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E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
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model-driven + modularity ⇒ global causality checking

synchronous hypothesis ⇒ responsiveness.

modularity

global causality checking
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Introduction

Motivation

+ Synchronous languages are model-driven ⇒ see

E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

We introduce :

a synchronous language LE

an equational semantic allowing modular compilation

an e�cient way to check causality relying on a �nalization
phase
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LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

ξ Rules

t 1 0 > ⊥
1 1 > > 1

0 > 0 > 0

> > > > >
⊥ 1 0 > ⊥

u 1 0 > ⊥
1 1 ⊥ 1 ⊥
0 ⊥ 0 0 ⊥
> 1 0 > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

x ¬ x

1 0

0 1

> ⊥
⊥ >
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LE Language

LE Equational Semantic

Modularity versus Causality

modularity

responsiveness responsiveness

causality

quadri−valuated
signals signals

binary

finalization
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Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : starts p
2 Resetp : stops and reinits p
3 RTLp : p is ready to leave
4 registers (for some instruction only)

E ` w ↪→ bb : a constructive propagation law prop-law



Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : starts p
2 Resetp : stops and reinits p
3 RTLp : p is ready to leave
4 registers (for some instruction only)

E ` w ↪→ bb : a constructive propagation law prop-law



Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : starts p
2 Resetp : stops and reinits p
3 RTLp : p is ready to leave
4 registers (for some instruction only)

E ` w ↪→ bb : a constructive propagation law prop-law



Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic
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p a LE statement, E : an environment
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(P,E ) 7−→ E ′ i� Se(Γ(P),E ) = E ′, where Γ(P) is the LE
statement body of program P
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LE Language

LE Equational Semantic

Equational Semantic De�nition

p a LE statement, E : an environment
Se(p,E ) = E ′ i� E ` C(p) ↪→ E ′. (notation : 〈p〉E )
P :LE program.
(P,E ) 7−→ E ′ i� Se(Γ(P),E ) = E ′, where Γ(P) is the LE
statement body of program P

Environment Pre Operation

Pre(E ) = {S⊥ | Sx ∈ E} ∪ {Sx
pre | Sx ∈ E}
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LE Language

LE Equational Semantic

Wait operator Circuit De�nition

Cwait S =

 R+ = (Setwait S u ¬Resetwait S) t
(R u ¬Resetwait S u ¬S) (1)

RTLwait S = R u S (2)


Wait Semantics

〈Pwait S〉E = Pre(E ′) and E ` C(Pwait S) ↪→ E ′
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LE Language

LE Equational Semantic

Parallel Operator(P1‖P2) Circuit De�nition

CP1‖P2 =

SetP1 = SetP1‖P2
SetP2 = SetP1‖P2
ResetP1 = ResetP1‖P2
ResetP2 = ResetP1‖P2
R+
1 = R1 u ¬RTLP2 u ¬ResetP1‖P2

t¬R2 u RTLP1 u ¬RTLP2 u ¬ResetP1‖P2
R+
2 = R2 u ¬RTLP1 u ¬ResetP1‖P2

t¬R1 u ¬RTLP1 u RTLP2 u ¬ResetP1‖P2
RTLP1‖P2 = R1 u ¬R2 u RTLP2t

(¬R1 u RTLP1 u (R2 t RTLP2))


Parallel Semantics

〈P1〉E t 〈P2〉E ` C(P1) ∪ C(P2) ∪ CP1‖P2 ↪→ 〈P1‖P2〉E
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LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)



Modular Compilation of a Synchronous Language

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)

Theorem

Let P be a LE statement, O its output signal set, and EC an input
environment, the following property holds :

P
E ′,RTLP−−−−−→

E
P ′ and 〈P〉EC |O = E ′|O

where E |X = {Sx |Sx ∈ E , S ∈ X}.

• Equational semantic o�ers a means to compile LE programs.
• Behavioral semantic ensures model-checking techniques apply.
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LE Modular Compilation

Causality Checking

New Causality Checking Method

Problem : the composition of 2 causal systems may introduce
causality cycle causality

Solution :
1 compute partial orders instead of total orders (thanks to

equational semantics)
2 �nalization phase : to generate e�ective output code
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LE Modular Compilation

Causality Checking

Computing Partial Orders

For each equation system, we compute the earliest and latest dates
at which each variable can and must be valuated :

1 2 dependencies graphs : from system inputs (upstream
dependencies graph) and from system outputs (downstream
dependencies graph) ;

2 the earliest date of each system variable v is the length of the
maximal path from v to system inputs ;

3 the latest date of each system variable v is the length of the
maximal path from v to system outputs ;
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LE Modular Compilation

Causality Checking

Example

a = f1(x , y)
b = f2(x , y)
c = f3(a, t)
d = f4(a, c)
e = f5(a, t)

ca

y

x d

b

et

c a x

b y

te

d

dependencies

Upstream

dependencies

Downstream

3      2      1       0           3      2       1      0

Earliest and Latest Dates

a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)
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LE Modular Compilation

Causality Checking

Example

a = f1(x , y)
b = f2(x , y)
c = f3(a, t)
d = f4(a, c)
e = f5(a, t)

ca

y

x d

b

et

c a x

b y

te

d

dependencies

Upstream

dependencies

Downstream

3      2      1       0           3      2       1      0

Earliest and Latest Dates

a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)
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LE Modular Compilation

Sorting Algorithms

3 Algorithms

1 apply PERT method : inputs (resp. outputs) have date 0 and
recursively increase of dates for each vertice in the upstream
(resp downstream) dependencies graph.

2 apply graph theory :

compute the adjency matrix U of upstream (resp. downstream)
dependencies graph.
the length of the maximal path from a variable v to system
inputs is characterized by the maximal k such that Uk [v , i ] 6= 0
for all inputs i .

3 apply �x point theory : the vector of earliest (resp. lastest)
dates can be computed as the least �x point of a momotonic
increasing function.
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LE Modular Compilation

Link of Two Partial Orders

Partial Orders Composition

To compose two already sorted systems A and B :

only interface variables may be common ; thus we memorize
the upstream dependencies of output variables and the
dowmstream dependencies of input for each equation systems.

two algorithms :
1 propagation of commom variables dates adjustement
2 �x point characterisation starting with the vectors of already

computed dates and considering only the variables in the
dependencies (upstream and downstream) of common variables
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LE Modular Compilation

Link of Two Partial Orders

Partial Orders Link

A B

a = f1(x , y)
b = f2(x , y)
c = f3(a, t)
d = f4(a, c)
e = f5(a, t)

y = g1(m)
z = g2(d)
v = g3(w)

A : a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

B : d m v w y z
(0, 0) (0, 0) (1, 1) (0, 0) (1, 1) (1, 1)

Common variables : d y



Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

Equations1 Equations2 upstreamdep downstreamdep d y

a (1, 2) − {c, e, d} {x , y} (1, 3) (2, 3)
b (1, 0) − ∅ {x , y} (1, 0) (2, 0)
c (2, 1) − {d} {a, t} (2, 2) (3, 2)
d (3, 0) (0, 1) (z) {a, c} (3, 1) (4, 1)
e (2, 0) − ∅ {a, t} (2, 0) (3, 0)
x (0, 3) − {a, b} ∅ (0, 4) (0, 4)
y (0, 3) (1, 0) {a, b} {m} (0, 4) (1, 4)
t (0, 2) − {c, e} ∅ (0, 3) (0, 3)
m − (0, 1) {y} ∅ (0, 1) (0, 5)
v − (1, 0) ∅ {w} (1, 0) (1, 0)
w − (0, 1) {v} ∅ (0, 1) (0, 1)
z − (1, 0) ∅ {d} (4, 0) (5, 0)
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LE Modular Compilation

Overview of the Compilation Process

First Compilation Level

a

b

c

d

x

y

v

u

abstraction abstraction

x:2,2

y:2,2

a:0,0

b:0,0

d:0,0

e:0,0

f:0,0
c:0,1

a:1,1

z:1,1y:0,0

e

f

y

a

z
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LE Modular Compilation

Overview of the Compilation Process

Second Compilation Level

b

c

d

e

f

x

z
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LE Modular Compilation

Overview of the Compilation Process

Second Compilation Level

b:0,0

d:0,0

e:0,0
f:0,0

z:4,4

x:3,4

c:0,3
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LE Modular Compilation

Overview of the Compilation Process

Finalization

e:0,0
f:0,0
b:0,0

d:0,0

a:1,1

z:4,4y:3,3
v:2,2

x:3,4
u:2,3

c:0,3



Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation
4 separated compilation relies on

1 LEC internal format
2 Finilization operation
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Practical Issues

The Clem Toolkit

CLEM Toolkit ://http :www.inria.fr/sophia/pulsar/projects/Clem

LE textual codes

LEC file 

already compiled LEC 

automaton

editor 

LE generated code

COMPILER and LINKERCLEM

Finalization

(Galaxy)

imperative

LE textual codes

data flow

TARGETS
verificationsoftware

models

software

codes

hardware

descriptions

simulation

formal proofs

Vhdl
systemC

Blif C Esterel
Lustre

NuSMV



Modular Compilation of a Synchronous Language

Practical Issues

The Clem Toolkit

The Future CLEM Toolkit

LE textual codes

automaton

editor 

LE generated code

COMPILER and LINKERCLEM

Finalization

(Galaxy)

imperative

LE textual codes

data flow

TARGETS
verificationsoftware

models

software

codes

hardware

descriptions

simulation

formal proofs

Vhdl
systemC

Blif C Esterel
Lustre

NuSMV

already
other

module
compiled

LEA file 

LEC file 
LEC file 

LEA file 
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Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation
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Future Work

Work in Progress

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply
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Future Work
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1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
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Appendix

Synchronous languages rely on the Synchronous hypothesis

output eventsinput events

reaction (=> logical clock)

Synchronous Hypothesis

Model of event driven systems

Broadcasting of events (non blocking communication)

Reaction is atomic : input and resulting output events are
simultaneous

Succession of reactions ⇒ logical time

Synchronous systems are deterministic

return
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Appendix

Event driven Application Design

LE Operators

emit speed

present S { P1} else { P2}

P1 � P2 : perform P1 then P2

P1‖P2 : synchronous parallel : start P1 and P2 simultaneously
and stop when both have terminated

abort P when S : perform P until S presence

loop {P}
local S {P} : encapsulation, the scope of S is restricted to P

Run M : call of module M

pause : stop until the next reaction

wait S : stop until the next reaction in which S is present
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Appendix

LE Program Example

module R2WIEO :

Input: I0,I1;

Output: O0,O1;

Run:"/home/ar/GnuStrl/CLEM_SRC/TEST/" : WIEO;

{

run WIEO[I0 \ i, O0 \ o] || run WIEO[I1 \ i, O1 \ o]

}

end

module WIEO :

Input: i;

Output: o;

wait i >> emit o

end
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Appendix

State Chart like Design

Automata Design

A(M, T , Cond ,Mf ,O, λ) : automata speci�cation

init

callTransport

Transport

StartCycle

upward

forward/ENDOfCycle

downward/Temporisation

MoveDown

state4 state3
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Appendix

Data �ow application Design

return
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Appendix

Data �ow application Design

Equation Design

E(I,O,R,D) : equation system de�nition

module ADDMM:

Input: Xi,Yi,Rin;

Output: Si, Rout;

Mealy Machine

Si = (Xi xor Yi) xor Rin;

Rout = (Xi and Yi) or (Xi and Rin) or (Yi and Rin);

end

return
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Appendix

E ` v ↪→ v E (w) = v

E ` w ↪→ v

E ` e ↪→ ¬v
E ` ¬e ↪→ v

E ` e ↪→ > or E ` e ′ ↪→ >
E ` e t e ′ ↪→ >

E ` e ↪→ ⊥ or E ` e ′ ↪→ ⊥
E ` e u e ′ ↪→ ⊥
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Appendix

(E ` e ↪→ 1 and E ` e ′ ↪→ 0) or (E ` e ↪→ 0 and E ` e ′ ↪→ 1)

E ` e t e ′ ↪→ > and E ` e u e ′ ↪→ ⊥

(E ` e ↪→ 1 and E ` e ′ ↪→ ⊥) or (E ` e ↪→ ⊥ and E ` e ′ ↪→ 1)

E ` e t e ′ ↪→ 1 and E ` e u e ′ ↪→ ⊥

(E ` e ↪→ 0 and E ` e ′ ↪→ ⊥) or (E ` e ↪→ ⊥ and E ` e ′ ↪→ 0)

E ` e t e ′ ↪→ 0
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Appendix

(E ` e ↪→ 0 and E ` e ′ ↪→ >) or (E ` e ↪→ > and E ` e ′ ↪→ 0)

E ` e u e ′ ↪→ 0

E ` e ↪→ v and E ` e ′ ↪→ v

E ` e t e ′ ↪→ v and E ` e u e ′ ↪→ v

(E ` e ↪→ > and E ` e ′ ↪→ 1) or (E ` e ↪→ 1 and E ` e ′ ↪→ >)

E ` e u e ′ ↪→ 1

return
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Appendix

Causality Problem Illustration

  ||

  } 

module first:

Output: O1,O2;
loop { 
  pause >> 

  present I1 {emit O1} 

  present I2 {emit O2}

end 

  {        

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >>  present I3 {emit O3}
}
end  

Output O;
local  L1,L2 {

  ||
  run second[ L1\I3,L2\O3]
}
end 

  run first[ L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I; 

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O1

I1 O3

I3O2

I2
normal evaluation

way

L1 = I
L2 = L1
O  = L2
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Appendix

Causality Problem Illustration

  ||

  } 

module first:

Output: O1,O2;
loop { 
  pause >> 

  present I1 {emit O1} 

  present I2 {emit O2}

end 

  {        

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >>  present I3 {emit O3}
}
end  

Output O;
local  L1,L2 {

  ||
  run second[ L1\I3,L2\O3]
}
end 

  run first[ L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I; 

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O2

I2

O1

I1 O3

I3
wrong causality

cycle

L2 = L1
O  = L2
L1 = I

return
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Appendix

E ` bb ↪→ bb E (w) = bb

E ` w ↪→ bb

E ` e ↪→ bb

E ` (w = e) ↪→ bb

E ` e ↪→ ¬bb
E ` ¬e ↪→ bb
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