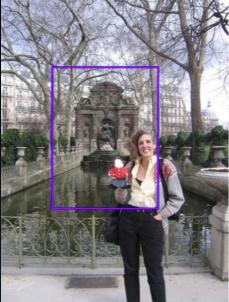
Dataset size: 136 photos (from flickr) # of discovered synths: 14 82 photos not part of any synth

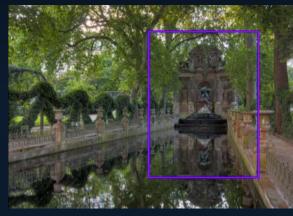
FINDING SIMILAR IMAGES

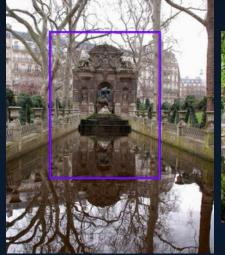
Query image







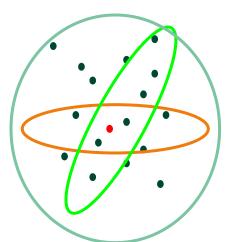




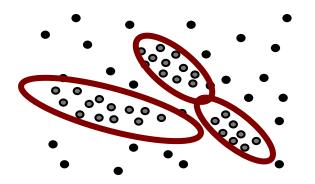
PAIRWISE SIMILARITY MATRIX

TRAVERSING THE GRAPH

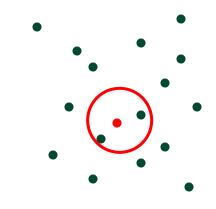
Ways to use Big Data



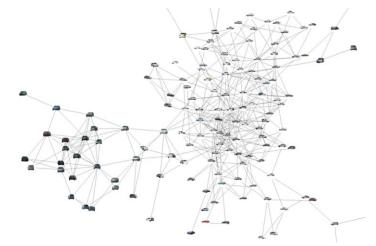
1. See what different subsets of data think of you



3. Visual Data Mining: find needles in a haystack



2. Use kNN to make a smaller, cozier sub-problem



4. Ditch Categories – keep all instances and connect them

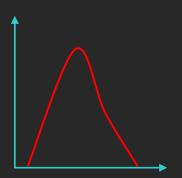
Priors for Large Photo Collections & What they Reveal about Cameras

> Sujit Kuthirummal Aseem Agarwala Dan B Goldman Shree K. Nayar

Columbia University Adobe Systems, Inc. Adobe Systems, Inc. Columbia University

Camera Distortion Free

Compute – Aggregate ––– Statistic



Independent of Scenes, Photographers & Cameras

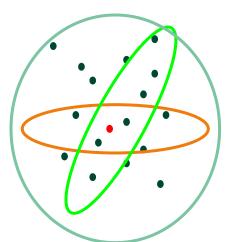
Recover Camera Properties

perties ↓

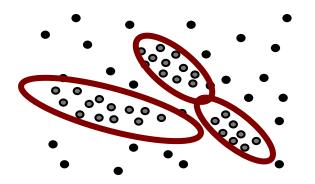
Independent of Scenes & Photographers Dependent on Camera

One Camera's Distortion

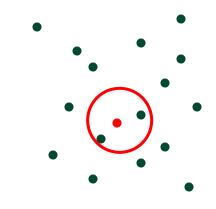
Ways to use Big Data



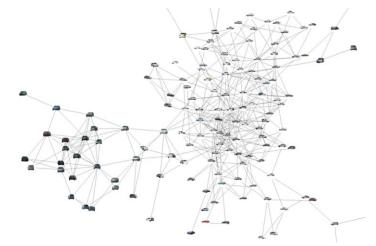
1. See what different subsets of data think of you



3. Visual Data Mining: find needles in a haystack



2. Use kNN to make a smaller, cozier sub-problem

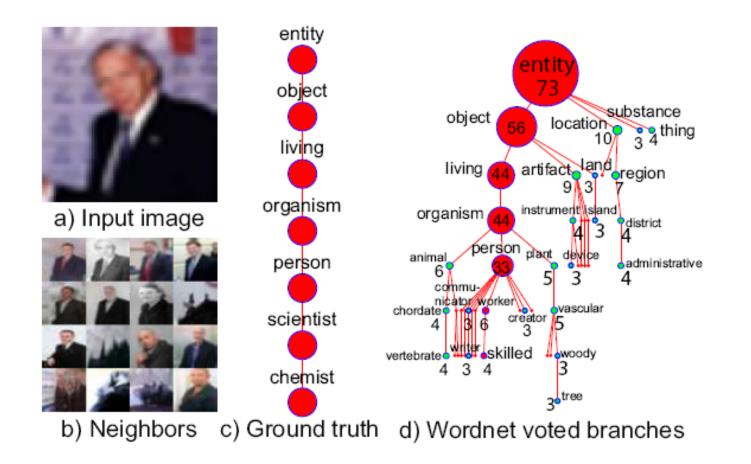


4. Ditch Categories – keep all instances and connect them

1. kNN + Label Transfer

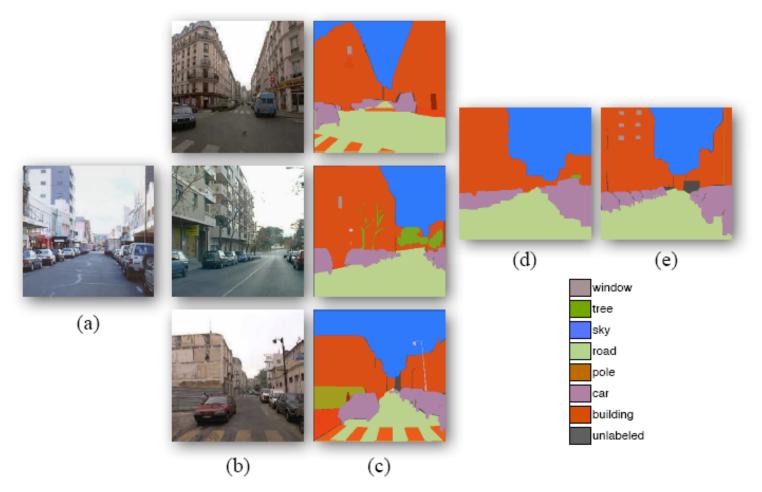
Sky, Water, Hills, Beach, Sunny, mid-day

80 Million Tiny Images [PAMI'08]



Torralba, Fergus, Freeman, PAMI 2008

Non-parametric Scene Parsing [CVPR'09]



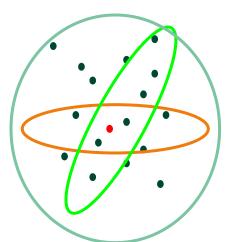
Liu, Yuen, Torralba, CVPR 2009

im2gps [CVPR'08]

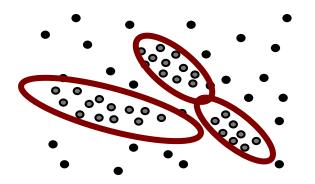
Query Photograph

Hays & Efros, CVPR 2008

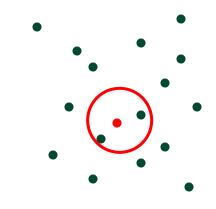
Ways to use Big Data



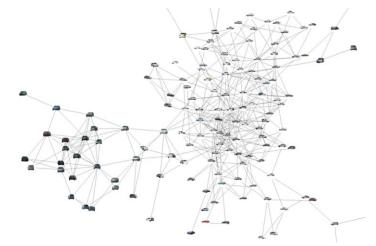
1. See what different subsets of data think of you



3. Visual Data Mining: find needles in a haystack

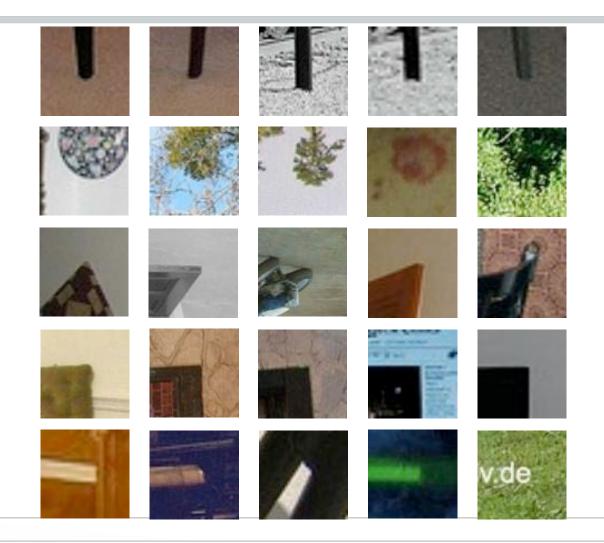


2. Use kNN to make a smaller, cozier sub-problem

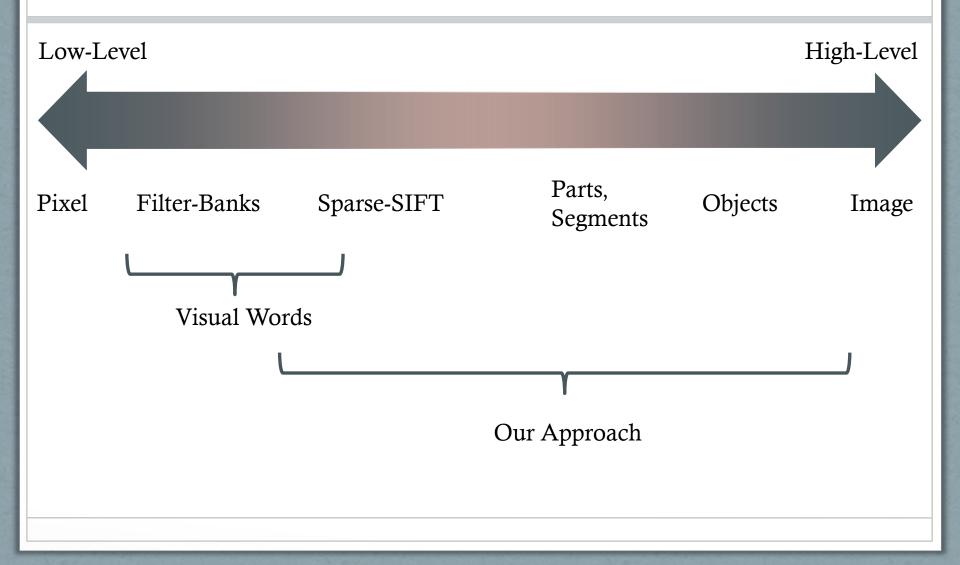


4. Ditch Categories – keep all instances and connect them

Visual Words or Letters?



Spectrum of Visual Features



Discriminative Patches

Two key requirements

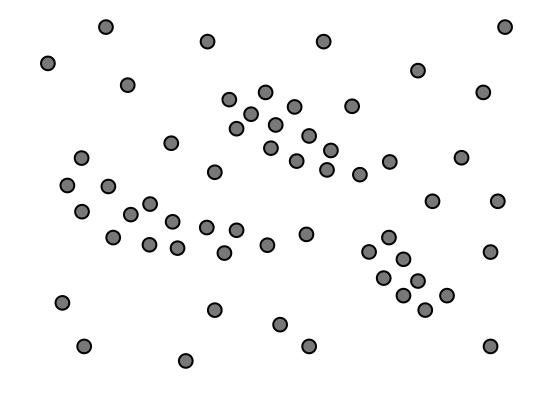
1. Need to occur frequently (representative)

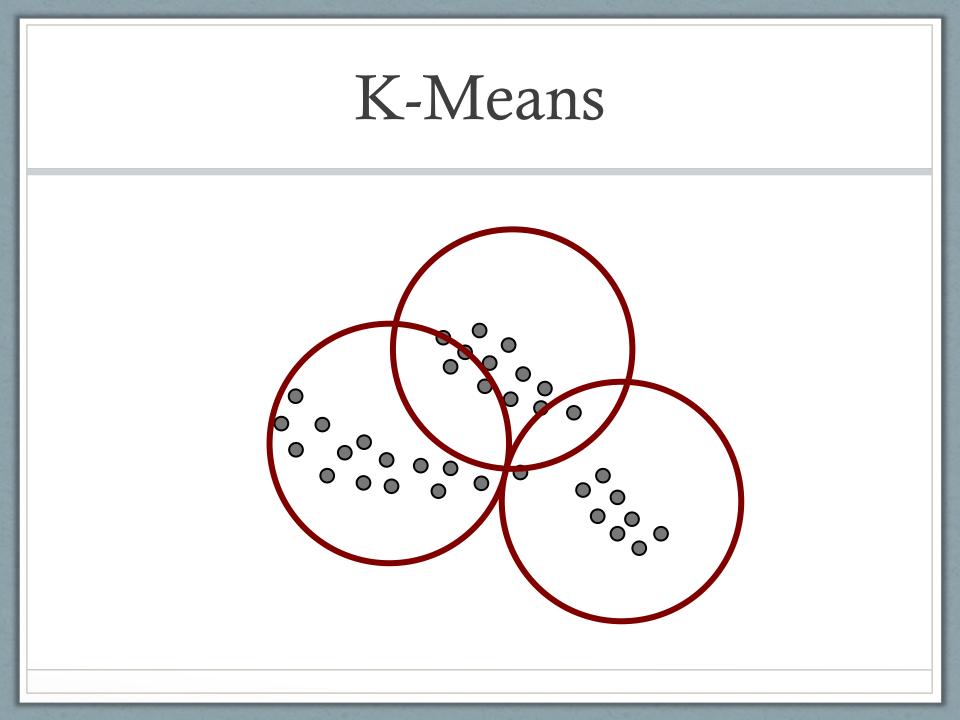
2. ...but not <u>too</u> frequently

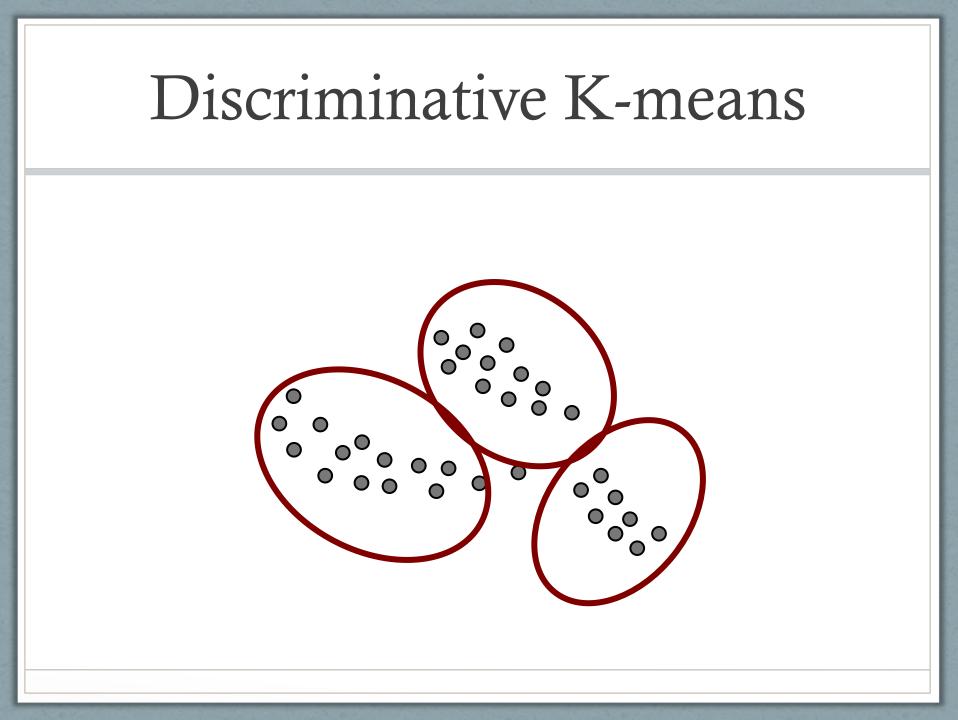
Discriminative: Need to be different enough from the rest of the visual world.

First some examples

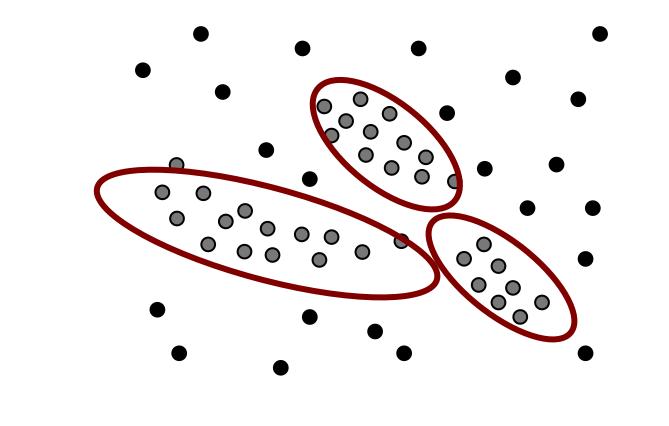
Finding needles in a haystack







Discriminative Clustering+



Discriminative Clustering+

Initial

Final

Initial

Final

Discriminative Clustering++

KMeans

Iter 1

Iter 2

Iter 3

Iter 4

Discriminative Clustering++

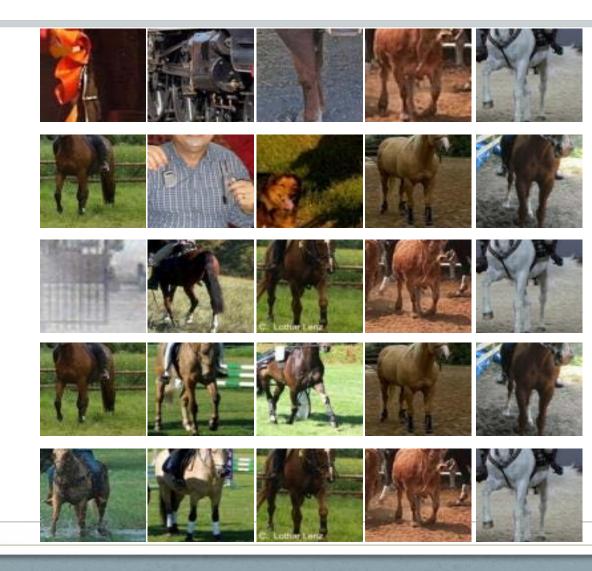
KMeans

Iter 1

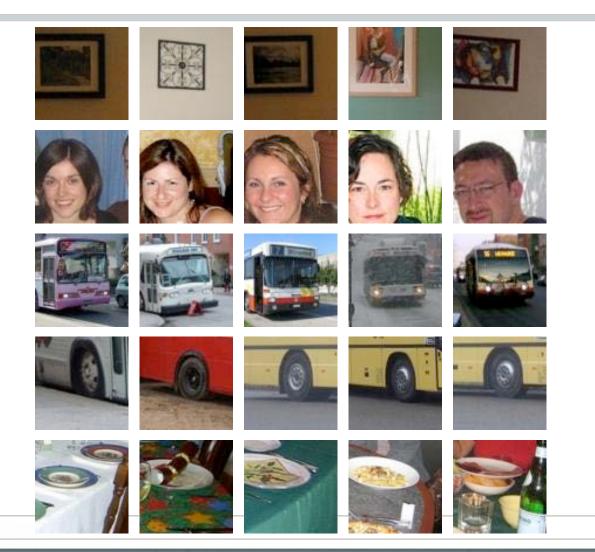
Iter 2

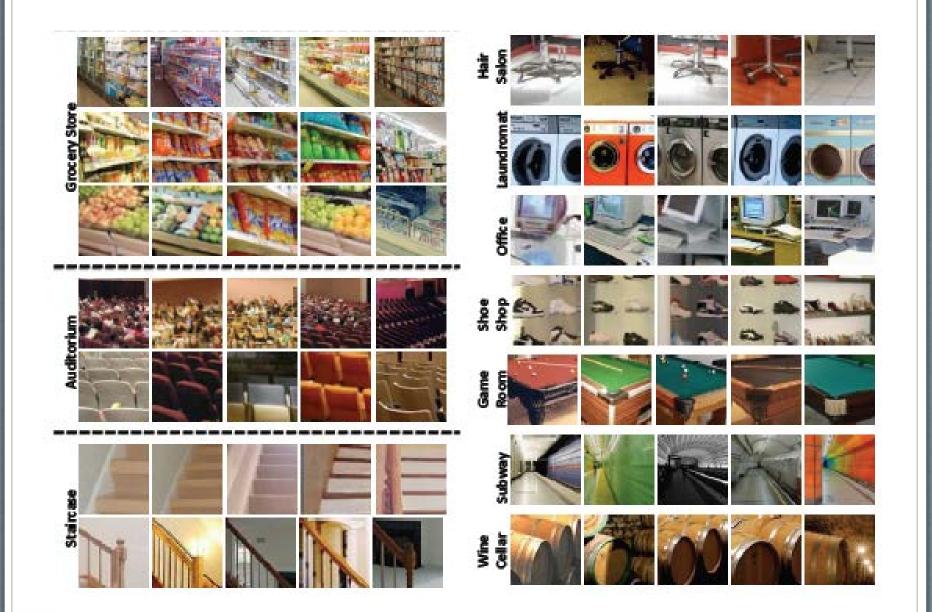
Iter 3

Iter 4



More Discovered Patches





What makes Paris look like Paris?

Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic and Alexei Efros, [SIGGRAPH '12]

How well can people do?

 <u>http://baikal.graphics.cs.cmu.edu/cdoersch/im2g</u> ps2/corr/test2.html

How well can people do?

- <u>http://baikal.graphics.cs.cmu.edu/cdoersch/im2g</u>
 <u>ps2/corr/test2.html</u>
- Mean performance = 79%
 - Subjects who have been to Paris

(up to 90% if allowed to scrutinize the images)

What makes Paris look like Paris?

What makes Paris look like Paris?

Goal

To automatically discover geo-informative visual elements, that (hopefully) capture the "look and feel" of a place

Goal

To automatically discover geo-informative visual elements, that are:

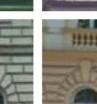
- **Representative:** frequently occur in Paris.
- **Discriminative:** occur in Paris but not at other places.

Need both conditions

Discriminative only:

Need both conditions

Frequently occurring only:



Extracted Visual Elements from Prague

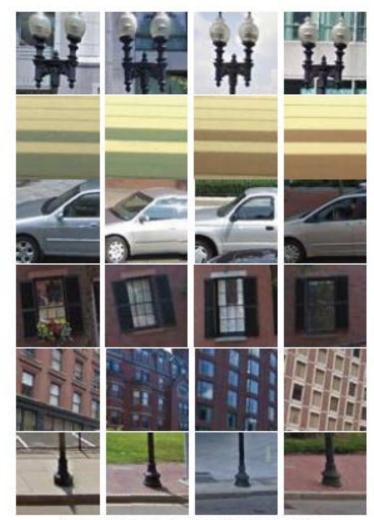
IIIII

111111

Extracted Elements from London

Extracted Elements from Barcelona

Extracted Elements from SF



Extracted Elements from Boston

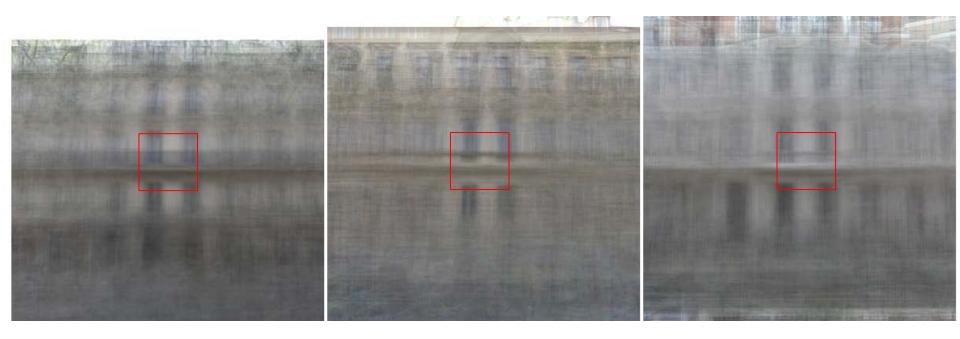
Correspondence

Paris, France

Prague, Czech Republic

London, England

Many Elements Capture Context



Mapping architectural features

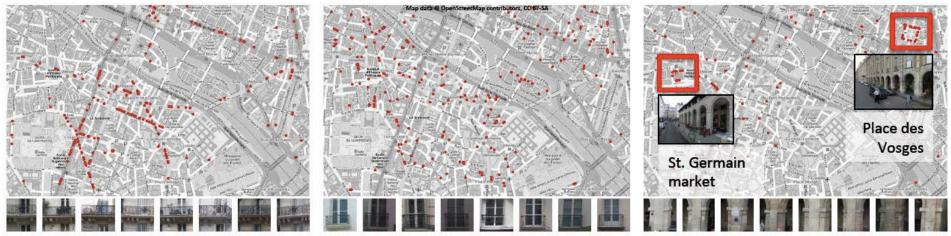
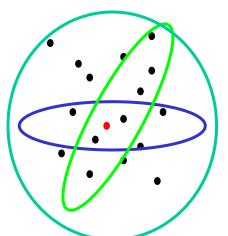
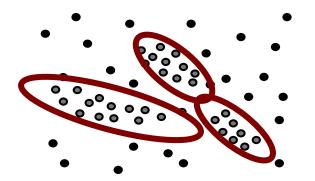


Figure 6: Examples of geographic patterns in Paris (shown as red dots on the maps) for three discovered visual elements (shown below each map). Balconies with cast-iron railings are concentrated on the main boulevards (left). Windows with railings mostly occur on smaller streets (middle). Arch supporting columns are concentrated on Place des Vosges and the St. Germain market (right).

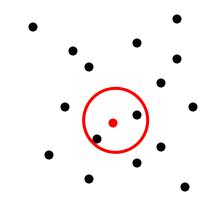
Ways to use Big Data



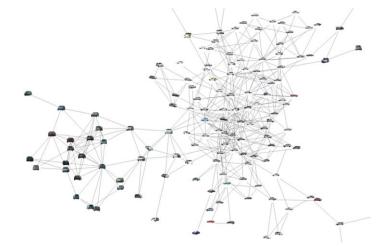
1. See what different subsets of data think of you



3. Visual Data Mining: find needles in a haystack



2. Use kNN to make a smaller, cozier sub-problem



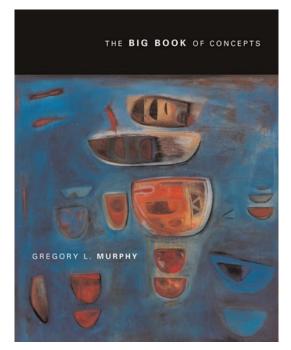
4. Ditch Categories – keep all instances and connect them

Down with Categories!!!

Alexei (Alyosha) Efros CMU

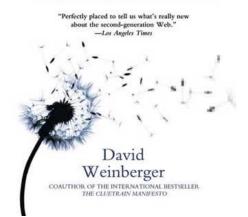
Joint work with Tomasz Malisiewicz

Acknowledgements



Everything Is Miscellaneous

THE POWER OF THE NEW DIGITAL DISORDER



Murphy Big Book of Concepts

Weinberger Everything is Miscellaneous

Talks by Moshe Bar; writings of Shimon Edelman

Many great discussions with many colleagues, especially Tomasz Malisiewicz, James Hays, and Derek Hoiem

Understanding an Image

H

1 an

A

中华人民

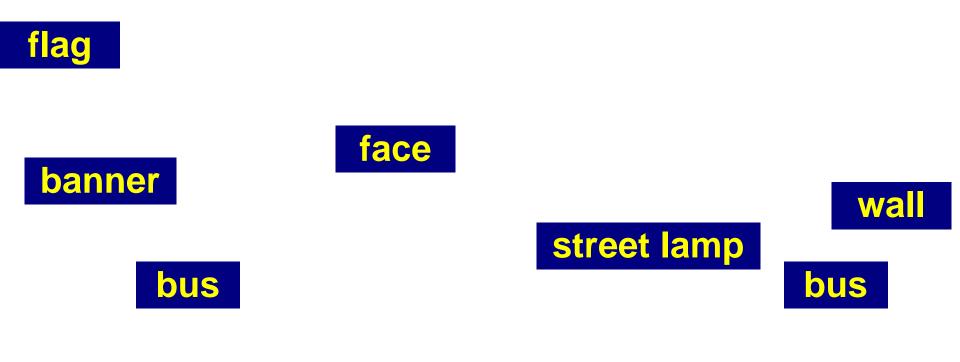
武大团结万岁

興

世

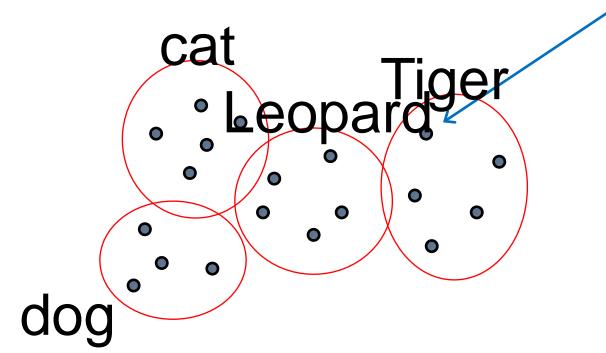
Object naming -> Object categorization

Object categorization



Why Categorize?

- 1. Knowledge Transfer
- 2. Communication



Classical View of Categories

- Dates back to Plato & Aristotle
 - Categories are defined by a list of properties shared by all elements in a category
 - 2. Category membership is binary
 - 3. Every member in the category is equal

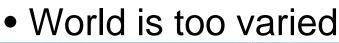
Problems with Classical View

• Humans don't do this!

- People don't rely on abstract definitions / lists of shared properties (Wittgenstein 1953, Rosch 1973)
 - e.g. define the properties shared by all "games"
 - e.g. are curtains furniture? Are olives fruit?
- Typicality
 - e.g. Chicken -> bird, but bird -> eagle, pigeon, etc.
- Language-dependent
 - e.g. "Women, Fire, and Dangerous Things" category is Australian aboriginal language (Lakoff 1987)
- Doesn't work even in human-defined domains
 - e.g. Is Pluto a planet?

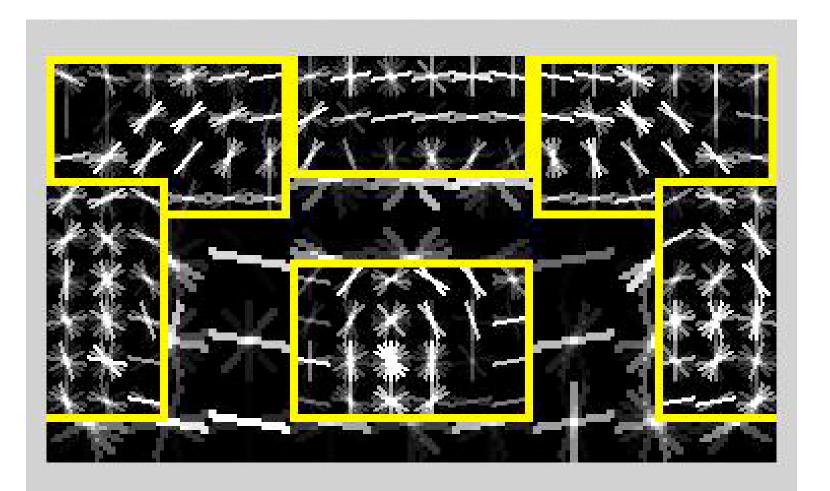
Problems with Visual Categories

 A lot of categories are functional Chair



 Categories are 3D, but images are 2D

Typical HOG car detector

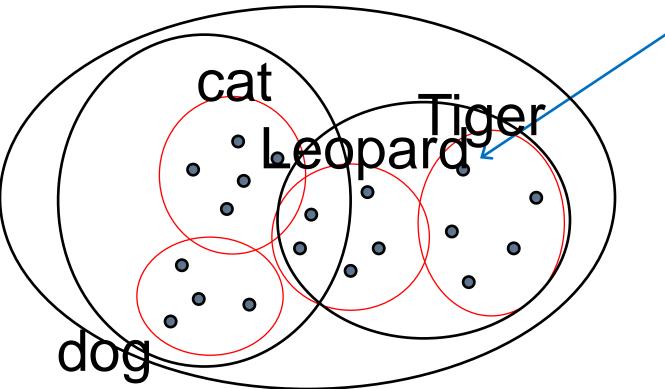


Felzenszwalb et al, PASCAL 2

Why not?

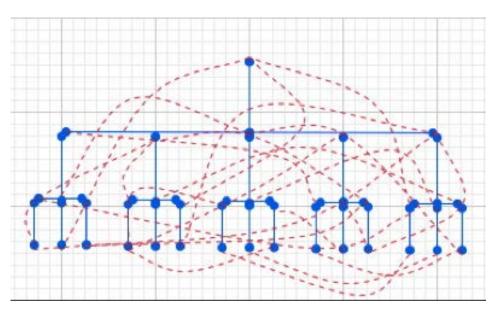
Solution: hierarchy?

Ontologies, hierarchies, levels of categories (Rosch), etc. WordNet, ImageNet, etc etc



Still Problematic!

- Intransitivity
 - e.g. car seat is chair, chair is furniture, but ...
- Multiple category membership
 - it's not a tree, it's a forest!



Clay Shirky, "Ontologies are Overrated"

Fundamental Problem with Categorization

Making decisions too early!

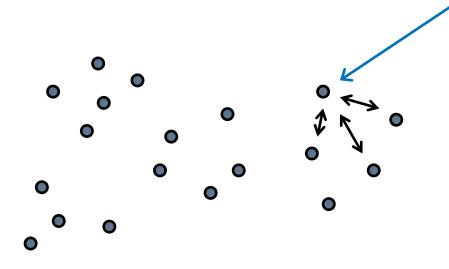
We should only categorize at run-time, once we know the task!

The Dictatorship of Librarians

categories are losing...

On-the-fly Categorization?

- 1. Knowledge Transfer
- 2. Communication



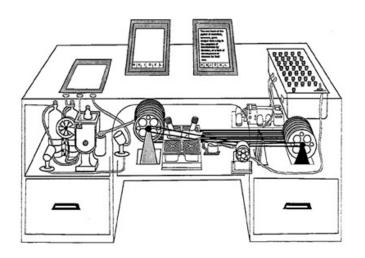
Association instead of categorization

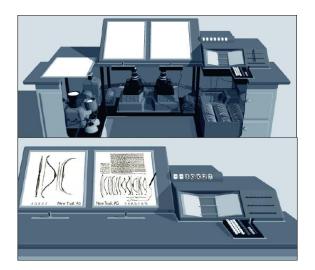
Ask not "what is this?", ask "what is this <u>like</u>" – Moshe Bar

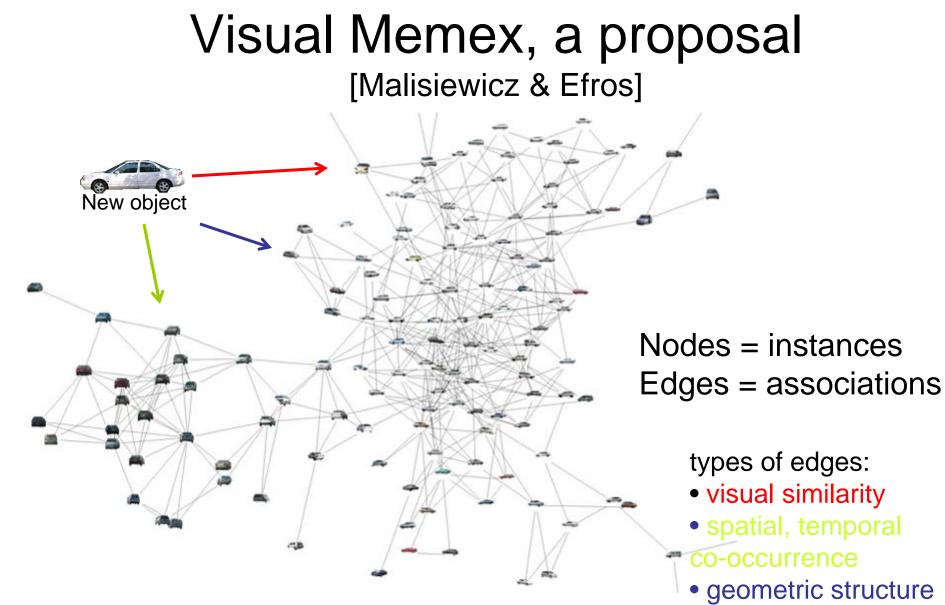
- Exemplar Theory (Medin & Schaffer 1978, Nosofsky 1986, Krushke 1992)
 - –categories represented in terms of remembered objects (exemplars)
 - -Similarity is measured between input and all exemplars -*think* non-parametric density estimation
- Vanevar Bush (1945), <u>Memex</u> (MEMory EXtender)
 - -Inspired hypertext, WWW, Google...

Bush's Memex (1945)

- Store publications, correspondence, personal work, on microfilm
- Items retrieved rapidly using index codes
 - Builds on "rapid selector"
- Can annotate text with margin notes, comments
- Can construct a *trail* through the material and save it
 Roots of hypertext
- Acts as an external memory





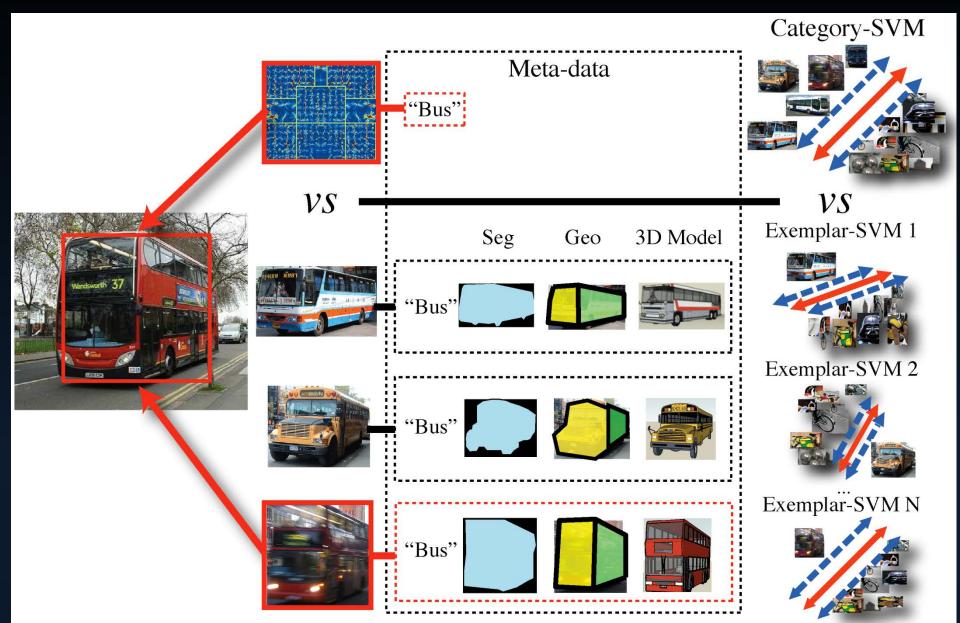


- language
- geography
- •__

Object Detection

"bus"

Exemplar Object Detection

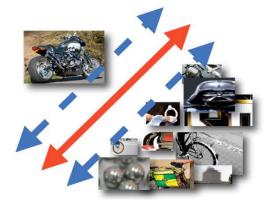


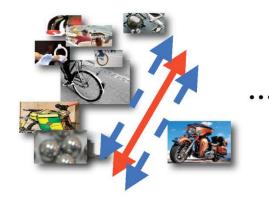
Ensemble of Exemplar-SVMs

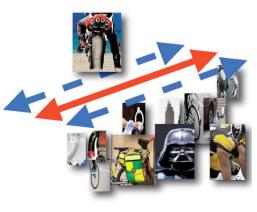
Exemplar-SVM 1

Exemplar-SVM 2

Exemplar-SVM N





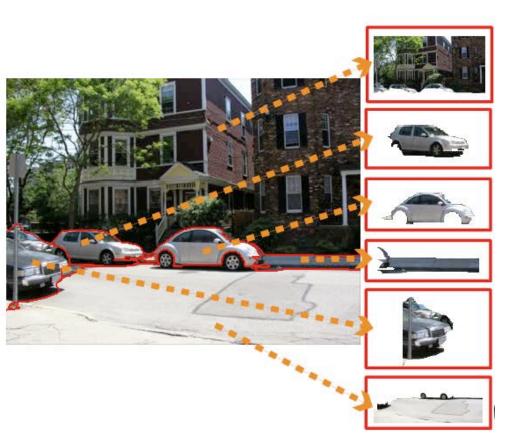


"What is this?"

Input Image

He 2004, Tu 2004, Shotton 2006, Galleguillos 2008, Fei-Fei 2009, Gould 2009, etc.

"What is this like?"



Malisiewicz & Efros, CVPR'08

Image Parsing with Context

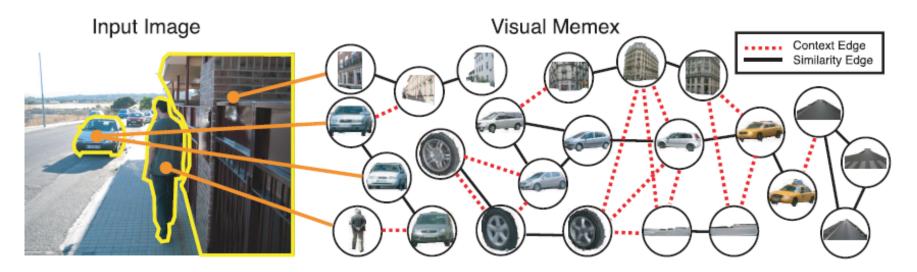
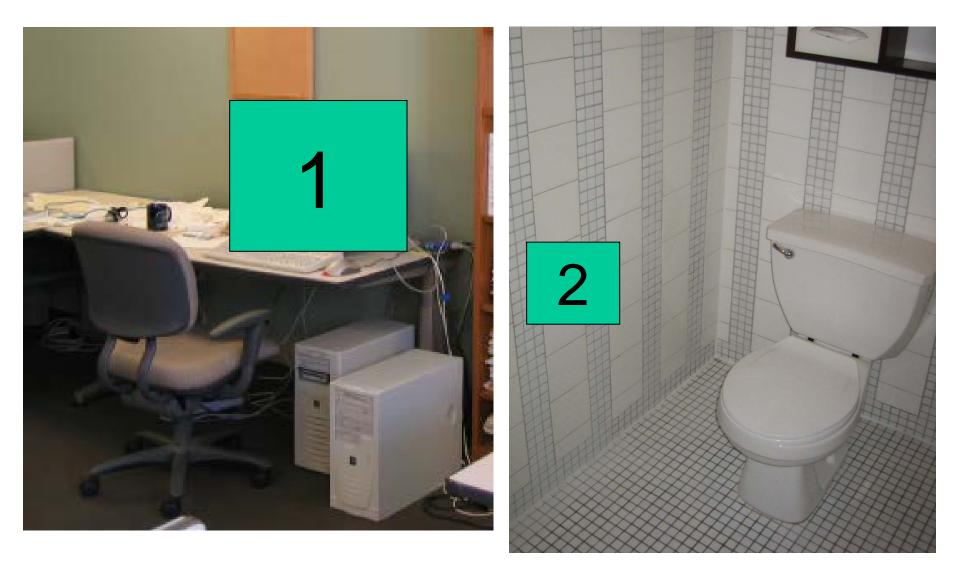


Figure 1: The **Visual Memex** graph encodes object similarity (solid black edge) and spatial context (dotted red edge) between pairs of object exemplars. A spatial context feature is stored for each context edge. The Memex graph can be used to interpret a new image (left) by associating image segments with exemplars in the graph (orange edges) and propagating the information.

Torralba's Context Challenge

Torralba's Context Challenge



Slide by Antonio Torralba

Torralba's Context Challenge

Slide by Antonio Torralba

Our Challenge Setup

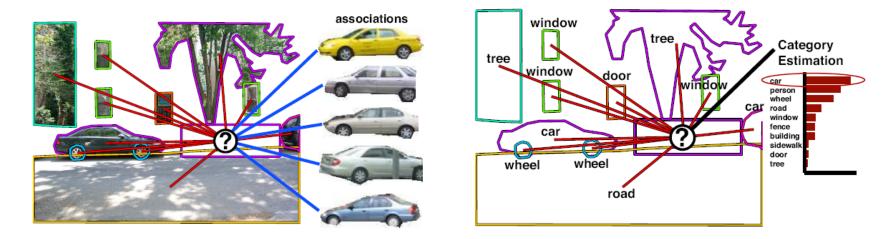


Figure 2: Torralba's Context Challenge: "How far can you go without running a local object detector?" The task is to reason about the identity of the hidden object (denoted by a "?") without local information. In our category-free Visual Memex model, object predictions are generated in the form of exemplar associations for the hidden object. In a category-based model, the category of the hidden object is directly estimated.

Malisiewicz & Efros, NIPS'09

Visual Memex: exemplars, non-parametric object-object relationships

• Recurse through the graph

Baseline: CoLA: categories, parametric objectobject relationships

Reduced Memex: categories, non-parametric relationships

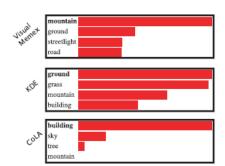
Qual. results

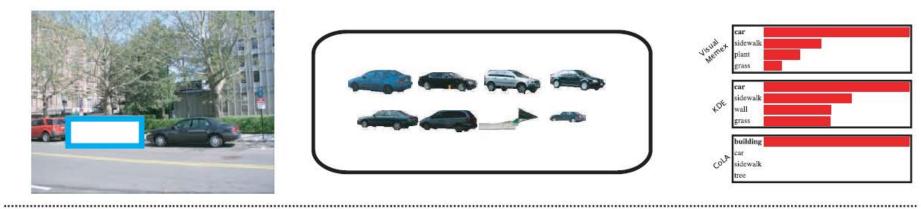
Input Image + Hidden Region

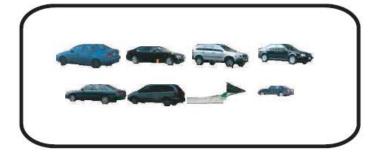
Visual Memex Exemplar Predictions

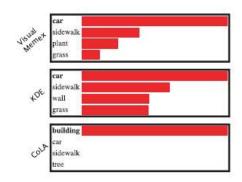
Categorization Results

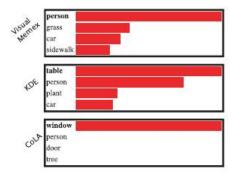


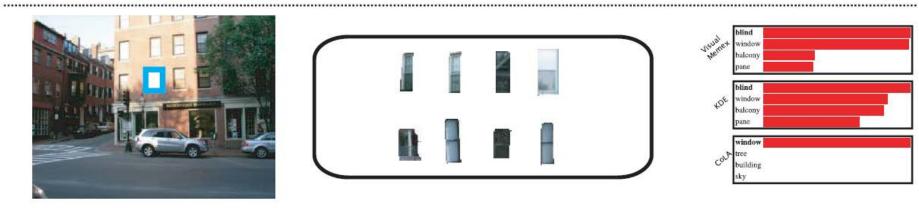


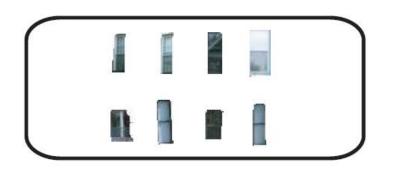


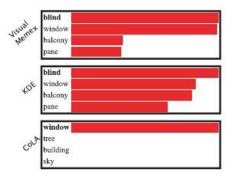












Quant. results

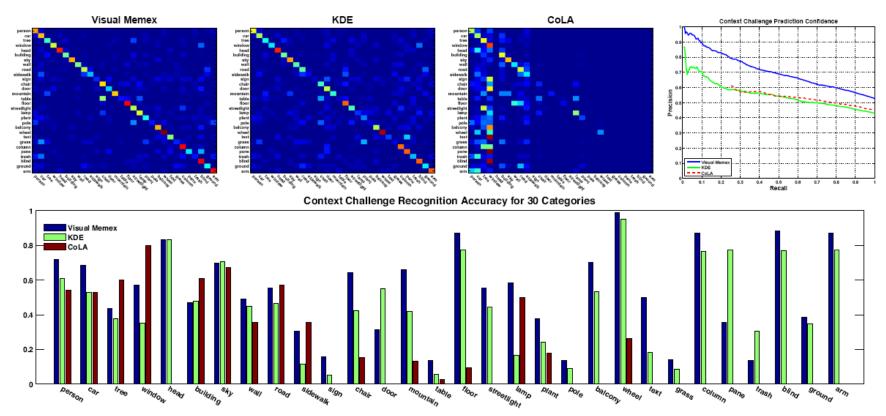


Figure 3: a.) Context Challenge confusion matrices for the 3 methods: Visual Memex, KDE, and CoLA. b.) Recognition Precision versus Recall when thresholding output based on confidence. c) Side by side comparison of the 3 methods' accuracies for 30 categories.

will **Big Data** solve all your problems?

1. Data is Biased

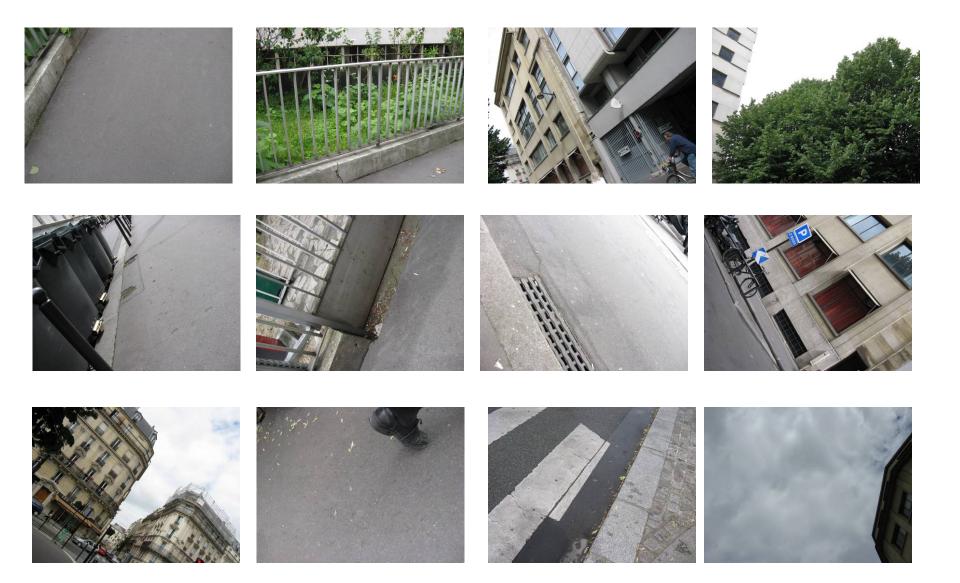
- Internet is a tremendous repository of visual data (Flickr, YouTube, Picassa, etc)
- But it's <u>not</u> random samples of visual world

Flickr Paris



Knopp, Sivic, Pajdla, ECCV 2010

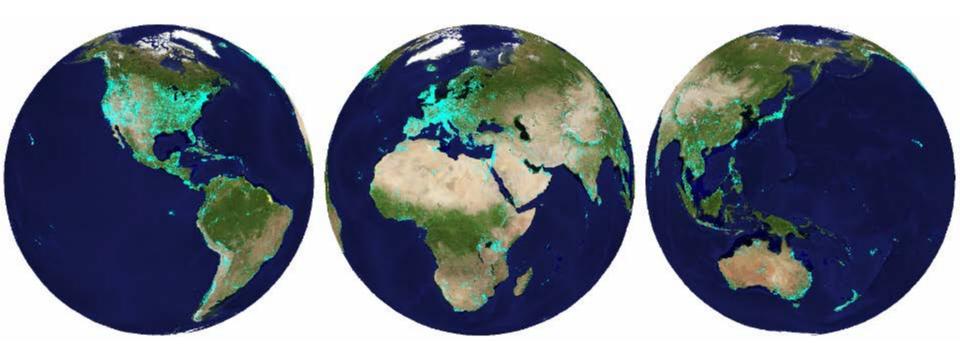
My Paris



Real Notre Dame

Sampling Bias

People like to take pictures on vacation



Photographer Bias

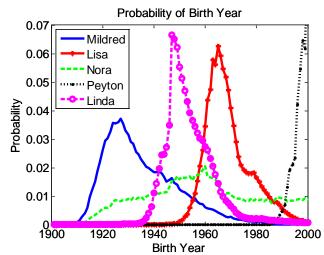
 People want their pictures to be recognizable and/or interesting

VS.

Social Bias

"100 Special Moments" by Jason Salavon

Social Bias



Mildred and Lisa

Source: U.S. Social Security Administration

Gallagher et al CVPR 2008

Social Bias

Gallagher et al CVPR 2008

Gallagher et al, CVPR 2009

2. We will never have enough data

RUE DU VIEUX OLOMBIEI

The Kooples

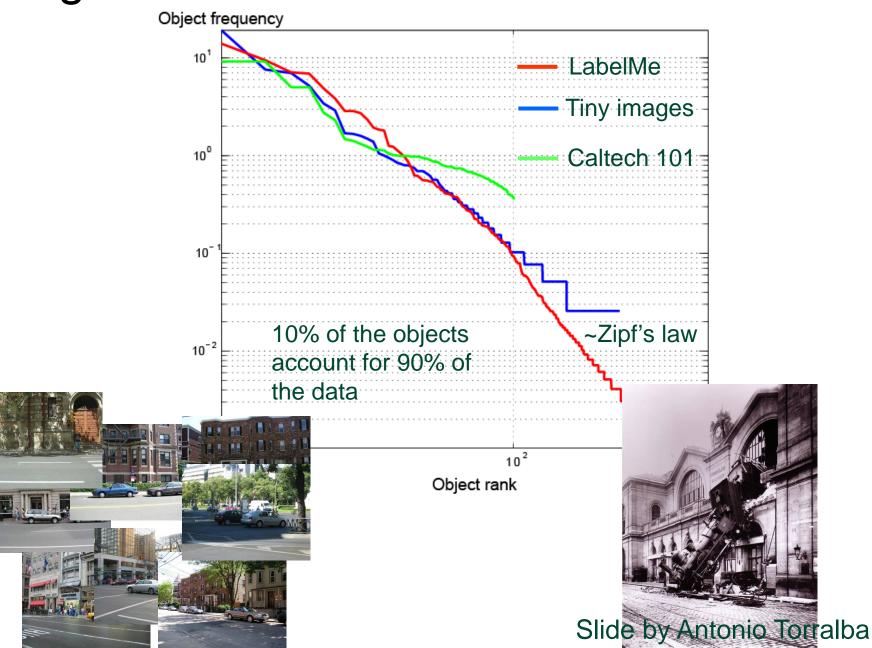
COMING SOON

En attendant l'ouverture de la boutique vous pouvez vous rendre aux deux adresses suivantes :

> 61 rue de Rennes, 75006 21 rue Saint-Sulpice, 75006

www.thekooples.cc

Long Tails -- Unfamiliar is Common



Dealing with sparse data (rare scenes)

Quick Fixes:

better alignment

• e.g. reduce resolution, sifting, warping, etc.

Understand the simple stuff first

Recognize when it's easy!

People take on a variety of poses, aspects, scales

self-occlusion

rare pose

motion blur

non-distinctive pose

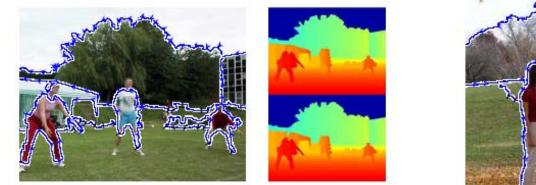
too small

just right detect this ²⁷

Ramanan, Forsyth, Zisserman, 2004

"Poping out" foreground objects

Hoiem et al, ICCV 2007



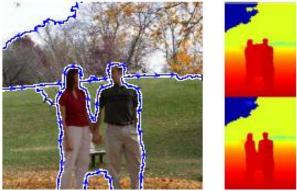
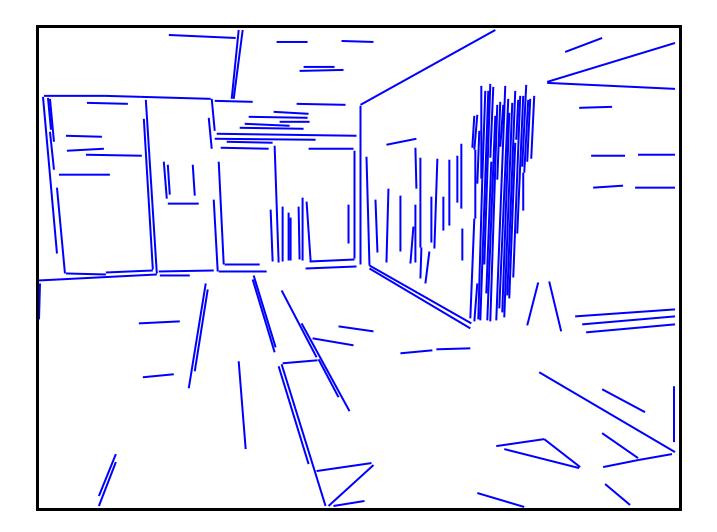


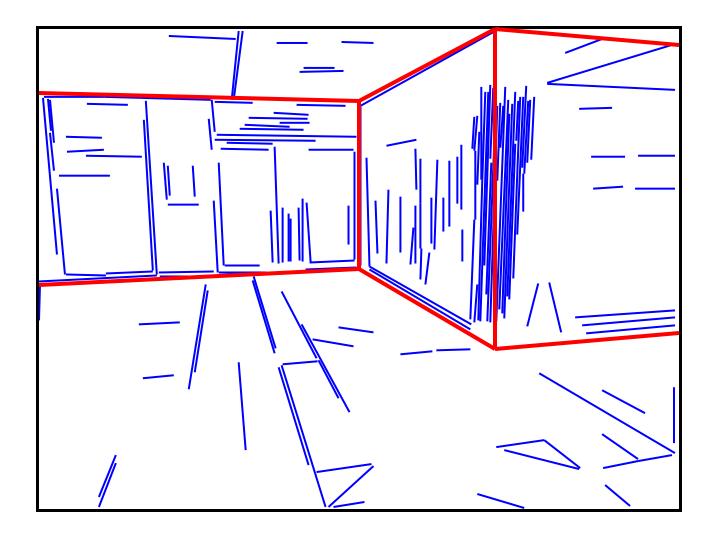
Figure 10. Object popout. We show five out of the fifteen most "solid" regions in the Geometric Context dataset. Our algorithm often finds foreground objects, which would be helpful for unsupervised object discovery [21].

Guess structure



David C. Lee, Martial Hebert, Takeo Kanade, CVPR'09

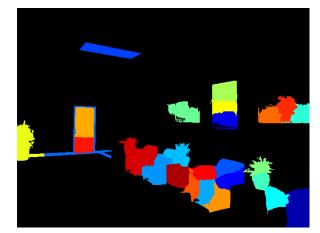
Guess structure



David C. Lee, Martial Hebert, Takeo Kanade, CVPR'09

Subtracting away structure

Structure



Objects

Wall appearance modeling

David C. Lee, Martial Hebert, Takeo Kanade, CVPR'09

Dealing with sparse data (rare scenes)

Long-term Fixes:

segment into chunks

- e.g. segmentation for recognition approaches
- Attributes densifying the labels

From categorization to association

Ask not "what is this?", ask "what is this <u>like</u>?"

"If you torture data long enough, it might confess" - Ronald Coase