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Abstract: Extracting the hidden and useful knowledge embedded within video sequences and thereby discovering
relations between the various elements to help an efficient decision-making process is a challenging task. The task
of knowledge discovery and information analysis is possible because of recent advancements in object detection
and tracking. The authors present how video information is processed with the ultimate aim to achieve
knowledge discovery of people activity and also extract the relationship between the people and contextual
objects in the scene. First, the object of interest and its semantic characteristics are derived in real-time. The
semantic information related to the objects is represented in a suitable format for knowledge discovery. Next,
two clustering processes are applied to derive the knowledge from the video data. Agglomerative hierarchical
clustering is used to find the main trajectory patterns of people and relational analysis clustering is employed
to extract the relationship between people, contextual objects and events. Finally, the authors evaluate the
proposed activity extraction model using real video sequences from underground metro networks
(CARETAKER) and a building hall (CAVIAR).

to solve the well-known gap between low-level features
and high-level concepts. Recently, particular attention has

1 Introduction

Nowadays, more than ever, the technical and scientific
progress requires human operators to handle large
quantities of data. To treat this huge amount of records,
the data-mining field can provide adequate solutions to
synthesise, analyse and extract valuable information, which
is generally hidden in the raw data. Applying data-mining
techniques in large amounts of video data is now possible
mainly because of the advance made in the field of object
detection and tracking [1]. Data mining on video data has
mainly been employed for annotation/retrieval processes
[2-5]. The task consists in mining multiple visual
features into categories associated with meaningful
semantic keywords that will allow the retrieval of the
video. Usually low level features such as colour, texture,
shape and motion information are employed. A recent
review on video retrieval can be found in [6]. The
structured representation issued from the mining
procedure gives a domain-dependent association that tries

been turned to the trajectory information associated with
mobile objects observed in the video. It is because, on the
one hand, trajectory descriptors have been shown to be
very useful on their own for video indexing and retrieval
[7], and on the other hand the application of data-mining
and machine-learning techniques to the study of
trajectories has started to show its importance for activity
understanding. This kind of analysis comes as a
complement to current video monitoring/surveillance
systems such as PRISMATICA (8], VISOR-BASE [9]
or ADVISOR [10], which were rather oriented towards
the real-time recognition of events of interest (fighting
between persons, vandalism, a person jumping above
a barrier, a group of people blocking an exit, and
overcrowding situations). Although these systems begin to
recognise robustly predefined events in the video, data
mining/knowledge discovery on the activities contained in
the video has not been addressed.
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In this paper we show the procedure to achieve knowledge
discovery to obtain meaningful trajectory patterns from
video-data. A hierarchical agglomerative clustering
algorithm is employed for this purpose. Moreover, we show
how semantic meaning can be obtained from these
patterns. For instance we can study the dynamics of the
people characterised by a given trajectory type. We have
proposed an effective knowledge modelling format which
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interactions with the environment. We also show in our
contribution how we can further apply data-mining
techniques on this information. Specifically, we employ the
relational analysis [11] for this purpose and show how
behavioural patterns of interaction can be extracted. The
techniques employed have been evaluated on annotated
videos from the CAVIAR project [12] and on large
underground video recordings (GTT metro, Torino, Italy
and ATAC metro, Roma, Italy) from the CARETAKER
project (www.ist-caretaker.org). These videos are associated
with manually generated ground-truth.

This research has been done in the framework of the
CARETAKER project, which is a European initiative to
provide an efficient tool for the management of large
multimedia collections. Such systems could be used in
applications such as surveillance and safety issues, in urban
planning, resource optimisation, elderly person monitoring.
This work was partially presented in [13]. In this paper we
employ an analysis on more features extracted from mobile
objects detected in the videos. We present a new evaluation
for our trajectory-clustering algorithm and we present
results from both Torino and Roma underground sites.

The rest of the paper is structured as follows. In Section 2
we present the overall architecture of the proposed approach.
While the video analysis system to track objects and detect
events of interest in the video is explained in Section 3, the
clustering of trajectories from tracked objects is detailed in
Section 4. The proposed knowledge representation format
is presented in Section 5. The relational analysis applied on
the trajectory and the contextual information is explained in
Section 6. Results are presented in Section 7. The
proposed method is assessed in Section 8.

2 General structure of the
proposed approach

The monitoring system is mainly composed of two different
processing components (shown in Fig. 1). The first one is an
on-line analysis subsystem for the real-time detection of
objects and events previously defined in an ontology. This
is a processing that goes on a frame-by-frame basis. At this
level, detected events already contain semantic information
describing people behaviour and interactions with the
contextual objects of the scene. The second subsystem
works off-line and achieves the extraction of activity
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Figure 1 General architecture

patterns from the video. This subsystem is composed of
three modules: the trajectory analysis module where we
perform the clustering of trajectories, the object statistical
analysis module where we compute meaningful measures
on the object dynamics and the relational analysis module
where we obtain behavioural patterns of interaction. For
the storage of video streams and the metadata obtained
after both on-line video processing and off-line analysis,
three different databases (DB) exist: raw database (audio/
video streams), on-line analysis database (tracked objects
and real-time detected events), off-line analysis database
(data mining-based events). In this work we only consider
the video analysis although audio data has also been
acquired in the project.

Streams of video are acquired at a speed of 525 frames/s,
then directly stored in the raw database. The on-line analysis
subsystem takes its input directly from the data acquisition
component. Objects and events of interest are detected in
real time, and tracking results are written in the on-line
database at a speed of 5 frames/s. The on-line system
triggers alarms for the security operators to take immediate
actions.

The off-line analysis subsystem takes its input from the
on-line database. This subsystem is dedicated to the
manager or designer who wants to obtain global and long-
term information from the monitored site. The user can
specify a period of time where he/she wishes to retrieve
and analyse stored information. In particular the user can
access all databases to visualise specific events, streams of
video and off-line information.

3 Real-time object/event
detection

The first task of our data-mining approach is to detect in real
time objects and events of interest. A brief description on
how both objects and events of interest are detected in this
work is given next. It must be noted that our data-mining
approach can however be applied with any other detection
and tracking technique.
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3.1 Object detection

Assuming objects in a scene are individually detected in the
image plane; tracking these objects would be a
straightforward task to perform and reliable trajectories
would be obtained. However, the efficiency of a tracking
algorithm directly depends on the quality of the detected
objects which is very sensitive to many factors such as the
quality of the image (level of compression, accumulated
noise throughout the optical device), dynamic occlusions
(when several mobile projections onto the image plane
overlap) [14], and the complexity of interaction of the
objects evolving in a scene as we describe below.

Detecting objects in an image is a difficult and challenging
task. Several algorithms have been proposed; two recent
surveys [1, 15] include the research from the last 10 years
in this regard. One solution widely employed consists of
performing a thresholding operation between the pixel
intensities of this frame with the pixel intensities of the
background frame. The background image can be a
captured image of the same scene having no foreground
objects, or no moving objects in front of the camera.

The result of the thresholding operation is a binary mask of
foreground pixels. The neighbouring foreground pixels are
grouped together to form regions often referred to as ‘blobs’
which correspond to the moving regions in the image. If
the ‘moving objects’ projection in the image plane do not
overlap with each other, i.e. no ‘dynamic occlusion’, then
each detected moving blob corresponds to a single moving
object. However, as soon as occlusion occurs between
objects, their moving regions fuse and separating them is
not an easy task to do. Adding more informational cues
about the detected objects, such as their colour content,
shape information or multiple view tracking, increases the
likelihood in separating the occluded regions. The detailed
description of the background subtraction algorithm, which
also estimates when the background reference image needs

to be updated, can be found in [16].

Having 3D information about the scene under view
enables the calibration of the camera. Point
correspondences between selected 3D points in the scene
and their corresponding point in the 2D image plane allow
us to generate the 3D location of any points belonging to
moving objects. Thus, the 3D data (i.e. width and height)
of each detected moving blob can be measured as well as
their 3D location on the ground plane in the scene with
respect to a chosen coordinate system. The 3D object
information is then compared against several 3D models
defined by the user. From this comparison, a detected
object is linked to a semantic class. For example, we have
chosen a human being to be of average size: 170 cm in
height and 60 cm in width. Smaller sizes are chosen for
luggage items, and bigger sizes for groups of persons and
very large sizes for crowds. The description and use of
these kinds of 3D models can be found in [17]. The noisy

detected objects, associated with noisy 3D models, are
classified according to the closest model they belong to.

3.2 Object tracking

Detected and classified 3D objects evolving in a scene can be
tracked within the scope of the camera using the 3D
information of their locations on the ground as well as their
3D dimensions. Tracking a few objects in a scene can be
easy as far as they do not interact heavily in front of the
camera: ie. occlusion is rare and short. However, the
complexity of tracking several mobile objects becomes a
non-trivial and very difficult task to achieve when several
objects’ projected images overlap with each other on the
image plane. Occluded objects have missing 3D locations,
which create incoherency in the temporal evolution of their
3D locations.

Our tracking algorithm [18, 19] builds a temporal graph of
connected objects over time to cope with the problems
encountered during tracking. The detected objects are
connected between each pair of successive frames by a
frame-to-frame (F2F) tracker. Links between objects are
associated with a weight (i.e. a matching likelihood)
computed from three criteria: the similitude between their
semantic classes, 3D dimensions and differences in 3D
distance in the ground plane.

The graph of linked objects provided by the F2F tracker is
then analysed by the tracking algorithm, also referred to as
the long-term tracker, which builds paths of each mobile
object according to the link features. The best path is then
taken out as the trajectory of the related mobile objects.

3.3 Event detection

Events of interest for the user are created by the user himself
according to a specific semantic language introduced by Vu
et al. [20]. This language allows the user to use a designed
ontology to detect from simple to complex events. The
ontology is the set of all concepts relative to video events
and of all the relations between concepts. There are two
main types of concepts to be represented: physical objects
(including physical objects of interest to be observed in a
scene, also called as ‘mobile objects and ‘contextual
objects’, which are defined by the user) and video events
occurring in this scene related to the objects of interest.

A physical object of interest ‘0’ is a physical object evolving
in the scene, whose semantic class (i.e. person, group, crowd
and luggage) is predefined by end-users and whose motion
cannot be foreseen using a priori information. The tracked
object is characterised by 2D and 3D features (e.g. a 3D
location, width and height), a trajectory and an identifier.
Using the 2D and 3D features, the object classification
algorithm compares the object attributes with the
predefined semantic classes (i.e. person, group, crowd and
luggage) and assigns the corresponding semantic label to
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the tracked object. A contextual object is a physical object
attached to the scene, usually an equipment ‘eq’, or a zone
of interest ‘z’. The contextual object is usually static and
whenever in motion, its motion can be foreseen using
a priori information. For instance, the movements induced
by a door or a chair can be foreseen.

A video event describes any event, action or activity
happening in the scene and visually observable by cameras.
Video events are characterised by the involved objects of
interest (as described above), and their starting—ending
times. Examples of events are ‘detection of a person inside
a zone, ‘detection of an abandoned bag’ and ‘a meeting
between two people’. For instance ‘abandoned bag’ consists
in the detection of a bag with nobody around for a certain
time. For event detection we have ourselves taken
inspiration from methods published in PETS2006
workshop [21], and the specific implementation we have in
our system can be found in [10].

We distinguish four types of video events, i.e. ‘primitive
state’, ‘composite state’, ‘primitive event’ and ‘composite
event’ which are classified into two categories, i.e. ‘state’
and ‘event’ defined as follows:

e A ‘state’ is a spatio-temporal property of a physical object
valid at a given instant or constant on a time interval. A state
characterises one or several physical objects of interest (e.g.
person, crowd or vehicle) with or without respect to other
physical objects.

e A ‘primitive state’ is a state which is directly inferred from
visual attributes of physical objects computed by perceptual
components. Usually, visual attributes have a numerical
value and can correspond to general physical object
properties for most video understanding applications. For
example: ‘4 is inside a zone’.

e A ‘composite state’ is a combination of states. We call
‘state components’ all the sub-states composing the state
and we call ‘constraints’ all the relations involving its
components and its physical objects. For example: ‘Person
21 is close to machine 7 and person p, stays inside zone z’.

o An ‘event’ is one or several change(s) of state values at two
successive time instants or on a time interval.

e A ‘primitive event is a change of primitive state values.
Primitive events are more abstract than states but they
represent the finest granularity of events. For example:
‘Person p moves from zone z; to zone z;’.

e A ‘composite event’ is a combination of states and events.
Usually, most abstract composite events have a symbolical/
Boolean value and are directly linked to the goals of the
given application. We call ‘event components’ all the sub-
states/events composing the event and we call ‘constraints’
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all the relations involving its components and its physical
objects.

In the applications of the work presented in this paper, the
following events have been defined:

e inside_zone(o, z): when an object ‘0’ is in the zone ‘z’.

e ‘stays_inside_zone(o, z, 73): when the event ‘inside_
zone(o, z) is being detected successively for at least 77
seconds

e ‘close_to(o, eq, D): when the 3D distance of an object
location on the ground plane is less than the maximum
distance allowed, D, from an equipment object ‘eq’

e ‘stays_at(o, eq, D, T5): when the event ‘close_to(o, eq, D)’
is being consecutively detected for at least 73 seconds.
e ‘crowding in_zone(crowd, z): when the event
‘stays_inside_zone (crowd, z, 73) is detected for at least 73
seconds.

Also, we have employed the following variables:

For mobile objects:

o objecto = {p, g, ¢, /, ¢, u} with p = person, ¢ = group, c =
crowd / = luggage, # = train and » = unknown.

For contextual objects:
e zone z = {platform, validating_zone, vending_zone }

e equipment eq = {g1, ..., g10, viny, vmy} where g; is the ith
gate and vm; is the ith vending machine.

Event thresholds:
e 77=60s,D=150m, 75, =55, 75 = 120s.

D corresponds to the Euclidean distance between 3D
points of people position, given by the contact point of the
person with the ground floor, and the 3D equipment
localisation.

4 Trajectory analysis

The second layer of analysis in our approach is related to the
knowledge discovery of higher semantic events from off-line
analysis of activity recorded over a period of time that can
span, for instance, from minutes to a whole day. Patterns of
activity are first extracted from the analysis of trajectories.
Then, the knowledge representation format we propose
coupled with the statistical analysis provides a rich overview
of the activities in the scene. For the analysis of more
complex relationships between the objects observed in the
scene, we employ the relational analysis clustering technique.

rg
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4.1 Trajectory analysis: background and
related work

Data mining/knowledge discovery techniques applied to
trajectory data extract patterns hidden on the raw video that
are critical to find out relevant information about the
motion behaviour of a person (or set of persons) and their
interactions with contextual objects of the scene in the
video. In this regard, probably the most active research area
has been normal/abnormal behaviour detection. Piciarelli
et al. [22] employ a splitting algorithm applied on very
structured scenes (such as roads) represented as a zone
hierarchy. The drawback of this approach is that it is
difficult to generalise on other domains where trajectories
have less structure inherited by the scene. Anjum and
Cavallaro [23] employ PCA to reduce the dimensionality
of trajectories. They analyse the PCA first two components
of each trajectory together with their associated average
velocity vector. Mean-shift, with these features, is employed
to seek the local modes and generate the clusters. The
modes associated with very few data points are considered
as outliers. The outlier condition is set as the 5% of the
maximum peak in the dataset, but again the drawback of
the approach is that the analysis is adapted to highly
structured scenes. Similarly, Naftel and Khalid [24] first
reduce the dimensionality of the trajectory data employing
discrete Fourier transform coefficients and then apply a
self-organising map (SOM) clustering algorithm to find
normal behaviour. Antonini and Thiran [25] transform the
trajectory data employing independent component analysis,
while the final clusters are found employing an
agglomerative hierarchical algorithm. In these approaches it
is however delicate to select the number of coefficients that
will represent the data after dimensionality reduction.
Calderara e al. [26] employ a k-medoids clustering
algorithm on a transformed space modelling different
possible trajectory directions to find groups of normal
behaviour. Abnormal behaviour is detected as a trajectory
that does not fit into the established groups, however the
approach is validated with acted abnormal trajectory.

Data mining of trajectories has also been applied with
statistical methods. Gaffney and Smyth [27] employed
mixtures of regression models to cluster hand movements,
although the trajectories were constrained to have the same
length. Hidden Markov models (HMMs) have also been
employed [28—-30]. However, it has been observed that the
structures and probability distributions of this kind of
approach are highly domain dependent and require a
tedious stage of parameter tuning [23].

All these techniques are interesting, but little has been said
about the adequacy of the trajectory clusters and end user
expectations.

More than trajectory clusters, in this paper we are
interested with extracting meaningful activity clusters,
which differ also from normal abnormal behaviour

extraction and where clustering techniques have also been
employed, not only on trajectory data but also on event
data [31-34]. Thus we show first how it is possible to
obtain meaningful trajectory patterns from video-data by
selecting a large set of features from the trajectory and then
employing an agglomerative clustering algorithm. Second,
this trajectory-clustering stage is coupled with statistical
analysis to infer meaningful activities occurring in the
scene. Moreover, we complement the trajectory analysis
with relational analysis to find out complex activity patterns
corresponding to higher semantic relations between variables.

4.2 Trajectory analysis: proposed method

For the trajectory pattern characterisation of the object, we
have selected a comprehensive, compact and flexible
representation. It is suitable also for further analysis as
opposed to many video systems. They actually store the
sequence of object locations for each frame of the video,
which is a cumbersome representation with no semantic
information.

If the dataset is made up of NV objects, the trajectory for
object ; in this dataset is defined as the set of points [x,(),
y(#)] corresponding to the points with main direction
changes; x and y are time series vectors whose length is not
equal for all objects as the time they spend in the scene is
variable. Two key points defining these time series are the
beginning and the end, [x,(1), y(;(1)] and [x(end), y,(end)]
as they define where the object is coming from and where
it is going to. We build a feature vector from these two
points. Additionally, we also include the directional
information given as [cos(6), sin(6)], where 6 is the angle
which defines the vector joining [x;(1), y,(1)] and [x;(end),
yi(end)].

We feed the feature vector formed by these elements to a
hierarchical clustering algorithm. For a data set made of V
trajectories there are N X (N —1)/2 pairs in the dataset.
We employ the Euclidean distance as a measure of
similarity to calculate the distance between all trajectory
features. To avoid one feature to prime over the others,
particularly because distances in x and y are much bigger
than distances on direction, input data related to the
beginning and end of a trajectory are first normalised. The
mean for each feature in x and y is first removed, then each
record has its value divided by the standard deviation
calculated from each feature. Because [cos(0), sin(6)] are
already bounded with values [—1, 1], these directional
features are not transformed. Other distances have been
envisaged such as the weighted sum of the features. Object
trajectories with the minimum distance are clustered
together. When two or more trajectories are set together
the mean of the trajectory features is taken into account for
further clustering. The successive merging of clusters is
listed by a dendrogram. The evaluation of the dendrogram
is typically subjective by adjudging which distance threshold
appears to create the most natural grouping of the data.
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The final number of clusters is set by maximising the
evaluation criteria, which is defined in the next section. As
the acquisition is performed in a multi-camera environment
the clusters obtained can be generalised to different camera
views with a 3D calibration matrix stage carried out for the
on-line analysis system.

4.3 Trajectory analysis: evaluation

In order to evaluate our trajectory analysis approach, we have
defined a Ground-truth data set containing over 300
trajectories. The ground-truth trajectories were manually
drawn on an image illustrating the empty scene. Fig. 2
shows the empty scene for the Torino metro with some
drawn trajectories. Semantic descriptions such as ‘from
north entry to vending machinel’ were generated. There
are 100 such annotated semantic descriptions, which are
called trajectory types in the following. Each trajectory type
is associated with a main trajectory that best matches that
description. Besides, two complementary trajectories define
the confidence limits within which we can still associate
that semantic description. In Fig. 2 the main trajectory of
each trajectory type is represented by a thick line while thin
lines represent the complementary trajectories. Thus, each
trajectory type is associated with triplets of trajectories.

We compute two performance measures to validate the
quality of the proposed clustering approach, namely,
confusion and dispersion. The former gives an indication of
how many trajectory types of the ground-truth (how many
main trajectories) are merged together in a single cluster

North Entry to Vending machinel -

Clear J
Validate ‘
View J

Morth Entry to Yending machinel

Doy J

Mark Prp T,-II South Entry to North gates -
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resulting from the agglomerative procedure. Ideally the
clustering algorithm should be able to dissociate all main
trajectories to separate all trajectory types. In this case we
would have confusion =1 (only one trajectory type is
included in one cluster). If two main trajectories are
included in the same cluster, then we say that confusion =
2 as two different trajectory types are merged in the same
cluster. In general terms the confusion value for a cluster
equals the number of main trajectories included.

The latter performance measure (dispersion) indicates the
number of erroneous clustered trajectories. This refers to the
case where the main trajectory and any of its complementary
trajectories (trajectories defining the confidence limits of the
main trajectory) have been splitted into different clusters.
Each ‘eft-apart’ complementary trajectory increments the
Dispersion measure by one unit. Fig. 3 depicts the
evolution of these two factors depending on the number of
clusters which is chosen when running the clustering
algorithm. For instance, for 21 clusters we have in total 15
complementary trajectories badly clustered (dispersion) and
5 main trajectories per cluster (mean confusion)

Because all trajectories cannot be equally observed by the
camera (for instance distinguishing all turnstiles in the
upper left corner would require a larger spatial resolution),
it is actually very difficult to achieve a bijection between the
semantic labels and the resulting clusters. However, we aim
at having the lowest possible confusion level together with
the lowest percentage of dispersion. From Fig. 3, it can be

Clear
| South Entry to North gates

Figure 2 Ground-truth for two different semantic clusters

Left panel shows trajectories associated with the trajectory type ‘From North Entry (NE) to Vending Machinel (VM1)’
Right panel shows trajectories associated with the trajectory type ‘From South Entry (SE) to Gates (G)’
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Figure 3 Evolution of the clustering quality measures
Confusion (fusion of ground-truth semantic labels) and
Dispersion (erroneous clustered trajectories) as a function
of the number of clusters

observed that a good compromise is achieved for a number of
clusters between 15 and 35.

We also compared the agglomerative clustering algorithm
in our application to other well-known clustering techniques
such as Z-means [35] and Kohonen SOM [36] employing
the same ground-truth data. We observed that in the range
of 1-35 clusters the Agglomerative algorithm has the less
dispersion, whereas the confusion remains almost identical
for the three techniques. When the number of clusters
increases, the SOM algorithm has a smaller dispersion than
the other two techniques. However, the amount of
erroneously clustered data goes beyond 10%. The choice
of the agglomerative algorithm remains thus valid for the

mean Confusion

= » ] ] m = [ 108

Number of clusters

k-means and Kohonen SOM

total Dispersion

number of clusters chosen before (between 15 and 35).
Fig. 4 shows the evolution of the confusion and dispersion
measures according to the number of clusters.

We further evaluated the three techniques with typical
clustering validity indexes such as Silhouette, Dunn and
Davis—Bouldin indexes, which are described next:

4.3.1 Silhouette index: The Silhouette index [37, 38] is
defined as follows. Consider a data object v; j €{1, 2, ...,
N} belonging to cluster cl; i €{1, ..., ¢} This means that
object v, is closer to the prototype of cluster cl; than to any
other prototype. Let the average distance of this object to
all objects belonging to cluster cl; be denoted by a; Also,
let the average distance of this object to all objects
belonging to another cluster ', i > 7', be called 4. Finally,
let 4; be the minimum 4;; computed over i 1,...,¢
which represents the dissimilarity of object j to its closest
neighbouring cluster. The Silhouette index is then

5l~j~—ﬂl~j

§ Yy

1 N
§= N;sj, where s; =

This way, the best partition is achieved when § is maximised,
which implies minimising the intra-cluster distance (a;)
while maximising the inter-cluster distance (2;).

4.3.2 Dunn index: The Dunn index [39] is defined as
follows. Let cl; and cly be two different clusters of the
input dataset. Then, the diameter A of cl; is defined as

max

A(d,)

a’(fzn ‘v)}
fuj,fuj/Ecli{ 77

— Agglomerative
........ K-means
SOM

» ' 5 [ " ® o

Number of clusters

Figure 4 Evolution of the clustering quality measures Confusion (fusion of ground-truth semantic labels) and Dispersion
(erroneous clustered trajectories) as a function of the number of clusters for the agglomerative clustering algorithm,
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Let 6 be the distance between cl; and cly. Then & is

defined as
(el cly) = q;jal,-,vj,ah,{d(vf" vf)}

min
and d(x, y) indicates the distance between points x and y.

For any partition, the Dunn index is

min | min | 8(cl;, cl;)
vD = " —

: andi, i €{1,...,N}, i #i
1 7

mlax{cli}
Larger values of vpy correspond to a good clustering partition.

4.3.3 Davis—Bouldin index: The Davis—Bouldin index
[40] is defined as follows: This index is a function of the ratio
of the sum of within-cluster scatter to between-cluster
separation. The scatter within cluster, cl;, is computed as

1
= £ {lo=l)

m; is the prototype for cluster cl;. The distance & between
clusters cl; and cl; is defined as

8(cli, cli,) = || my — m1||

The Davies—Bouldin (DB) index is then defined as
1 &
DB = N;Ri with R; = max Ry i i € {1,..., N}

i #i
and

5+ S
i S(di, cl,-/)

Low values of the DB index are associated with a proper
clustering.

The results from applying these measures are summarised
in Table 1 for a number of clusters equal to 31, chosen as best

www.ietdl.org

choice from the confusion dispersion curves. It can be
observed that the agglomerative algorithm is the best choice
according to Silhouette and Dunn indexes. According to
DB index, the SOM technique would be the best choice.
However, for this index and the Silhouette, all methods
are close from each other. For the Dunn index, the
agglomerative method is clearly the best choice.

5 Knowledge representation and
statistical analysis

There are two main types of concepts to be represented from
the video: physical objects of the observed scene and video
events occurring in the scene. The former category can still
be further subdivided into two types of physical objects of
interest: mobile and contextual objects. Mobile objects of
interest are the source of action occurring in the scene.
Contextual objects are 3D objects of the empty scene
model corresponding to the static environment of the
scene. For the off-line analysis of both types of concepts,
and with the aim of setting the data in a suitable format to
achieve knowledge discovery, we separate the information
corresponding to the activities occurring over a period of
time on three different semantic tables, namely mobile
objects, contextual This
information is characterised by a set of specific features,
which is currently being enriched along the CARETAKER
project. We are reporting in the following the features that
have been used in our experimentations.

objects and video events.

5.1 Mobile objects

The mobile object, m, can be represented as a ten-tuple

m— {mid’ mtype’ mstart, mend duration mdist_org_dest’ mshape,

involved _events
m

)
significant_event trajecto:
) m g ) m J ry}

where m; with j € {1, 2,..., N} is then

o m]i»d: the identifier label of the object. m}d ezt

) m]t»yp “: the class the object belongs to:

o m)?* € {Person’, ‘Group’, ‘Crowd’, ‘Train’, ‘Luggage’}.

° mjs»tm: the time when the object is first seen.

Table 1 Evaluation of the clustering quality indexes (Silhouette, Dunn and Davis—Bouldin)
for the agglomerative clustering algorithm, k-means and Kohonen SOM

Clustering technique
Agglomerative | K-means SOM
validity index | Silhouette 0.32116 0.29501 | 0.3036 | higher is better
Dunn 0.10098 0.064249 | 0.05031 | higher is better
Davies—Bouldin 0.58685 0.49352 | 0.37311 | smaller is better
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end

o m the time when the object is last seen.
o mduion. the total time the object has been observed.
duration __ end _  start
J - 7
dist_org_d . ..
o m OB the total distance walked from origin to
destination.

A 71 2
m(;hst,org,dest _ X o ) . 2
; L\ (5 D=50) + (54 D= 50

and tE{l,...,f]}} where 7} is the number of trajectory
sampled points for the object 2;

h ol . . s .
. m]s €. the label describing the object’s shape depending
on the object’s ratio height/width.
m;hape = {*Small’,Medium’, Large’}
. m}nmlved‘evems: all occurring Events related to the identified
object.

ignifi . .
o g SNt the  most significant event among all

events. This is calculated as the most frequent event related
to the mobile object.

mt-rajwory_: the trajectory cluster identifier characterising the
object. mjt-rajemry =is m Ed,

5.2 Contextual objects

The activities involving a contextual object, ¢, can be
characterised by a 12-tuple

id type start end involved_events significant_event
L L c

’ )
Crare,event Cevent,histogram Cinvolved,mobiles

’ ’ ’
Cmobiles _histogram Cuse_duration mean _time_of _use
) ’

where ¢, and £ ={1,..., O} is then,

id involved_events ~significant_event
G, ¢ c

> Yk

are defined in the same way as
for the mobile objects but referring to contextual objects and
czype €zUeq, as defined above z= ‘platform’,
‘validating_zone’, ‘vending_zone’, eq = {g1, .. ., g10, vy, vmy}
where g; is the ith gate and vm; is the ith vending machine.
gt gend | pinvolved-mobiles 5 o defined in the same way as for the
mobile objects interacting with the contextual object.

The remaining fields indicate

rare_event,
3

° ¢ : this is the rarest event.
t_hist .
cp MO gives the number of occurrence of all
involved events per type of event.
mobiles_histogram .
¢ : gives the number of appearance for all
involved mobile objects per object type.

_durati
o (et percentage of occupancy (or use of a contextual

object). For instance, the ticket machine has a 10% of use
over the observation time.
o (ean-time-of-use, yuerage time for a mobile object to interact
with the contextual object.

The contextual objects to be monitored are predefined by
the end-users in the model of the scene environment. This
modelling phase is a quick process and enables to acquire
the end-user expertise on the objects of interest. For the
video sequences analysed in this work, the contextual objects
of interest are: ‘platform hall’, ‘gates’ and ‘vending machines’.

5.3 Video events
A video event, ¢, can be represented as a 6-tuple

id type start end involved_mobiles involved_context_obj
e=1e", e & e e , €

where ¢; and / = {1,..., M} is then,
o ¢: the identifier label for the detected event. e}d ezt

° e;ype: the class where the event

e;ype = {‘close_to’, ‘stays_at’, ...}

belongs  to.

o ™" the first time when the event is detected.

o ¢ the last time when the event is seen.

o nvolved-mobiles, 4o identifier label of the mobile objects
involved in that event.

involved _ _obj . . .
¢, "N, the contextual object involved in that
event.

5.4 Statistical analysis

Statistical information can be obtained from the mobile
objects and the contextual objects as well as their
interactions. This is a major information source for the
end-user. For instance, on large metro video recordings,
there is spatial and temporal information on the use of
contextual objects. In this work we calculate the following
statistical indexes.

e number_of_users: the total number of people interacting
with a contextual object. The number_of_users is calculated
as follows.

, =c, and [/ C/
/={1,..., M}. M is the total number of events observed
in the video, thus E C {¢,}.

Let E— {(3 }|€involved_c0ntext_obj _ type
=&

numberof users=cardinal (Cznvolved,moblles> with Cllénvolved mobiles —

{e}?"(’l"edm(’b‘les}. cZ"VOlvedmOb‘les contains no repeated elements.
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e percentage_of_use: the ratio between the total period of
time a contextual object is in use to the total observation period

percentage_of_use = e?fz}iw) — ey(1)/observation_period if
cardinal(E) = M’ and M'< M. M’ is the total number of
events observed in the video where the contextual object ¢
appears.

e interaction_duration: the mean time a user spends when
interacting with a contextual object.

involved _context_obj i i
Let E/ — {61//}|(31?V0 ved_context_obj __ CZYPC’ e}t/l/volved_mobﬂes C

Cinvolved_mobilcs

%
Interaction_duration = mean(e??&/m - e?%t)) if cardinal(E’) =
M" and M” < M'. M" is the total number of events observed

in the video where one of the objects listed in c"voved-mobiles

interacts with the contextual object ¢,

The statistics can be visualised with an interactive user
interface enabling us to study a given variable such as zone
of interest, equipment etc.

6 Relational analysis

Once all statistical measures of the activities in the scene have
been computed and the corresponding information is put
into the proposed model format, we aim at discovering
complex relationships that may exist between mobile
objects themselves, and between mobile objects and
contextual objects in the scene. For this task, the clustering
methodology we decided to use was relational analysis and
regularised similarity (RARES). This methodology gathers
two different technologies: relational analysis theory and
regularised similarity [41-43]. Relational analysis has been
initiated and developed at the European Centre of Applied
Mathematics (ECAM) at IBM France by Marcotorchino
and Michaud [11, 44]. The principle of relational analysis
consists in transforming the data usually represented as a
N x M rectangular matrix where N is the number of
objects to be clustered and M is the number of variables
measured on these objects to two new N x M matrices
representing, respectively, a global similarity and
dissimilarity measures for each pair of objects. The
relational analysis algorithm will compare, for any two
objects, their similarity and their dissimilarity. If the
similarity is greater than the dissimilarity, then these two
objects will be put in the same cluster of the final obtained
partition. The output of the relational analysis algorithm is
a set of groups of objects, where inside each group the
objects are more similar to each other than to the objects
belonging to another group.

To define the global similarity matrix, relational analysis
transforms each variable V¥ (k=1,2,..., M) toa N x M
matrix S* where the term s is the similarity measure
between the two objects i and i’ w.r.t. variable V. A
dissimilarity measure 5% is then computed as the

complement to the maximum similarity measure possible
between these two objects. As the similarity between two
different objects is less or equal to their self-similarities:
that is % < min(sfi, sf",i,), the  dissimilarity  is
W= min(sfi, Jfri/) — %, then we define that the global
similarity measure between objects i and i’ over the M
variables is s;; = Y0, 5% and their global dissimilarity is
also 5, = 224:1 5%, To cluster a population of N objects
described by M variables, the relational analysis theory is
based on the maximisation of the Condorcet criterion
C(X) = vazl Z?I:l (5% +5,%;) where X is a binary
N x M matrix representing the partition to discover in
the data. The general term x;; of matrix X is defined as
follows

X =

1 if 1and 7 are in the same cluster
0 otherwise

and %, =1 —«x;;

The mathematical formulation of the criterion to be
maximised is

max (C(X)) w.r.t.
x; =1 reflexivity
Xy = Xy, symmetry
Ky + %y — 2 < 1 transitivity

It seems evident that variables having only two modalities, for
example, will tend to generate more similarities than those
variables having bigger number of modalities. For example,
it is less likely, for two persons chosen at random in Paris,
to live in the same district (20 symbolic values) than to
have the same gender (only 2 symbolic values). Regularised
similarity, developed by Benhadda and Marcotorchino
[42, 43], is a theory taking into account these internal
structures, during the computation of the individuals’
similarities; to rebalance the influences (too strong or too
weak) induced, in an implicit way, by these structures. This
will favour certain variables compared with the others and
will create, thus, some biases. Regularised similarity did not
bring noticeable clustering improvements in our analysis.
Indeed, the number of symbolic values between variables
does not change dramatically. Simple similarity is reported
in this paper. Relational analysis is employed here for
activity clustering as it is able to characterise heterogeneous
data (including symbolic and numerical attributes) contrary
to hierarchical clustering, which works with numerical-only
data.

In the present work, the input of the system is then the whole
set of detected mobile objects, 7; j € {1, 2,..., N}, with the

features described in section 5.1, namely: m; =
type duration dist_org_dest shape significant_event trajectory
{mj > My ’ m] ’ mj ’ mj > },

thus in our analysis M = 6. The output of the analysis is the
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final partition, named (), which indicates the elements m; and
m; that should be set together in the same cluster I1

Several indicators are computed during the clustering
process, to build up the final partition, named €) and to
measure the quality of the obtained results. For a couple of
objects i and i’ belonging to the population P and two
clusters IT and I1’ belonging to €}, we define:

e The maximum similarity possible A;, between any two
objects i and i is: A;; = Min(c;, ¢;y)

i “i'i

e the link L, between two objects by: L, = ¢;; —a x A,
where « is a parameter such that 0 < a < 0.5

o the link L;; between object i and cluster II, by:
Lin =Y ren L

o the agreement Ay between the two clusters, by:

Ay = Z Z Ci

€Il el

e the disagreement Apy between two  clusters, by:
Ay = Y ien Lrew G

e the maximal own similarity Ay between two clusters, by:

AHH/ = Zien Zz"EH’ Az‘i’

e and the link Ly
LHH/ = ﬂHH/ —a X AHH/

between two clusters, by:

The quality Qp of a particular cluster I1 is defined by

_ Ay +2 % ZH’#H‘QHH’
A +2 X 2y en Amr

Qn

This measure takes into account at the same time the inner
homogeneity and the external heterogeneity of cluster II.
The more the objects belonging to II are similar to each
other and in the same time the more they are dissimilar
from the objects belonging to the other clusters, the better
is the quality of the cluster.

The quality Q of the final partition () is an indicator that
measures the total coherence of (), and is given by the
formula

_ Y niea (Ann + ZH/;&H/;’HH’)

Q
ZHEQ ZH’EQ AHH/

7 Results

7.1 Results with annotated data

We first tested the validity of our clustering algorithms

(hierarchical and relational clustering) on labelled video
data. CAVIAR is an EC-founded project that has made

available a dataset of video clips with hand-labelled ground
truth [12]. We focused our attention on the first part of
the dataset, which contains people observed at the lobby
entrance of a building. The annotated ground-truth include
for each person its bounding box (id, centre coordinates,
width, height, main axis orientation) with a description of
his/her movement type (inactive, active, walking, running)
for a given situation (moving, inactive, browsing) and with
a given scenario context (browsing, immobile, left object,

walking, drop down).

We have applied first the hierarchical clustering algorithm
to a dataset containing 164 persons or objects. We have
extracted their trajectories as the centre coordinates of the
bounding box over time. We have tuned the algorithm with
the user interface to obtain 31 meaningful clusters. Fig. 5a
shows all trajectories from this dataset. The remaining plots
in the figure are the three most common paths undertaken.
As it can be observed, clear trajectory patterns can be
extracted from the clusters. For instance, the three paths
clusters from Fig. 4 can be labelled: cluster 8: ‘entering right
and up/exiting left’ (Fig. 58), cluster 11: ‘entering right
bottom/exiting left’ (Fig. 5¢) and cluster 15: ‘entering right-
middle/exiting right-bottom’ (Fig. 54).

We have then applied relational analysis to obtain higher
relations between objects. For this purpose we have
employed the object representation format described before.
To perform the evaluation and because the annotated
ground-truth was available with a situation and context
description, we have generated a set of events by
concatenating the three pieces of available information:
movement’s type (7°), context (C) and situation (S). The
different symbolic values that the 3-tuple TCS can take are
presented in Table 2.

For example, an event having the value ‘awm’ is related to
an object with movement’s type = ‘(a)ctive’, within a
context = ‘(w)alking’ and situation = ‘(m)oving’. In the
analysed data, an object is usually involved in between 1
and 12 such events during the observation time. To give
account of the temporal succession of events, the 3-tuple
TCS is sequentially numbered as the events appear. For
instance if three events are in succession associated to a
mobile object, these events will be designated as [71 C1
§1], [72 C2 82] and [73 C3 §3]. A portion of the input
data is shown below in Table 3.

One of the clusters that RARES has discovered in the
CAVIAR dataset is presented in Fig. 6. This cluster
contains four detected objects. All objects are involved in
only one event corresponding to inactive objects, in an
inactive situation and in an immobile context. This cluster

actually corresponds to the objects ‘bag’ that are annotated
in the CAVIAR database as abandoned.

Another cluster is presented in Fig. 7. In this case all items
are people that are involved in at least three events. For all
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Figure 5 Trajectories detected in the CAVIAR dataset and three clusters showing most common undertaken paths

a Original set of CAVIAR trajectories

b Cluster 8

¢ Cluster 11

d Cluster 15

Beginnings of the trajectories are indicated by red points
Ends of trajectories are indicated by blue points

people, the first event is of walking type, in a moving situation
and within a context where something drops_down (75% of
the cases). Then the situation and the context will evolve and
all people will be involved in an event (third event), described
with an inactive situation, within a context where something
drops_down and with an inactive movement type (75% of the
cases). This cluster matches actually the objects that were
annotated in the CAVIAR database as ‘falls down’ and

included in the fighting (one man down) scenarios.

Table 2 Semantic event information in CAVIAR

The activities described in the CAVIAR ground-truth are
thus correctly retrieved with our algorithm. Table 4 gives a
quantitative evaluation on the correspondence between the
events annotated in the CAVIAR ground-truth and the
clusters obtained by the relational analysis algorithm. As it
can be observed, all instances from the left luggage event
are well recognised in cluster 4. Fighting situations are
generally recognised in cluster 0. The missing fighting cases
are those corresponding to the case where one of the
individuals involved in the fight falls down and lies on the
floor. This kind of situation is matching cluster 5. Most
cases of the browsing event are matched in cluster 2.

— corrore | Sramtion 7.2 Results with large video recordings
()nactive | (b)rowsing | (m)oving We have processed 73 000 frames of video from the Torino
Underground (GTT, Italy), with an acquisition rate of 25
(a)ctive (i)mmobile | (i)nactive frames/s equalling ~50 min of video. We have analysed
) . ) off-line this period of time. We have applied the
(wjalking | (l)eft object | (b)rowsing hierarchical chfstering algorithm on the trajEEtories of
(r)Junning | (w)alking mobile objects to obtain the common behavioural paths
(d)rop down undertaken by the people in the hall. Fig. 8 presents the
whole dataset of trajectories that we have analysed. Using

our interactive user interface to maximise the evaluation
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Table 3 Input matrix used for the relational analysis clustering method

Obj_id | Obj_type | Startframe | Endframe | Trajectory_type | Obj_shape | Involved | Involved | Involved
_Eventl | _Event2 | _Event3

84 Person 3785 14312 19 big wwm

85 Person 4338 14611 6 small iii aii wirr

86 Person 4459 14523 16 tall wwm

88 Person 4463 14684 7 big rwm wwm

87 Person 4491 14684 10 big wm aii

89 Person 4685 15097 15 tall wm iii aii

90 Person 4757 14938 16 tall wwm

93 Person 5054 15542 16 big wm aii wirr

92 Person 5255 15547 3 small iii

94 Person 5548 15670 15 large wm aii iii

95 Person 5695 15750 14 small iii aii iii

96 Person 5817 16699 14 big abb wbm abb

98 Person 6051 16563 19 small iii

99 Person 6920 17082 14 small wm aii iii

103 Person 6942 17513 4 small wm aii iii

104 Person 6966 17513 4 small wm aii iii

Note that only some objects from the total detected set are represented in the table

criteria (explained in Section 4.3), we have applied the
hierarchical clustering selecting 31 clusters. The most
common paths that people are taking are shown in Fig. 9.

The trajectory clusters give useful semantic information on
the behaviour undertaken by the metro users. For instance,
Cluster 14 indicates that most users enter the station by the
north doors and go rather straight to the gates. Cluster 1
indicates that most people take also the north doors to exit
the station. Cluster 25 represents fewer users exiting the
gates and leaving the station to go through the south doors.
Cluster 2 shows people with stationary activity near the
gates. Cluster 26 indicates that few users buy a ticket before
going trough the gates. Cluster 5 indicates that after buying
a ticket, users go straight to the gates to take the metro.

[Modality [Fercent

Variable

0 ETARTFRANE |11321-1e§34 T00.0%
T 53-28185  |100.0%

51 [Inactive 100.0%

10 C1 Immobile 100.0%

1 Inactive 100.0%

9 [OBJ_TYPE object 100.0%
[OE]_SHAPE large 50.0%

B RA_TYFE 50.0%

Figure 6 Resulting partition of the CAVIAR data after
running the relational analysis algorithm

Properties of cluster 4 are given

The data processing of the Roma Underground (ATAC,
Italy) corresponds to five hours and half of video, which is
acquired at a rate of 5 frames/s. The same unsupervised
clustering algorithm was applied to the data, which
contains over 14 000 tracked objects. Fig. 10 presents the
whole dataset of trajectories that we have analysed together
with some of the clusters representative of the most
common paths. For instance, trajectory cluster 20 in the
upper right panel of the figure presents people entering the
hall from the north doors. This is actually the biggest
trajectory cluster followed by trajectory cluster 19 (lower left

uster's description

[Variable [Modality [Fercent

- 100.0%

4 Orop_Down 100.0%

53 inactive 100.0%

C3 Drop_Down 100.0%

0 i1 Pu 100.0%
T1 alking 100.0%

[OEL_TYPE person 100.0%
ETARTFRANME E;EE_-II'EH 75.0% |
B oving

75.0%

4 ) Active 75.0%
9 3 Inaciive 75.0%
Bz inactive 75.0%

8 2 Drop_Down 75.0%
H AcTive 75.0%

1 Drop_Down 75.0%

[OB] SHAFE [large 75.0%

TRAL_TYFE [25 75.0%

[ Drop_Down 50.0%

5 alking 50.0%

B4 [Moving 50.0%

Figure 7 Properties for cluster 5 in the CAVIAR data
partition
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Table 4 Performance evaluation on the correspondence between the events annotated in the CAVIAR ground-truth and the
relational analysis activity clusters

Event Number of Corresponding Detection performance
| " . . .
cases cluster True positive, | False positive, | True negative, | Cluster quality,
% % % %
left baggage 4 4 100 0 0 92
fight 12 0 67 0 33 72
fight and fall
down 4 5 75 25 25 73
browsing 12 2 86 0 14 74

panel) showing people leaving the hall through north doors.
Trajectory cluster 7 shows people exiting the hall through
south doors; however, the number of elements of this
cluster is smaller than the two previous ones. This means
that south doors are less employed to enter/exit the hall.

We have further performed statistical analysis to measure
the interactions between users and contextual objects. As
mentioned in Section 3.2 there are two types of contextual
objects of interest in the scene, the zones (mainly the hall),
and the equipement (the gates and the vending machines).
Over the whole observation time, concerning the Torino
Underground, people were practically constantly present in
the hall as we obtained a percentage of use of the hall of
91% of the observation time. The gates had a use of 36%
indicating that the flow of people trough the gates was not
constant over the observation time. The two vending
machines of the Torino station had a percentage of use of
only 8% and 7%, respectively indicating that most people
did not stop for a long-time or did not need to buy a ticket
while in the station. This is further confirmed by the fact
that most users buying tickets were detected as single

Figure 8 Trajectories detected in one station of the Torino
Underground (2025 trajectories during 50 min)

Beginnings of the trajectories are indicated by red points

individuals and came more rarely to the machines as
groups. No crowd (i.e. no queue) was detected at the
vending machines or at the gates, whereas crowding was
detected in the hall but at a low degree.

Regarding the interactions of people with contextual
objects in the Roma station, people were observed in the
hall 95% of the observation time and the gates were
employed 91% of the time indicating that the flow of
people trough the gates is much more constant than, for
instance, in the Torino Underground. The vending
machines are often used 77% of the observation time.
Compared with the Torino station, this utilisation time
indicates that the Roma station is in general much busier.
This is further confirmed by the fact that person groups are
frequently detected at the vending machines (632 in the
last 2h), at the hall (1441) and at the gates (813).
Crowding situations were detected only in the hall (227
crowd groups).

We have translated the information related to detected
objects and statistical information in the format presented
in section 4. As an example, a portion of the Torino
semantic tables obtained is presented next (Tables 5-7).

From the contextual object table, we have been able to
follow the evolution of the interactions with contextual
objects. For Torino, Fig. 11 shows a graph on the
evolution of the number of people present in the Torino
hall during the observation time. For this observation
period, the peak hour is detected at 6 h 45 min with 200
people in 5 min with an average of 180 people. Fig. 12
shows the evolution on the usage of a vending machine.
Interestingly, a user spends more time (~40% increase of
time) with the vending machine when the hall is not
crowded.

For Roma, the number of people travelling trough the hall
is higher than in Torino with an average of 355 people
constantly in the hall. In the last step towards knowledge
discovery we have applied the relational analysis process
explained before in Section 5. The input was the mobile
object semantic table described above and containing in
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Figure 9 Clusters showing the most common paths obtained from the dataset shown in Fig. 7

a Cluster 14 with 443 trajectories

b Cluster 1 with 744 trajectories

¢ Cluster 25 with 50 trajectories

d Cluster 2 with 338 trajectories

d Cluster 26 with 41 trajectories

e Cluster 5 with 13 trajectories

Beginnings of the trajectories are indicated by red points
Ends of trajectories are indicated by blue points

total 2025 detected objects in the case of the Torino data and
14757 for the Roma data. Some of the clusters returned are
detailed next.

For the Torino dataset, the biggest cluster, labelled 0,
contained 661 elements with the following wvariable
properties: shape type: small person (100% of the
elements); mobile object type: person (100% of the
elements); duration: [0.04—5.64 s] (82% of the elements);
significant event: inside_zone_hall (67% of the elements);

distance origin to destination: [0-59 cm] (47% of the
elements); trajectory type: 1 (44% of the elements). In
other words this activity cluster is made only of persons
detected for a very short period of time (<6s) and also
moving in a short range of ~60 cm. They are associated
with Trajectory type 1 ‘from gates to north doors’ (shown
in Fig. 9). Similar descriptions occur with the next
biggest clusters but formed respectively of Unknown
(524) and small PersonGroup (325) elements. Meaning
that people take north doors as main exit; sometimes
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Figure 10 Clusters showing the most common paths obtained from the Roma dataset

a Whole dataset

b Cluster 20 with 1451 trajectories
¢ Cluster 19 with 809 trajectories
d Cluster 7 with 790 trajectories

Extremity points of the trajectories are represented as in Fig. 9 by red and blue points

groups of persons are formed in the flow of people but
principally individuals are detected. This region (between
gates and north doors) is the most visited of the scene.

The cluster labelled 4 is only made of persons (56 elements
in the cluster) with the associated event ‘stays at Gates’. They
have been detected from ~6—15s and by walking they are
covering a distance between 60 cm and 2 m. The associated
trajectory type is 14 (From north doors to gates). Thus,
people entering the gates from north doors rarely have to
wait at the gates to enter (relative small number of elements
included in the cluster). This, however, may happen as
‘gates—north doors’ and vice versa is the main people path.

Another example of cluster activity is given by the cluster
labelled 3, made only of Luggage elements (272 items)
detected for a very short period of time (0.04-5s) and
mainly associated with trajectory type 2 ‘stationary at the
gates’ (shown in Fig. 9) meaning also that it is at the gates
that most frequently people leave their luggage but only for
a very short period of time. One last example of the Torino
data is, for instance, Cluster 7, made up only of persons
with associated significant event ‘inside_zone  hall' and
mainly trajectory type 25 ‘from gates to south doors’
(Fig. 9). People following this path indeed walk longer to

go through the south doors and thus are longer inside the
hall.

Because no ground-truth is available for the Torino data, it
is not possible to perform the same evaluation of the
clustering that we did for the CAVIAR dataset based on
the calculation of true positives (TP) and false positives
(FP). However, to have a quantitative measure that
indicates the number of activities correctly detected by our
clustering algorithm, we have considered TP detection, a
cluster whose data correspond mainly after visual inspection
by the end-user to a clear and meaningful description as for
the clusters just presented above. FP is then defined as a
cluster whose description cannot be associated with any
coherent activity. In this sense, we had 20/27 clusters as
TPs (activities corresponding to 90% of the detected
objects) and 7/27 clusters as FPs.

For the Roma dataset, the biggest cluster contained 1672
elements. It is made only of small person groups detected
inside the zone hall. They cover a distance of 50 cm to 1 m
in 1-3s. This means that although groups of persons
appear very often from the north doors towards the hall
(trajectory type 20; also shown in Fig. 10), they are able to
walk at a normal speed. Another example for the Roma
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Table 5 Contextual objects semantic table

Ctx_obj_type Ctx_obj_type Startframe | Endframe Sig_event_type Rare_event_type
1 platform 20050 92815 inside_zone(14486) group_stays_inside_zone(30)
2 gates 20055 92745 close_to(5103) group_stays_at(40)
3 vendingmachine2 26560 90725 close_to(1020) group_stays_at(200)
4 vendingmachinel 30680 90650 close_to(834) group_stays_at(160)
Ctx_obj_id evnt_hist
1 insde_zone(14486) group_inside_zone(5523) crowd_inside_zone(1750) stays_inside_zone(1276)
crowding_in_zone(109)
2 close_to(5103) stays_at(3489) group_close_to(329) group_stays_at(40)
3 close_to(1020) stays_at(490) group_close_to(341) group_stays_at(200)
4 close_to(834) stays_at(482) group_close_to(307) group_stays_at(160)
Ctx_obj_id mob_obj_hist percent_of _use, % mean_time_of_use, ms
1 person(491) unknown(102) persongroup(136) 91.1296 35500.854
luggage(34) crowd(4)
2 person(135) unknown(28) luggage(12) 36.8284 35682.2396
persongroup(17)
3 unknown(19) person(15) luggage(10) 8.8704 7401.087
persongroup(2)
4 unknown(12) person(11) luggage(8) 7.7504 16931.2903

station is given by cluster labelled 6. This cluster (694
elements) is made up of only persons with associated
significant event ‘outside zone hall’. Indeed trajectory type 7
(Fig. 10) indicates that people are leaving the hall through
the south doors. They cover a distance 1.67-2.30 m in
~3—4s, which is a relative slow speed. The south doors

Table 6 Events semantic table

are not as busy as the north doors where numerous groups
were detected also leaving the hall [cluster 5 (not shown)
with 971 small groups detected].

For the Roma dataset, we have again considered TP
detection as a cluster whose data correspond to a clear and

Evnt_id | Evnt_type | Startframe | Endframe | Inv_objs_id | Ctx_type
10161 | inside_zone 39085 39085 1573 platform
10162 close_to 39085 39085 1444 gates
10163 inside_zone 39090 39090 1444 platform
10164 | inside_zone 39090 39090 1573 platform
10165 close_to 39090 39090 1444 gates
10166 | inside_zone 39095 39095 1444 platform
10167 | inside_zone 39095 39095 1573 platform
10168 close_to 39095 39095 1444 gates
10169 | inside_zone 39100 39100 1444 platform
10170 | inside_zone 39100 39100 1573 platform
10171 close_to 39100 39100 1444 gates
10072 | group_inside 39105 39105 1573 platform
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Table 7 Mobile objects semantic table
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Mob_obj_id | Mob_obj_type Duration, s Traj_type Dist_org_dest Shape_type Sig_event_id
1 person [48.24-52.04] 1 [334.9776-485.3803] small person inside_zone_
platform
2 person [364.84—-367.24] 1 [976.9466—-1113.7527] small person stays_at_gates
3 unknown [364.84—-367.24] 1 [3158.1909-3230.0034] | small unknown void
4 luggage [295.24-298.84] 2 [671.8608—-841.0493] small luggage void
5 persongroup [41.24-47.44] 14 [60.075-205.4118] small group_inside_
persongroup zone_platform
6 person [0.04-5.64] 1 [334.9776-485.3803] small person inside_zone_
platform
7 unknown [33.84-40.24] 1 [60.075-205.4118] small unknown void
8 person [0.04-5.64] 1 [0-59.0762] small person inside_zone_
platform
9 persongroup | [336.64-336.84] 1 [3630.5716—3723.4675] small group_stays_
persongroup at_gates

meaningful description, and FP as a cluster whose
description cannot be associated with any coherent activity.
In this sense, we had 72/109 clusters (activities) as TPs
and 37/109 clusters as FPs.

Thus, this way the relational analysis can help us to group
together people having similar behaviour. This is of particular
interest to the end-users because the activities in the metro
station can be better quantified.

In order to assess the impact of the object detection and
tracking on the trajectory clustering step and how much the
trajectory clustering process would then affect the results of
the relational analysis, we evaluated our system on four
different sets of tracked objects built from 3h of
observation of the Roma station. The first dataset
(Datasetl: 2983 trajectories) contains all objects detected
and tracked on this observation period including noisy data
and fragmented trajectories. The next dataset (Dataset2:
2605 trajectories) contains all objects without trajectories of
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Figure 11 Temporal evolution in the number of people
occupying the station hall in the Torino station

short duration most likely to represent noise in the data.
The third dataset (Dataset3: 1713 trajectories) is Dataset2
without all trajectories where the track for the last part of
the trajectory was lost. Dataset4 (1713 trajectories) is
Dataset 3 without all trajectories where the track was lost at
some point and then continued. The lost part of the
trajectory is then inferred. We evaluated the impact of the
different trajectory datasets on the trajectory clustering tool
by measuring the Silhouette, Dunn and Davis—Bouldin
indexes. To evaluate how the relational analysis process is
affected we calculated the resulting clustering quality as
explained in Section 6. These results are shown in Table 8.
As it can be observed, the quality of the trajectories
extracted by the object detection and tracking module has
an influence on the clusters obtained by the trajectory
clustering module. The lesser the noise and lost tracks in
the original dataset, the better the partition of the trajectory
clusters. (The Dunn index monotonally increases with the
trajectory quality. The Silhouette index generally increases
and the Davis—Bouldin index generally decreases.) This

influence is however less propagated into the relational
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Figure 12 Temporal evolution of the mean time a user
spends on a vending machine in the Torino station hall
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Table 8 Evaluation of the impact of the object detection and tracking on the trajectory clustering and
relational analysis processes

Input | Number of | Trajectory performance indexes | Relational analysis performance indexas
trajectories Silhouette | Dunn | Davis—Bouldin | Clustering quality, % | Resulting number
of clusters
datasetl 2983 0.314 0.049 15.571 70 35
dataset2 2605 0.254 0.056 13.79 69 46
dataset3 1713 0.325 0.071 17.632 69 42
dataset4 1476 0.343 0.091 17.854 69 39

analysis as the quality of the final activity clusters remains
rather constant.

Regarding our implementation, 1 h of video takes ~1 min
to be processed off-line by the trajectory clustering, statistical
and relational analysis. This is a reasonable processing time in
adequacy with end-user requirements.

8 Discussion and conclusion

In this paper we have presented how knowledge discovery can
be achieved on large recordings of video using an efficient
knowledge representation format. The richness of the
representation comes from the fact that both moving
objects and the contextual objects from the scene are
studied together with their interaction. Yet, the proposed
representation provides a useful support and enables all
activity knowledge to be structured into three different
appropriate tables, namely mobile objects, contextual
objects and video events. The proposed representation
supports a rich set of spatial topological and temporal
relations and captures not only quantitative properties but
also higher semantic concepts. Furthermore, a first layer of
meaningful knowledge is directly extracted from the video
streams by detecting events corresponding to the
interactions between moving objects and contextual objects.
A second layer of knowledge is extracted by the off-line
long-term analysis of these interactions. First, statistical
information is obtained from the mobile objects (in
particular, their trajectory) and the contextual objects as
well as their interactions (i.e. events). Statistical information
is a major information source for the end-user. For
instance, on large metro video recordings the average
number of people localised in specific zones of interest or
interacting with particular equipment and its evolution with
time provide operational information on how to manage
the metro station on a day-by-day basis. We are currently
analysing sequentially chunks of video of ~2h and then
will further analyse the temporal evolution for durations
such as 1 day or 1 week. On a second step, we perform the
trajectory characterisation by employing a hierarchical
algorithm. It must be remarked that there is a scalability

issue when employing standard hierarchical algorithms, and
these may not work efficiently for very large datasets. An
alternative solution is to implement, for instance, parallel
hierarchical clustering algorithms [45]. However, to solve
the main problem concerning accessing and processing a
larger number of stored data, we are currently working on a
new version where we will be able to update on-line the
clusters for continuous processing. In this new version also
other features such as duration, mean speed and distance
walked are currently being studied in the clustering of
trajectories.

The semantic knowledge gained from trajectory
characterisation and statistical analysis is then used for the
discovery of complex relationships. The relational analysis
proposed in this paper shows how to highlight hidden
relations between people, their trajectories (behavioural
information) and the significant interactions between
themselves and contextual objects. Thus, relational analysis
can define the typical activities in the subway represented as

activity clusters.

The performance evaluation has been performed at the
knowledge discovery level by providing manually ground-
truth trajectories in two sites. In a building hall for the
CAVIAR project and in the Torino Metro hall for the
CARETAKER project. Performance evaluation is a
sensitive point in the knowledge discovery because of the
large number of parameters to employ and the small
description on expected results to be provided by the end-
users. In opposition to what is usually done in trajectory
and activity clustering, we have proposed a new framework
for evaluation. With this framework we have been able to
assess the system. These results are however to be taken
with care as the size of the data analysed is small. This
unfortunately has been an endemic problem in the area of
computer vision, where annotated datasets (with an
evaluation ground-truth) are difficult to find. More work is
still to be done, not only for evaluating more hours of
video, but also, for taking into account other types of
parameters such as spatial and temporal granularity of the
scene.
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