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Outline 

1.  Local invariant features (C. Schmid) 

2.  Matching and recognition with local features (J. 
Sivic) 

3.  Efficient visual search (J. Sivic) 

4.  Very large scale visual indexing – recent work (C. 
Schmid) 

 
Practical session – Instance-level recognition and search 
  [Try your wifi network access.] 



Image matching and recognition with local features 

The goal: establish correspondence between two or more 
images 

 
 
 
 
 
 
 
 
 
Image points x and x’ are in correspondence if they are 

projections of the same 3D scene point X. 
Images courtesy A. Zisserman 
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Example I: Wide baseline matching and 3D reconstruction 
Establish correspondence between two (or more) images. 

[Schaffalitzky and Zisserman ECCV 2002] 
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Example II: Object recognition 

[D. Lowe, 1999] 

Establish correspondence between the target image and 
(multiple) images in the model database. 

Target 
image 

Model 
database 



Find these landmarks  ...in these images and 1M more 

Example III: Visual search 

Given a query image, find images depicting the same place / 
object in a large unordered image collection. 



Establish correspondence between the query image and all 
images from the database depicting the same object / scene. 

Query image 

Database image(s) 



Why is it difficult? 
Want to establish correspondence despite possibly large 
changes in scale, viewpoint, lighting and partial occlusion 

Viewpoint Scale 

Lighting Occlusion 

… and the image collection can be very large (e.g. 1M images) 



Approach 

Pre-processing (so far): 
•  Detect local features. 
•  Extract descriptor for each feature. 

Matching: 
1. Establish tentative (putative) correspondences based on 

local appearance of individual features (their descriptors).  
 
2. Verify matches based on semi-local / global geometric 

relations. 



Example I: Two images -“Where is the Graffiti?” 

object 



Step 1. Establish tentative correspondence 

Establish tentative correspondences between object model image and target 
image by nearest neighbour matching on SIFT vectors 

128D descriptor 
space 

Model (query) image  Target image  

Need to solve some variant of the “nearest neighbor problem” for all feature 
vectors,                     , in the query image: 
 
 
 
where,                      ,  are features in the target image. 

Can take a long time if many target images are considered (see later). 
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Problem with matching on local descriptors alone 

•  too much individual invariance 

•  each region can affine deform independently (by different amounts) 

•  locally, appearance can be ambiguous 

 

Solution: use semi-local and global spatial relations to verify matches. 



Initial matches 

Nearest-neighbor 
search based on 
appearance descriptors 
alone. 

After spatial 
verification 

Example I: Two images -“Where is the Graffiti?” 



Step 2: Spatial verification 

1.  Semi-local constraints 
 Constraints on spatially close-by matches 

 
2. Global geometric relations 

 Require a consistent global relationship between all 
matches  



Semi-local constraints: Example I. – neighbourhood consensus 

[Schmid&Mohr, PAMI 1997] 



Semi-local constraints: 
Example I. – 
neighbourhood 
consensus 

[Schaffalitzky & 
Zisserman, CIVR 
2004] 

Original images 

Tentative matches 

After neighbourhood consensus 



Semi-local constraints: Example II.  

[Ferrari et al., IJCV 2005] 

Model image 

Matched image 

Matched image 



Geometric verification with global constraints 

•  All matches must be consistent with a global geometric 
relation / transformation. 

•  Need to simultaneously (i) estimate the geometric 
relation / transformation and (ii) the set of consistent 
matches 

Tentative matches Matches consistent with an affine 
transformation 



Examples of global constraints 

1 view and known 3D model. 
•  Consistency with a (known) 3D model. 

 
2 views 
•  Epipolar constraint 
•  2D transformations 

•  Similarity transformation 
•  Affine transformation 
•  Projective transformation 

N-views 
Are all images consistent with a single 3D model? 



3D constraint: example (not considered here) 
•  Matches must be consistent with a 3D model 

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03] 

3 (out of 20) images 
used to build the 3D 

model 

Recovered 3D model 

Offline: Build a 3D model 



3D constraint: example (not considered here) 
•  Matches must be consistent with a 3D model 

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03] 

3 (out of 20) images 
used to build the 3D 

model 

Recovered 3D model 

Recovered pose Object recognized in a previously 
unseen pose 

Offline: Build a 3D model 

At test time: 



With a given 3D model (set of known 3D points X’s) and a set 
of measured 2D image points x, the goal is to find camera 
matrix P and a set of geometrically consistent 
correspondences  x    X. 

3D constraint: example (not considered here) 

x 

X 

P 

C 



Epipolar geometry (not considered here) 

In general, two views of a 3D scene are related by the epipolar 
constraint. 

 
 
 
 
 
 
 
 
 
 
•  A point in one view “generates” an epipolar line in the other view 
•  The corresponding point lies on this line. 

Slide credit: A. Zisserman 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 
 
 

Affine 
 
 

Projective 
(homography) 
 

  



Points on the plane transform as  x’ = H x, where x and x’ 
are image points (in homogeneous coordinates), and H 
is a 3x3 matrix. 

Planes in the scene induce homographies 

H x 

x' 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 

•  The two image planes are related by a homography H 

•  H depends only on the relation between the image 
planes and camera centre, C, not on the 3D structure  



Homography is often approximated well by 2D 
affine geometric transformation 

HA x 

x' 



Two images with similar camera viewpoint 

Tentative matches Matches consistent with an affine 
transformation 

Homography is often approximated well by 2D 
affine geometric transformation – Example II. 



Example: estimating 2D affine transformation 

•  Simple fitting procedure (linear least squares) 
•  Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 
•  Can be used to initialize fitting for more complex models 
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Fitting an affine transformation 

Assume we know the correspondences, how do we get the 
transformation? 
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Fitting an affine transformation 

Linear system with six unknowns 
Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters 
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Dealing with outliers 

The set of putative matches may contain a high percentage 
(e.g. 90%) of outliers 

 
 
 
 
 
How do we fit a geometric transformation to a small subset 

of all possible matches? 
 
Possible strategies: 

•  RANSAC 
•  Hough transform 



Example: Robust line estimation - RANSAC 

Fit a line to 2D data containing outliers 

There are two problems 

1.  a line fit which minimizes perpendicular distance 

2.  a classification into inliers (valid points)  and outliers 
Solution: use robust statistical estimation algorithm RANSAC 

(RANdom Sample Consensus) [Fishler & Bolles, 1981] 
Slide credit: A. Zisserman 



Repeat 
1.  Select random sample of 2 points 
2.  Compute the line through these points 
3.  Measure support (number of points within threshold 

distance of the line) 

Choose the line with the largest number of inliers 
•  Compute least squares fit of line to inliers (regression) 

RANSAC robust line estimation 

Slide credit: A. Zisserman 



Slide credit: O. Chum 
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Slide credit: O. Chum 



Repeat 
1.  Select 3 point to point correspondences 
2.  Compute H (2x2 matrix) + t (2x1) vector for translation  
3.  Measure support (number of inliers within threshold 

distance, i.e. d2
transfer < t) 

 

Choose the (H,t) with the largest number of inliers 

(Re-estimate (H,t) from all inliers) 

Algorithm summary – RANSAC robust estimation of 
2D affine transformation 



How many samples? 

 Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers  
•  e.g.:  

>  p=0.99  
>  outlier ratio: e 

( )( ) pe
Ns −=−− 111

Source: M. Pollefeys 

Probability a randomly picked 
point is an inlier 

Probability of all points in a 
sample (of size s) are inliers  



How many samples? 

 Number of samples N 
•  Choose N so that, with probability p, at least one random 

sample is free from outliers  
•  e.g.:  

>  p=0.99  
>  outlier ratio: e 

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

proportion of outliers e 
s 5% 10% 20% 30% 40% 50% 90% 
1 2 2 3 4 5 6 43 
2 2 3 5 7 11 17 458 
3 3 4 7 11 19 35 4603 
4 3 5 9 17 34 72 4.6e4 
5 4 6 12 26 57 146 4.6e5 
6 4 7 16 37 97 293 4.6e6 
7 4 8 20 54 163 588 4.6e7 
8 5 9 26 78 272 1177 4.6e8 

Source: M. Pollefeys 

Probability that all N samples (of 
size s) are corrupted (contain an 
outlier) 

Probability of at least one point 
in a sample (of size s) is an 
outlier 



1. Reduce the proportion of outliers. 
2. Reduce the sample size  

•  use simpler model (e.g. similarity instead of affine tnf.) 
•  use local information (e.g. a region to region 

correspondence is equivalent to (up to) 3 point to point 
correspondences). 

 
 
     

How to reduce the number of samples needed? 

proportion of outliers e 
s 5% 10% 20% 30% 40% 50% 90% 
1 2 2 3 4 5 6 43 
2 2 3 5 7 11 17 458 
3 3 4 7 11 19 35 4603 
4 3 5 9 17 34 72 4.6e4 
5 4 6 12 26 57 146 4.6e5 
6 4 7 16 37 97 293 4.6e6 
7 4 8 20 54 163 588 4.6e7 
8 5 9 26 78 272 1177 4.6e8 

Number of samples N 

Region to region 
correspondence 



Example: restricted affine transform 
1. Test each correspondence 



2. Compute a (restricted) planar affine transformation (5 dof) 

Need just one correspondence 

Example: restricted affine transform 



3. Score by number of consistent matches 

Re-estimate full affine transformation (6 dof) 

Example: restricted affine transform 



Similarity transformation is specified by four parameters: 
scale factor s, rotation θ, and translations tx and ty. 

 
 
 
 
 
 
Recall, each SIFT detection has: position (xi, yi), scale si, 

and orientation θi. 
 
How many correspondences are needed to compute 

similarity transformation?  

Example II: (see practical later today) 



RANSAC (references) 

M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography,” Comm. ACM, 1981 

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., 2004. 

 

 

Extensions: 

B. Tordoff and D. Murray, “Guided Sampling and Consensus for Motion Estimation, 
ECCV’03 

D. Nister, “Preemptive RANSAC for Live Structure and Motion Estimation, ICCV’03  

Chum, O.; Matas, J. and Obdrzalek, S.: Enhancing RANSAC by Generalized Model 
Optimization, ACCV’04 

Chum, O.; and Matas, J.: Matching with PROSAC - Progressive Sample Consensus , 
CVPR 2005 

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.: Object retrieval with large 
vocabularies and fast spatial matching, CVPR’07 

Chum, O. and Matas. J.: Optimal Randomized RANSAC, PAMI’08 
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