
Modular Compilation of a Synchronous Language

Modular Compilation of a Synchronous Language

Daniel Ga�é1 and Annie Ressouche2 and Valérie Roy3

1Nice Sophia Antipolis University and CNRS(LEAT)

2Inria Sophia-Antipolis Méditerranée

3Ecole des Mines-CMA

Synchron 2010

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

model-driven + modularity ⇒ global causality checking

synchronous hypothesis ⇒ responsiveness.

modularity

global causality checking

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

We introduce :

a synchronous language LE

an equational semantic allowing modular compilation

an e�cient way to check causality relying on a �nalization
phase

Modular Compilation of a Synchronous Language

Introduction

Outline

1 Introduction
2 LE Language

LE Language Overview
LE Equational Semantic
Correctness of the Equational Semantic

3 LE Modular Compilation
Causality Checking
Sorting Algorithms
Link of Two Partial Orders
Overview of the Compilation Process

4 Practical Issues
E�ective Compilation
The Clem Toolkit

5 Conclusion and Future Work
Conclusion
Future Work

6 Appendix

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

detail

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

detail

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

detail

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

detail

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

ξ Rules

t 1 0 > ⊥
1 1 > > 1

0 > 0 > 0

> > > > >
⊥ 1 0 > ⊥

u 1 0 > ⊥
1 1 ⊥ 1 ⊥
0 ⊥ 0 0 ⊥
> 1 0 > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

x ¬ x

1 0

0 1

> ⊥
⊥ >

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Modularity versus Causality

modularity

responsiveness responsiveness

causality

quadri−valuated
signals signals

binary

finalization

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : starts p
2 Resetp : stops and reinits p
3 RTLp : p is ready to leave
4 registers (for some instruction only)

E ` w ↪→ bb : a constructive propagation law prop-law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : starts p
2 Resetp : stops and reinits p
3 RTLp : p is ready to leave
4 registers (for some instruction only)

E ` w ↪→ bb : a constructive propagation law prop-law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : starts p
2 Resetp : stops and reinits p
3 RTLp : p is ready to leave
4 registers (for some instruction only)

E ` w ↪→ bb : a constructive propagation law prop-law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Equational Semantic De�nition

p a LE statement, E : an environment
Se(p,E) = E ′ i� E ` C(p) ↪→ E ′. (notation : 〈p〉E)
P :LE program.
(P,E) 7−→ E ′ i� Se(Γ(P),E) = E ′, where Γ(P) is the LE
statement body of program P

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Equational Semantic De�nition

p a LE statement, E : an environment
Se(p,E) = E ′ i� E ` C(p) ↪→ E ′. (notation : 〈p〉E)
P :LE program.
(P,E) 7−→ E ′ i� Se(Γ(P),E) = E ′, where Γ(P) is the LE
statement body of program P

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Equational Semantic De�nition

p a LE statement, E : an environment
Se(p,E) = E ′ i� E ` C(p) ↪→ E ′. (notation : 〈p〉E)
P :LE program.
(P,E) 7−→ E ′ i� Se(Γ(P),E) = E ′, where Γ(P) is the LE
statement body of program P

Environment Pre Operation

Pre(E) = {S⊥ | Sx ∈ E} ∪ {Sx
pre | Sx ∈ E}

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Wait operator Circuit De�nition

Cwait S =

 R+ = (Setwait S u ¬Resetwait S) t
(R u ¬Resetwait S u ¬S) (1)

RTLwait S = R u S (2)

Wait Semantics

〈Pwait S〉E = Pre(E ′) and E ` C(Pwait S) ↪→ E ′

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Parallel Operator(P1‖P2) Circuit De�nition

CP1‖P2 =

SetP1 = SetP1‖P2
SetP2 = SetP1‖P2
ResetP1 = ResetP1‖P2
ResetP2 = ResetP1‖P2
R+
1 = R1 u ¬RTLP2 u ¬ResetP1‖P2

t¬R2 u RTLP1 u ¬RTLP2 u ¬ResetP1‖P2
R+
2 = R2 u ¬RTLP1 u ¬ResetP1‖P2

t¬R1 u ¬RTLP1 u RTLP2 u ¬ResetP1‖P2
RTLP1‖P2 = R1 u ¬R2 u RTLP2t

(¬R1 u RTLP1 u (R2 t RTLP2))

Parallel Semantics

〈P1〉E t 〈P2〉E ` C(P1) ∪ C(P2) ∪ CP1‖P2 ↪→ 〈P1‖P2〉E

Modular Compilation of a Synchronous Language

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)

Modular Compilation of a Synchronous Language

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)

Theorem

Let P be a LE statement, O its output signal set, and EC an input
environment, the following property holds :

P
E ′,RTLP−−−−−→

E
P ′ and 〈P〉EC |O = E ′|O

where E |X = {Sx |Sx ∈ E , S ∈ X}.

• Equational semantic o�ers a means to compile LE programs.
• Behavioral semantic ensures model-checking techniques apply.

Modular Compilation of a Synchronous Language

LE Modular Compilation

Causality Checking

New Causality Checking Method

Problem : the composition of 2 causal systems may introduce
causality cycle causality

Solution :
1 compute partial orders instead of total orders (thanks to

equational semantics)
2 �nalization phase : to generate e�ective output code

Modular Compilation of a Synchronous Language

LE Modular Compilation

Causality Checking

Computing Partial Orders

For each equation system, we compute the earliest and latest dates
at which each variable can and must be valuated :

1 2 dependencies graphs : from system inputs (upstream
dependencies graph) and from system outputs (downstream
dependencies graph) ;

2 the earliest date of each system variable v is the length of the
maximal path from v to system inputs ;

3 the latest date of each system variable v is the length of the
maximal path from v to system outputs ;

Modular Compilation of a Synchronous Language

LE Modular Compilation

Causality Checking

Example

a = f1(x , y)
b = f2(x , y)
c = f3(a, t)
d = f4(a, c)
e = f5(a, t)

ca

y

x d

b

et

c a x

b y

te

d

dependencies

Upstream

dependencies

Downstream

3 2 1 0 3 2 1 0

Earliest and Latest Dates

a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

Modular Compilation of a Synchronous Language

LE Modular Compilation

Causality Checking

Example

a = f1(x , y)
b = f2(x , y)
c = f3(a, t)
d = f4(a, c)
e = f5(a, t)

ca

y

x d

b

et

c a x

b y

te

d

dependencies

Upstream

dependencies

Downstream

3 2 1 0 3 2 1 0

Earliest and Latest Dates

a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

Modular Compilation of a Synchronous Language

LE Modular Compilation

Sorting Algorithms

3 Algorithms

1 apply PERT method : inputs (resp. outputs) have date 0 and
recursively increase of dates for each vertice in the upstream
(resp downstream) dependencies graph.

2 apply graph theory :

compute the adjency matrix U of upstream (resp. downstream)
dependencies graph.
the length of the maximal path from a variable v to system
inputs is characterized by the maximal k such that Uk [v , i] 6= 0
for all inputs i .

3 apply �x point theory : the vector of earliest (resp. lastest)
dates can be computed as the least �x point of a momotonic
increasing function.

Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

Partial Orders Composition

To compose two already sorted systems A and B :

only interface variables may be common ; thus we memorize
the upstream dependencies of output variables and the
dowmstream dependencies of input for each equation systems.

two algorithms :
1 propagation of commom variables dates adjustement
2 �x point characterisation starting with the vectors of already

computed dates and considering only the variables in the
dependencies (upstream and downstream) of common variables

Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

Partial Orders Link

A B

a = f1(x , y)
b = f2(x , y)
c = f3(a, t)
d = f4(a, c)
e = f5(a, t)

y = g1(m)
z = g2(d)
v = g3(w)

A : a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

B : d m v w y z
(0, 0) (0, 0) (1, 1) (0, 0) (1, 1) (1, 1)

Common variables : d y

Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

Equations1 Equations2 upstreamdep downstreamdep d y

a (1, 2) − {c, e, d} {x , y} (1, 3) (2, 3)
b (1, 0) − ∅ {x , y} (1, 0) (2, 0)
c (2, 1) − {d} {a, t} (2, 2) (3, 2)
d (3, 0) (0, 1) (z) {a, c} (3, 1) (4, 1)
e (2, 0) − ∅ {a, t} (2, 0) (3, 0)
x (0, 3) − {a, b} ∅ (0, 4) (0, 4)
y (0, 3) (1, 0) {a, b} {m} (0, 4) (1, 4)
t (0, 2) − {c, e} ∅ (0, 3) (0, 3)
m − (0, 1) {y} ∅ (0, 1) (0, 5)
v − (1, 0) ∅ {w} (1, 0) (1, 0)
w − (0, 1) {v} ∅ (0, 1) (0, 1)
z − (1, 0) ∅ {d} (4, 0) (5, 0)

Modular Compilation of a Synchronous Language

LE Modular Compilation

Overview of the Compilation Process

First Compilation Level

a

b

c

d

x

y

v

u

abstraction abstraction

x:2,2

y:2,2

a:0,0

b:0,0

d:0,0

e:0,0

f:0,0
c:0,1

a:1,1

z:1,1y:0,0

e

f

y

a

z

Modular Compilation of a Synchronous Language

LE Modular Compilation

Overview of the Compilation Process

Second Compilation Level

b

c

d

e

f

x

z

Modular Compilation of a Synchronous Language

LE Modular Compilation

Overview of the Compilation Process

Second Compilation Level

b:0,0

d:0,0

e:0,0
f:0,0

z:4,4

x:3,4

c:0,3

Modular Compilation of a Synchronous Language

LE Modular Compilation

Overview of the Compilation Process

Finalization

e:0,0
f:0,0
b:0,0

d:0,0

a:1,1

z:4,4y:3,3
v:2,2

x:3,4
u:2,3

c:0,3

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation
4 separated compilation relies on

1 LEC internal format
2 Finilization operation

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation
4 separated compilation relies on

1 LEC internal format
2 Finilization operation

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation
4 separated compilation relies on

1 LEC internal format
2 Finilization operation

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation
4 separated compilation relies on

1 LEC internal format
2 Finilization operation

Modular Compilation of a Synchronous Language

Practical Issues

The Clem Toolkit

CLEM Toolkit ://http :www.inria.fr/sophia/pulsar/projects/Clem

LE textual codes

LEC file

already compiled LEC

automaton

editor

LE generated code

COMPILER and LINKERCLEM

Finalization

(Galaxy)

imperative

LE textual codes

data flow

TARGETS
verificationsoftware

models

software

codes

hardware

descriptions

simulation

formal proofs

Vhdl
systemC

Blif C Esterel
Lustre

NuSMV

Modular Compilation of a Synchronous Language

Practical Issues

The Clem Toolkit

The Future CLEM Toolkit

LE textual codes

automaton

editor

LE generated code

COMPILER and LINKERCLEM

Finalization

(Galaxy)

imperative

LE textual codes

data flow

TARGETS
verificationsoftware

models

software

codes

hardware

descriptions

simulation

formal proofs

Vhdl
systemC

Blif C Esterel
Lustre

NuSMV

already
other

module
compiled

LEA file

LEC file
LEC file

LEA file

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Work in Progress

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Work in Progress

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Work in Progress

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Work in Progress

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Appendix

Synchronous languages rely on the Synchronous hypothesis

output eventsinput events

reaction (=> logical clock)

Synchronous Hypothesis

Model of event driven systems

Broadcasting of events (non blocking communication)

Reaction is atomic : input and resulting output events are
simultaneous

Succession of reactions ⇒ logical time

Synchronous systems are deterministic

return

Modular Compilation of a Synchronous Language

Appendix

Event driven Application Design

Modular Compilation of a Synchronous Language

Appendix

Event driven Application Design

LE Operators

emit speed

present S { P1} else { P2}

P1 � P2 : perform P1 then P2

P1‖P2 : synchronous parallel : start P1 and P2 simultaneously
and stop when both have terminated

abort P when S : perform P until S presence

loop {P}
local S {P} : encapsulation, the scope of S is restricted to P

Run M : call of module M

pause : stop until the next reaction

wait S : stop until the next reaction in which S is present

Modular Compilation of a Synchronous Language

Appendix

LE Program Example

module R2WIEO :

Input: I0,I1;

Output: O0,O1;

Run:"/home/ar/GnuStrl/CLEM_SRC/TEST/" : WIEO;

{

run WIEO[I0 \ i, O0 \ o] || run WIEO[I1 \ i, O1 \ o]

}

end

module WIEO :

Input: i;

Output: o;

wait i >> emit o

end

Modular Compilation of a Synchronous Language

Appendix

State Chart like Design

Modular Compilation of a Synchronous Language

Appendix

State Chart like Design

Automata Design

A(M, T , Cond ,Mf ,O, λ) : automata speci�cation

init

callTransport

Transport

StartCycle

upward

forward/ENDOfCycle

downward/Temporisation

MoveDown

state4 state3

Modular Compilation of a Synchronous Language

Appendix

Data �ow application Design

return

Modular Compilation of a Synchronous Language

Appendix

Data �ow application Design

Equation Design

E(I,O,R,D) : equation system de�nition

module ADDMM:

Input: Xi,Yi,Rin;

Output: Si, Rout;

Mealy Machine

Si = (Xi xor Yi) xor Rin;

Rout = (Xi and Yi) or (Xi and Rin) or (Yi and Rin);

end

return

Modular Compilation of a Synchronous Language

Appendix

E ` v ↪→ v E (w) = v

E ` w ↪→ v

E ` e ↪→ ¬v
E ` ¬e ↪→ v

E ` e ↪→ > or E ` e ′ ↪→ >
E ` e t e ′ ↪→ >

E ` e ↪→ ⊥ or E ` e ′ ↪→ ⊥
E ` e u e ′ ↪→ ⊥

Modular Compilation of a Synchronous Language

Appendix

(E ` e ↪→ 1 and E ` e ′ ↪→ 0) or (E ` e ↪→ 0 and E ` e ′ ↪→ 1)

E ` e t e ′ ↪→ > and E ` e u e ′ ↪→ ⊥

(E ` e ↪→ 1 and E ` e ′ ↪→ ⊥) or (E ` e ↪→ ⊥ and E ` e ′ ↪→ 1)

E ` e t e ′ ↪→ 1 and E ` e u e ′ ↪→ ⊥

(E ` e ↪→ 0 and E ` e ′ ↪→ ⊥) or (E ` e ↪→ ⊥ and E ` e ′ ↪→ 0)

E ` e t e ′ ↪→ 0

Modular Compilation of a Synchronous Language

Appendix

(E ` e ↪→ 0 and E ` e ′ ↪→ >) or (E ` e ↪→ > and E ` e ′ ↪→ 0)

E ` e u e ′ ↪→ 0

E ` e ↪→ v and E ` e ′ ↪→ v

E ` e t e ′ ↪→ v and E ` e u e ′ ↪→ v

(E ` e ↪→ > and E ` e ′ ↪→ 1) or (E ` e ↪→ 1 and E ` e ′ ↪→ >)

E ` e u e ′ ↪→ 1

return

Modular Compilation of a Synchronous Language

Appendix

Causality Problem Illustration

 ||

 }

module first:

Output: O1,O2;
loop {
 pause >>

 present I1 {emit O1}

 present I2 {emit O2}

end

 {

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >> present I3 {emit O3}
}
end

Output O;
local L1,L2 {

 ||
 run second[L1\I3,L2\O3]
}
end

 run first[L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I;

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O1

I1 O3

I3O2

I2
normal evaluation

way

L1 = I
L2 = L1
O = L2

Modular Compilation of a Synchronous Language

Appendix

Causality Problem Illustration

 ||

 }

module first:

Output: O1,O2;
loop {
 pause >>

 present I1 {emit O1}

 present I2 {emit O2}

end

 {

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >> present I3 {emit O3}
}
end

Output O;
local L1,L2 {

 ||
 run second[L1\I3,L2\O3]
}
end

 run first[L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I;

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O2

I2

O1

I1 O3

I3
wrong causality

cycle

L2 = L1
O = L2
L1 = I

return

Modular Compilation of a Synchronous Language

Appendix

E ` bb ↪→ bb E (w) = bb

E ` w ↪→ bb

E ` e ↪→ bb

E ` (w = e) ↪→ bb

E ` e ↪→ ¬bb
E ` ¬e ↪→ bb

	Introduction
	LE Language
	LE Language Overview
	LE Equational Semantic
	Correctness of the Equational Semantic

	LE Modular Compilation
	Causality Checking
	Sorting Algorithms
	Link of Two Partial Orders
	Overview of the Compilation Process

	Practical Issues
	Effective Compilation
	The Clem Toolkit

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix

