Daniel Gaffé¹ and Annie Ressouche² and Valérie Roy³

¹Nice Sophia Antipolis University and CNRS(LEAT)

²Inria Sophia-Antipolis Méditerranée

³Ecole des Mines-CMA

Synchron 2010

LABORATOIRE D'ELECTRONIQUE ANTENNES ET TELECOMMUNICATIONS

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨ - のの⊙

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉ

+ Synchronous languages are model-driven $\Rightarrow \bigcirc$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

- Efficiency and reusability of system design
- Formal verification of system behavior
- Large size of models
- Modular compilation

- + Synchronous languages are model-driven \Rightarrow •••••
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models Modular compilation

- + Synchronous languages are model-driven \Rightarrow •••••
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models

Modular compilation

+ Synchronous languages are model-driven \Rightarrow •••••

・ロット 全部 マート・ キャー

э

- Efficiency and reusability of system design
- Formal verification of system behavior
- Large size of models
- Modular compilation

- + Synchronous languages are model-driven \Rightarrow \bullet see
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models
 Modular compilation

model-driven + modularity \Rightarrow global causality checking

- synchronous hypothesis \Rightarrow responsiveness.
- modularity
- global causality checking

- + Synchronous languages are model-driven \Rightarrow \bullet see
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models
 Modular compilation

We introduce :

- a synchronous language LE
- an equational semantic allowing modular compilation
- an efficient way to check causality relying on a finalization phase

Modular Compilation of a Synchronous Language Introduction

Outline

- Introduction
- 2 LE Language
 - LE Language Overview
 - LE Equational Semantic
 - Correctness of the Equational Semantic
- 3 LE Modular Compilation
 - Causality Checking
 - Sorting Algorithms
 - Link of Two Partial Orders
 - Overview of the Compilation Process

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- Practical Issues
 - Effective Compilation
 - The Clem Toolkit
- 5 Conclusion and Future Work
 - Conclusion
 - Future Work
- 🙆 A mana an altair

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :

Event driven application design

- synchronous parallel
- Run module operator to achieve separated compilation

・ロット 全部 マート・ キャー

Э

Sac

2 Automata (State Chart like) design

Oata flow application design

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :

Event driven application design

- synchronous parallel
- Run module operator to achieve separated compilation

Sac

2 Automata (State Chart like) design

Oata flow application design

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :

Event driven application design

- synchronous parallel
- Run module operator to achieve separated compilation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Automata (State Chart like) design

Oata flow application design

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :

Event driven application design

- synchronous parallel
- Run module operator to achieve separated compilation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- Automata (State Chart like) design
- Oata flow application design

Modular Compilation of a Synchronous Language LE Language

LE Equational Semantic

Mathematical Context

- $\xi = \{ \bot, 1, 0, \top \}$;
- notion of environment (E, \leq)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modular Compilation of a Synchronous Language LE Language

LE Equational Semantic

Mathematical Context

- $\xi = \{ \bot, 1, 0, \top \}$;
- notion of environment (E, \leq)

ξ Rules

	1	0	Т	\perp			1	0	Т	\perp]	X	$\neg x$	
1	1	Т	Т	1		1	1		1			1	0	
0	Т	0	Т	0	ĺ	0		0	0			0	1	
Т	Т	Т	Т	Т		Т	1	0	Т			Т	\perp	
	1	0	Т	\perp		\bot		\perp	\perp	\perp		\perp	Т	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへ⊙

Modular Compilation of a Synchronous Language LE Language

LE Equational Semantic

LE Language

LE Equational Semantic

Notion of Circuit

- W : wires; R : registers; S : signals (input, output, locals)
- $\mathcal{C} =_{def} \xi$ equation system
- $p \longrightarrow C(p)$ with 3 wires :
 - Set_p : starts p
 - 2 Reset_p : stops and reinits p
 - 3 RTL_p : p is ready to leave

• $E \vdash w \hookrightarrow bb$: a constructive propagation law \bigcirc prop-law

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

LE Language

LE Equational Semantic

Notion of Circuit

- W : wires; R : registers; S : signals (input, output, locals)
- $\mathcal{C} =_{def} \xi$ equation system
- $p \longrightarrow C(p)$ with 3 wires :
 - Set_p : starts p
 - 2 Reset_p : stops and reinits p
 - $TL_p : p is ready to leave$
 - registers (for some instruction only)
- $E \vdash w \hookrightarrow bb$: a constructive propagation law \bigcirc prop-law

LE Language

LE Equational Semantic

Notion of Circuit

- W : wires; R : registers; S : signals (input, output, locals)
- $\mathcal{C} =_{def} \xi$ equation system
- $p \longrightarrow C(p)$ with 3 wires :
 - Set_p : starts p
 - 2 Reset_p : stops and reinits p
 - 3 RTL_p : p is ready to leave
 - registers (for some instruction only)
- $E \vdash w \hookrightarrow bb$: a constructive propagation law prop-law

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

LE Language

LE Equational Semantic

Equational Semantic Definition

- p a LE statement, E : an environment $\mathcal{S}_e(p, E) = E'$ iff $E \vdash \mathcal{C}(p) \hookrightarrow E'$. (notation : $\langle p \rangle_E$)
- P :LE program.
 (P, E) → E' iff S_e(Γ(P), E) = E', where Γ(P) is the LE statement body of program P

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

LE Language

LE Equational Semantic

Equational Semantic Definition

- p a LE statement, E : an environment $S_e(p, E) = E'$ iff $E \vdash C(p) \hookrightarrow E'$. (notation : $\langle p \rangle_E$)
- P :LE program. $(P, E) \longmapsto E'$ iff $S_e(\Gamma(P), E) = E'$, where $\Gamma(P)$ is the LE statement body of program P

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

LE Language

LE Equational Semantic

Equational Semantic Definition

- p a LE statement, E : an environment $S_e(p, E) = E'$ iff $E \vdash C(p) \hookrightarrow E'$. (notation : $\langle p \rangle_E$)
- P :LE program. $(P, E) \longmapsto E'$ iff $S_e(\Gamma(P), E) = E'$, where $\Gamma(P)$ is the LE statement body of program P

Environment Pre Operation

$$\mathcal{P}re(E) = \{S^{\perp} \mid S^{x} \in E\} \cup \{S^{x}_{pre} \mid S^{x} \in E\}$$

うして ふゆ く 山 マ ふ し マ うくの

LE Language

LE Equational Semantic

Wait operator Circuit Definition

$$C_{wait S} = \begin{bmatrix} R+ &= (Set_{wait S} \sqcap \neg Reset_{wait S}) \sqcup \\ & (R \sqcap \neg Reset_{wait S} \sqcap \neg S) \\ RTL_{wait S} &= R \sqcap S \end{bmatrix}$$
(1)

Wait Semantics

$$\langle P_{wait \ S} \rangle_E = \mathcal{P}re(E') \text{ and } E \vdash \mathcal{C}(P_{wait \ S}) \hookrightarrow E$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

LE Language

LE Equational Semantic

P	Parallel Operator($P_1 P_2$) Circuit Definition						
\mathcal{C}_{I}	$P_1 \ P_2 =$						
Γ	Set_{P_1}	=	$Set_{P_1 \parallel P_2}$				
	Set_{P_2}	=	$Set_{P_1 \parallel P_2}$				
	$Reset_{P_1}$	=	$Reset_{P_1 \parallel P_2}$				
	$Reset_{P_2}$	=	$Reset_{P_1 \parallel P_2}$				
	R_1^+	=	$R_1 \sqcap \neg RTL_{P_2} \sqcap \neg Reset_{P_1 \parallel P_2}$				
			$\Box \neg R_2 \sqcap RTL_{P_1} \sqcap \neg RTL_{P_2} \sqcap \neg Reset_{P_1 \parallel P_2}$				
	R_2^+	=	$R_2 \sqcap \neg RTL_{P_1} \sqcap \neg Reset_{P_1 \parallel P_2}$				
			$ \Box \neg R_1 \sqcap \neg RTL_{P_1} \sqcap RTL_{P_2} \sqcap \neg Reset_{P_1 \parallel P_2} $				
	$RTL_{P_1 \parallel P_2}$	=	$R_1 \sqcap \neg R_2 \sqcap RTL_{P_2} \sqcup$				
L			$(\neg R_1 \sqcap RTL_{P_1} \sqcap (R_2 \sqcup RTL_{P_2}))$				

Parallel Semantics

$$\langle P_1 \rangle_E \sqcup \langle P_2 \rangle_E \vdash \mathcal{C}(P_1) \cup \mathcal{C}(P_2) \cup \mathcal{C}_{P_1 \parallel P_2} \hookrightarrow \langle P_1 \parallel P_2 \rangle_E$$

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

 $\begin{array}{l} P \text{ program, } E \text{ input environment, } E' \text{ output environment :} \\ \text{Rule-based specification : } \rho \xrightarrow{E', \text{TERM}} \rho' \\ (P, E) \longmapsto (P', E') \quad \text{iff} \quad \Gamma(P) \xrightarrow{E', \text{ TERM}} \Gamma(P') \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, *E* input environment, *E'* output environment : Rule-based specification : $p \xrightarrow{E', TERM}{E} p'$

$$(P, E) \longmapsto (P', E')$$
 iff $\Gamma(P) \xrightarrow{E', \ TERM} \Gamma(P')$

Theorem

Let P be a LE statement, O its output signal set, and E_{C} an input environment, the following property holds : $P \xrightarrow{E', \operatorname{RTL}_{P}}{E} P'$ and $\langle P \rangle_{E_{C}} |_{O} = E'|_{O}$ where $E|_{X} = \{S^{x} | S^{x} \in E, S \in X\}$.

• Equational semantic offers a means to compile LE programs.

• Behavioral semantic ensures model-checking techniques apply.

New Causality Checking Method

- Problem : the composition of 2 causal systems may introduce causality cycle causality
- Solution :
 - compute partial orders instead of total orders (thanks to equational semantics)

イロト 不得下 不良下 不良下

Э

Sac

Inalization phase : to generate effective output code

Computing Partial Orders

For each equation system, we compute the earliest and latest dates at which each variable can and must be valuated :

- 2 dependencies graphs : from system inputs (upstream dependencies graph) and from system outputs (downstream dependencies graph);
- the earliest date of each system variable v is the length of the maximal path from v to system inputs;
- the latest date of each system variable v is the length of the maximal path from v to system outputs;

Modular Compilation of a Synchronous Language LE Modular Compilation Causality Checking

イロト イロト イヨト イヨト

æ

500

Modular Compilation of a Synchronous Language LE Modular Compilation Causality Checking

Earliest and Latest Datesabcdexyt(1,1)(1,3)(2,2)(3,3)(2,3)(0,0)(0,0)(0,1)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の へ ()

3 Algorithms

- apply PERT method : inputs (resp. outputs) have date 0 and recursively increase of dates for each vertice in the upstream (resp downstream) dependencies graph.
- 2 apply graph theory :
 - compute the adjency matrix ${\cal U}$ of upstream (resp. downstream) dependencies graph.
 - the length of the maximal path from a variable v to system inputs is characterized by the maximal k such that $\mathcal{U}^k[v, i] \neq 0$ for all inputs i.
- apply fix point theory : the vector of earliest (resp. lastest) dates can be computed as the least fix point of a momotonic increasing function.

Partial Orders Composition

To compose two already sorted systems A and B :

- only interface variables may be common; thus we memorize the upstream dependencies of output variables and the dowmstream dependencies of input for each equation systems.
- two algorithms :
 - propagation of commom variables dates adjustement
 - If ix point characterisation starting with the vectors of already computed dates and considering only the variables in the dependencies (upstream and downstream) of common variables

SQA

Modular Compilation of a Synchronous Language LE Modular Compilation Link of Two Partial Orders

Partial Orders Link А В $a = f_1(x, y)$ $b = f_2(x, y) | y = g_1(m)$ $\begin{array}{ccc} c &=& f_3(a,t) \\ d &=& f_4(a,c) \end{array} \begin{vmatrix} z &=& g_2(d) \\ v &=& g_3(w) \end{vmatrix}$ $e = f_5(a, t)$ A : a b c d e x y (1,1) (1,3) (2,2) (3,3) (2,3) (0,0) (0,0) (0,1)B : d m v w y z (0,0) (0,0) (1,1) (0,0) (1,1) (1,1)

Common variables : d y

Modular Compilation of a Synchronous Language LE Modular Compilation Link of Two Partial Orders

	Equations1	Equations2	upstreamdep	downstreamdep	d	у
а	(1, 2)	—	$\{c, e, d\}$	$\{x, y\}$	(1, 3)	(2,3)
b	(1,0)	_	Ø	$\{x, y\}$	(1,0)	(2 , 0)
с	(2, 1)	_	{ <i>d</i> }	$\{a,t\}$	(2, 2)	(3 , 2)
d	(3,0)	(0, 1)	(z)	{ <i>a</i> , <i>c</i> }	(3,1)	(4, 1)
е	(2,0)	_	Ø	$\{a,t\}$	(2,0)	(3 , 0)
x	(0,3)	_	{ <i>a</i> , <i>b</i> }	Ø	(0,4)	(0, 4)
у	(0,3)	(1,0)	{ <i>a</i> , <i>b</i> }	{ <i>m</i> }	(0,4)	(1, 4)
t	(0,2)	_	$\{c, e\}$	Ø	(0, 3)	(0,3)
т	_	(0, 1)	$\{y\}$	Ø	(0,1)	(0,5)
v	_	(1,0)	Ø	{w}	(1,0)	(1, 0)
w	_	(0, 1)	{v}	Ø	(0,1)	(0, 1)
Ζ	_	(1,0)	Ø	$\{d\}$	(4,0)	(5 ,0)

<□▶ <□▶ < □▶ < □▶ < □▶ = □ ○ ○ ○ ○

Second Compilation Level

▲□▶ ▲圖▶ ▲直▶ ▲直▶ 三直 - のへ⊙

Second Compilation Level

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

€.

990

Effective Compilation

- P is associated with a ξ equation system $(\mathcal{C}(P))$
- **2** $\xi \longrightarrow \mathcal{B}$ (BDD implementation)
- \bigcirc compilation = \hookrightarrow propagation law implementation

- eparated compilation relies on
 - LEC internal format
 - Finilization operation

Effective Compilation

- P is associated with a ξ equation system $(\mathcal{C}(P))$
- **2** $\xi \longrightarrow \mathcal{B}$ (BDD implementation)
- 3 compilation = \hookrightarrow propagation law implementation

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ …

- eparated compilation relies on
 - LEC internal format
 - Finilization operation

Effective Compilation

- P is associated with a ξ equation system $(\mathcal{C}(P))$
- **2** $\xi \longrightarrow \mathcal{B}$ (BDD implementation)
- \bigcirc compilation = \hookrightarrow propagation law implementation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

separated compilation relies on

Effective Compilation

- P is associated with a ξ equation system $(\mathcal{C}(P))$
- **2** $\xi \longrightarrow \mathcal{B}$ (BDD implementation)
- \bigcirc compilation = \hookrightarrow propagation law implementation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

separated compilation relies on

- LEC internal format
- **2** Finilization operation

Modular Compilation of a Synchronous Language Practical Issues The Clem Toolkit

Modular Compilation of a Synchronous Language Practical Issues The Clem Toolkit

LE language with 2 semantics :

the equational semantic offers separated compilation means
 the behavioral semantic allows NuSMV model-checker usage

< □ > < □ > < □ > < □ > < □ > < □ >

Э

Sac

• LE language with 2 semantics :

the equational semantic offers separated compilation means
 the behavioral semantic allows NuSMV model-checker usage

イロト イポト イヨト イヨト

э

Sac

LE language with 2 semantics :

- the equational semantic offers separated compilation means
- the behavioral semantic allows NuSMV model-checker usage

イロト 不得下 不良下 不良下

3

Sac

LE language with 2 semantics :

- the equational semantic offers separated compilation means
- the behavioral semantic allows NuSMV model-checker usage

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sac

- Iarge industrial application development
- 2 extension of LE to deal with data :
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

イロト イポト イヨト イヨト

- language improvement
- semantics extension
- rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Iarge industrial application development
- 2 extension of LE to deal with data :
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

・ロト ・聞 ト ・ 同 ト ・ 同 ト

- Iarge industrial application development
- 2 extension of LE to deal with data :
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○

Synchronous languages rely on the Synchronous hypothesis

Synchronous Hypothesis

Model of event driven systems

- Broadcasting of events (non blocking communication)
- Reaction is **atomic** : input and resulting output events are simultaneous

・ロット 御 マ キ マ マ マ マ

3

- Succession of reactions \Rightarrow logical time
- Synchronous systems are deterministic

Event driven Application Design

Event driven Application Design

LE Operators

- emit speed
- present S { P1} else { P2}
- $P_1 \gg P_2$: perform P_1 then P_2
- $P_1 || P_2$: synchronous parallel : start P_1 and P_2 simultaneously and stop when both have terminated
- abort P when S : perform P until S presence
- loop {P}
- local $S \{P\}$: encapsulation, the scope of S is restricted to P
- *Run M* : call of module *M*
- pause : stop until the next reaction
- wait S : stop until the next reaction in which S is present

LE Program Example

```
module R2WIEO :
Input: I0,I1;
Output: 00,01;
Run:"/home/ar/GnuStrl/CLEM_SRC/TEST/" : WIEO;
ſ
  run WIEO[IO \setminus i, OO \setminus o] \mid\mid run WIEO[I1 \setminus i, O1 \setminus o]
}
end
module WIEO :
Input: i;
Output: o;
wait i >> emit o
end
```

State Chart like Design

State Chart like Design

Automata Design

• $\mathcal{A}(\mathcal{M},\mathcal{T},\mathcal{C}\textit{ond},M_{f},\mathcal{O},\lambda)$: automata specification

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Data flow application Design

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ □ ♪ ヘ ○ ○

Data flow application Design

Equation Design

```
$\mathcal{E}(\mathcal{I}, \mathcal{O}, \mathcal{R}, \mathcal{D})$ : equation system definition module ADDMM: Input: Xi,Yi,Rin; Output: Xi,Yi,Rin; Output: Si, Rout;
Mealy Machine
Si = (Xi xor Yi) xor Rin; Rout = (Xi and Yi) or (Xi and Rin) or (Yi and Rin); end
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

.

$$E \vdash v \hookrightarrow v \qquad \qquad \frac{E(w) = v}{E \vdash w \hookrightarrow v} \qquad \qquad \frac{E \vdash e \hookrightarrow \neg v}{E \vdash \neg e \hookrightarrow v}$$

$$\frac{E \vdash e \hookrightarrow \top \text{ or } E \vdash e' \hookrightarrow \top}{E \vdash e \sqcup e' \hookrightarrow \top} \qquad \frac{E \vdash e \hookrightarrow \bot \text{ or } E \vdash e' \hookrightarrow \bot}{E \vdash e \sqcap e' \hookrightarrow \bot}$$

$$\frac{(E \vdash e \hookrightarrow 1 \text{ and } E \vdash e' \hookrightarrow 0) \text{ or } (E \vdash e \hookrightarrow 0 \text{ and } E \vdash e' \hookrightarrow 1)}{E \vdash e \sqcup e' \hookrightarrow \top \text{ and } E \vdash e \sqcap e' \hookrightarrow \bot}$$

$$\frac{(E \vdash e \hookrightarrow 1 \text{ and } E \vdash e' \hookrightarrow \bot) \text{ or } (E \vdash e \hookrightarrow \bot \text{ and } E \vdash e' \hookrightarrow 1)}{E \vdash e \sqcup e' \hookrightarrow 1 \text{ and } E \vdash e \sqcap e' \hookrightarrow \bot}$$

$$\frac{(E\vdash e\hookrightarrow 0 \text{ and } E\vdash e'\hookrightarrow \bot) \text{ or } (E\vdash e\hookrightarrow \bot \text{ and } E\vdash e'\hookrightarrow 0)}{E\vdash e\sqcup e'\hookrightarrow 0}$$

$$\frac{(E \vdash e \hookrightarrow 0 \text{ and } E \vdash e' \hookrightarrow \top) \text{ or } (E \vdash e \hookrightarrow \top \text{ and } E \vdash e' \hookrightarrow 0)}{E \vdash e \sqcap e' \hookrightarrow 0}$$

$$\frac{E \vdash e \hookrightarrow v \text{ and } E \vdash e' \hookrightarrow v}{E \vdash e \sqcup e' \hookrightarrow v \text{ and } E \vdash e \sqcap e' \hookrightarrow v}$$

$$\frac{(E \vdash e \hookrightarrow \top \text{ and } E \vdash e' \hookrightarrow 1) \text{ or } (E \vdash e \hookrightarrow 1 \text{ and } E \vdash e' \hookrightarrow \top)}{E \vdash e \sqcap e' \hookrightarrow 1}$$

Causality Problem Illustration

module first: Input: I1,12; Output: O1,O2; loop { pause >> { present I1 {emit O1}		module second: Input: 13; Output: 03; loop { pause >> present I3 {emit O3} } end
present I2 {emit O2}	module final:	O3 = I3
enu	Output O; local L1,L2 {	
O1 = I1 O2 = I2	run first[L2\I1,0\01,1\I2,L1\02] run second[L1\I3,L2\03]	
0 = L2 L1 = L	} end	L2 = L1

Causality Prob	lem Illus	stration			
module Input: 1 Joup (puse: { presen	first: 1,12; 01,02; >> t 11 {emit 01}		module second: Input: 13; Output: O3; loop { pause >> present I3 {emit O3} } end		
presen } end O1 = O2 =	12 {emit O2} 11 11 12	module final: Input: I; Output O; local L1,L2 { run first[L2/L1,O\O1,I/L2,L1\O2] run second[L1\L3,L2\O3]	O3 = I3		
	O = L2 L1 = I	} end	L2 = L1		

$$E \vdash bb \hookrightarrow bb$$
 $\frac{E(w) = bb}{E \vdash w \hookrightarrow bb}$

$$\frac{E \vdash e \hookrightarrow bb}{E \vdash (w = e) \hookrightarrow bb} \qquad \frac{E \vdash e \hookrightarrow \neg bb}{E \vdash \neg e \hookrightarrow bb}$$